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It is proven that an orthonormal basis of ondelettes can never have exponential localization in 
both position space and momentum space. 

I. INTRODUCTION 

Orthonormal bases of ondelettes have been the most ef­
fective localizations of phase space to date. This is to be ex­
pected, since they are related to renormalization group 
ideas. 1,2 For example, Meyer and his co-workers have con­
structed an orthonormal basis of ondelettes that are 
Schwartz functions with compactly supported Fourier 
transforms. 3 More recently, an orthonormal basis of com­
pactly supported class eN ondelettes4 have been constructed 
for arbitrary N. Since compact support is impossible in both 
position space and momentum space, it is natural to ask 
whether ondelettes with exponential falloff in both position 
space and momentum space exist. The answer is no, and this 
no-go theorem is proven here. The key to our proof is based 
on the intimate connection between smoothness properties 
and moment properties, which (we show) must hold for 
ondelettes. 

Although one is usually interested in a basis of onde­
lettes, it makes sense to speak of an individual ondelette. 

Definition: A square-integrable function rp on Rd is an 
ondelette if and only if the functions rp L,n defined by 

rpL,n = L ~ dl2rp(L ~ IX + n) (1) 

are mutually orthogonal for L = 2 ~ r, fEZ, and nE'ld. 
One of the reasons for the current interest in various 

bases of ondelettes is the amount of phase space localization 
the ondelettes can have. 3

,4 Such orthonormal bases circum­
vent the strong uncertainty principle of Balian and Low,5-7 
so our no-go theorem for ondelettes should not be confused 
with their no-go theorem. They consider the rather different 
game of tiling phase space with functions of the form 
e''21Tm'Y(x + n), and their uncertainty principle states that 
for such a function! the standard deviations ll.fx and ll.f pin 
position space and momentum space, respectively, cannot 
both be finite. 

Remark 1: Actually, our definition of "ondelettes" is 
more restrictive than the popular one, which includes 
frames4 and continuous decompositions as well as orthonor­
mal bases. 

Remark 2: Very recently, Bourgain8 has tiled phase 
space with functions of the form!m (x + n) having the prop­
erty that ll.fmx and ll.fm p are not only both finite but also 
bounded uniformly in mEld. The general idea is to obtain 
better phase space localization by sacrificing the discrete 
translational symmetry of the basis in the momentum direc­
tions while simultaneously preserving uniformity in the 
standard deviations. On the other hand, this new orthonor­
mal basis does not match the degree of phase space localiza-

tion attainable by ondelette bases. Indeed, Bourgain's phase 
space localization is optimal because there is no basis 
!m (x + n), such that 

f dxl!mn(x)12[1 + Ix- (x)fmYfH.;;;c, (2) 

f dPlfmn(P)1 2[1 + [P- (P)fmYf+E.;;;c (3) 

for some £ > O. This negative result is due to Steger. 9 

Yet another difference between our theorem and the Ba­
lian-Low theorem is that completeness of the basis plays a 
vital role in any proof of their necessarily stronger conclu­
sion. Completeness plays no role in the proof of our ondelette 
theorem. 

II. VANISHING MOMENTS 

Before we prove the main lemma, we prove a special 
case for which the intuition is clear. 

Lemma 1: Let rp be an ondelette for which cp(p) is con­
tinuous and bounded and integrable. Then the zeroth-order 
moment of rp must vanish. 

Proof We assume cp(O) #0 and show how orthogonali­
ty leads to a contradiction. Since cp(p) is integrable, we know 
that rp(x) is a bounded continuous function that vanishes at 
infinity. Pick a fixed scale Lo = 2 - r" small enough to guar­
antee rp(Lono) #0 for some d-tuple no of integers, and set 
Xo = Lono. Thus 

(4) 

Now consider a small scale L = 2 - r which will be chosen as 
small as we need in the end. Obviously Xo lies in the finer 
lattice of points LZ/: we simply define n L = 2' ~ r" no and 
note that 

LnL = xo' (5) 

It follows from the orthogonality of rp and rpL, ~ nL that 

f eiX"P(p(p) CPL,o(p)dp=O. (6) 

On the other hand, the integral in question is just L d /2 times 

(7) 

and by dominated convergence and the continuity ofcp, (7) 
approaches cp(O)rp(xo) as L-O. This yields the desired 
contradiction, because (7) would have to be nonzero for 
some nonzero value of L. 0 
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Remark: It is worth mentioning that the zeroth-order 
moment vanishes for the more general ondelettes as well, but 
for an entirely different reason. For frames and continuous 
decompositions4 the completeness property is used to verify 
the property 

(8) 

which seems essential to such expansions. We repeat that 
completeness is not used in the orthonormal case. 

We can easily extend the proof of Lemma I to prove the 
more general lemma on vanishing moments. 

Lemma 2: Let qJ be an ondelette for which '$ (p) is class 
C N + 1 and (1 + Ipj)N+ l'$(p) is integrable. Then all mo­
ments of qJ of order <N must vanish. 

Proof' By Lemma 1 we know the zeroth-order moment 
vanishes. Suppose we have shown that all moments of order 
<k - I vanish, where k is an integer <N, and assume there 
are some nonzero k th-order moments. Thus 

(9) 

where Rk (p) is the Taylor remainder and we use the stan­
dard multi-index notation. The zero set of the polynomial is 
an algebraic hypersurface in Rd , so the bounded continuous 
function 

(10) 

cannot vanish identically because '$(p) is also continuous. 
We now pick a dyadic point Xo at which (10) is nonzero in 
exactly the same way that we picked a dyadic point in the 
proof of Lemma 1. There is a d-tuple no of integers and a 
scale Lo = 2 - r() for which Xo = Lono, and for smaller 
L = 2 - r, nL is given by (5). Thus we have Eq. (6) and so-­
given that ( 10) does not vanish at xo-all we need to show is 
that we also have 

J eiX"P(p(p) '$(Lp) dp-:j=O. 

Applying (9) to '$(Lp) we obtain 

J ei"',P(p(p) $(Li) dp 

= J ei""p RdLp)'$(p)dp 

(11 ) 

+LkJeiX()'p I 1, (Da'$)(O)pa'$(p)dp, (12) 
lal=k a. 
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but by Taylor'S theorem we have 

for Ip I <€oL - 1. It also follows from (9) and the boundedness 
of'$(Lp) that we have a bound for largep, namely, 

(14) 

Since Ip I k + 1 '$ (p) is integrable, we have the estimates 

(15) 

(16) 

as well. Combining (13 )-(16) we easily conclude that the 
first term in (12) is O(L k + 1 ). As the second term is aoL k 

with ao-:j=O, we need only choose L small enough to realize 
(11). 0 

Theorem: If qJ is an ondelette, then it cannot have expo­
nentiallocalization in both position space and momentum 
space. 

Proof: If qJ(x) and '$(p) both have exponential decay, 
then in particular qJ is a Schwartz function. It follows from 
Lemma 2 that all moments of qJ vanish. But this means that 
'$(p) vanishes at p = 0 to infinite order, and so '$(p) cannot 
be real analytic. This contradicts the exponential decay as­
sumed for qJ(x). 0 

Note added: The author has learned that Y. Meyer was 
already aware of the connection between smoothness and 
vanishing moments but that no consequences were ever pub­
licized. 
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It is shown that the factoring property of the Tomimatsu-Sato metrics follows from the 
structure of special Hankel determinants. A set of linear algebraic equations determining the 
factors is found. The factors of the first five Tomimatsu-Sato metrics are tabulated. 

I. INTRODUCTION 

Motivated by a recent result 1 that the Tomimatsu-Sato 
(TS) metrics can be factored over the field of integers, I 
sought such a representation for higher TS metrics. Ernse 
and Hoenselaers3 have made the first observation that 
the 8 = 1, 2, and 3 TS metric functions can be factored 
in the form of the spectral decomposition [gik] 
= [Oim] [ Amn ] [Okn ] where the matrix A = [Amn] is di-

agonal and 0 = [Oik] is unimodular. I obtain here the fac­
tors of the 8 = 4 and 8 = 5 TS metrics. The following pattern 
now emerges: The TS metric functions (4) with an odd 8 can 
be written 

A = AlP
z + A2~' 

B = A + p1T + Apr, 

28C = AlPr - (71T, 

D=AI(2B-A) +r+A1Azr, (1) 

where the factors p,a,1T, and r are polynomials in p2, q2, a, 
and b with integer coefficients. The even TS metrics have a 
similar form, 

A = p2 + AIA2~' 
B = A + p1T + Apr, 

28C = pr - A1a1T, 

D=AI(2B-A) +AI~+A2r. 

In these expressions, 

(2) 

(3) 

In Sec. III, the factoring property of the TS metric func­
tions will be related to the structure of certain Hankel deter­
minants. The homogeneous parts of 1T and r yield 28 polyno­
mials, to be called the primitive factors. The knowledge of the 
primitive factors 1T(8,r) and r(8,r), where r = 1,2, ... ,8, 
alone enables one to generate the 8th TS solution. In Sec. IV, 
the dual polynomials, defined by a pairwise interchange of 
variables, are considered. The dual of a primitive factor can 
be represented as a linear combination of either 1T(8,r) or 
r(8,r). One can use these linear algebraic relations to deter­
mine the values of the primitive factors. The factors of the 
first five TS metrics will be given in Table I, and their primi­
tive factors are listed in Table II. 

II. TS METRICS 

The TS metrics can be written in the form3 

ds2 = B (d
y2 

_ dX2) 
82p20-2(a _ b)O'-1 b a 

+ gik dxi dx\ i,k = 3,4, (4) 

where 

g33=bD/82B, g34=2q(bC/B), g44=A/B, (5) 

a=x2-1, b=y2-1, p2+q2=1, (6) 

AD-AIB2_482A2C 2=0, (7) 

and 8 labels the solution of the vacuum gravitational equa­
tions. The first few solutions in the family are due to Kerr 
(8 = 1) and Tomimatsu and Sato (8 = 2,3, and 4) while 
the metric functions for an arbitrary positive integer 8 were 
given by Yamazaki,4 

B = A + G + H, C = (p/2qb8)(Q + R - (8/pq)A), (8) 

A = F(82
), 

o 
G = 2 I c(8,r)F(82 - r), 

r= 1 

o 0 

H = 2px I d(r)a'- 1 I c(8,r')F(82 - r'), 
r= 1 r = r 

2px 0 0 
Q= -~ I I q2b'a l -'g(8,r,r') 

pq ,~I, ~ 1 

XF(82 - r), 

8 0 0 
R = - I I (p2a'b 1 -, - q2b 'a l 

- ') 

pq,~ 1 ,~I 

Xh(8,r,r')F(82 - r), 

with the numerical coefficients 

c(8,r) =8 (8+r-l)! 22,-1, 

(8 - r) !(2r)! 

d(r) = ( _ 1)'- 1 (2r - 2)! , 
[2,-I(r- 1)W 

(
" ') = re(r)c(8,r) ~ td(t - r' + 1 )c(8,t) 

g u,r,r 2 ~ , 
8 t~, r+t-l 

h( " ') = rr'e(r)c(8,r)c(8,r') u,r,r . 
82(r+ r' -1) 

(9) 

(10) 

Einstein's vacuum field equations are a set oflinear alge-
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TABLE I. Factors ofTS metrics. 

o = I (Kerr metric) 

p=l, 

U= I, 

rr=2(px+ I), 

'1'=0. 

p=p'a' + q'b', 

U= 2(a - b), 

rr=4[a+ (a + 2)(px+ I»), 

'1' = - 4b(px + 1). 

0=3 

p = p'a4 + q'b 4 
_ 2q'b 2(a - b)(b - 3a), 

U = p'a4 + q'b 4 + 2p2a'(a - b)(a - 3b), 

1T = (6a4 + 32a' + 32a')p3x + p'a'(18a' + 48a + 32) 

+ 6q2b 4 (px + I), 

'1' = 4b{px[ - 6a(a - b) - 4a + 12b + 8] - 9a' 

+ 12ab + 12b + 8}. 

0=4 

P = F(8) + 20A,A,ab(a - b)., 

U= 4(a - b)[p'a4 (a' - 4ab + 5b') + q'b 4(b' - 4ab + 5a2)], 

rr= (px+ 1) [p'a4(8a' + 80a2 + 192a + 128) 

+ q'b 4(120a3 - 192a'b + 48a2 + 80ab' - 128ab 

-64a+ 160b 2+256b+ 128)] 

+ p'a'(24a' + 80a + 64) + q'ab 4(40a' - 96ab 

- 48a + 80b' + 128b + 64), 

'1' = 4b{(px + I ){p2[ _ 20a" + 48a'b _ 30a4b' 

0=5 

+ (a - b) (160a3b - 32a4 + 96a' + 160a'b 

+ 128a2)] _ 2q'b 6} 

+ p2(a _ b)( - 20as + 60a4b + 32a4 

+ 80a3b + 64a')}. 

P = (p'a" + q'b ")' + b '(b - a) [2q4b "(2b' - 18ab' + 45a'b - 35a') 

+ p'q'(175a4b' - 545asb 4 + 713a"b' - 535a7b' 

+ 230a"b - 50a")], 

u= (p'a" + q'b 6)' - a'{b - a)[2p4a6(2a' - 18ba' + 45b'a - 35b') 

+ p'q'(175b 4aS 
- 545b sa4 + 713b 6a·1 

- 535b 7a' 

+ 230b"a - 50b 9)], 

rr = 2px[p4(5a 12 + 80a" + 336a'o + 512a9 + 256a") 

+ p'q'(525a"b 4 - I 920a7b , + 480a7b 4 + 28ooa6b 6 

- 2560abb' _ 800abb 4 
_ I 920asb 7 + 7040a'bb + 6656asb' 

+ 2560asb 4 + 525a4b" - 7680a4b 7 - S760a4b b + 3072a4b5 

+ 3840a4b 4 + 28ooa'b" _ 2S60a,b 7 - 10240a'bb 

+ 6144a3b s + 28ooa'b" + SI20a2b 7 + 2560a2b b) + 5q"b 12] 

+ 2 [p4(25a 12 + 2ooa" + 560a'" + 640a9 + 256a") 

+ p'q'(875a"b 4 - 3600a7b 5 + 63OOabb" _ 5120asb 7 + 56ooa5b6 

+ 8960asb' + 4480a5b 4 + 1575a4b" - 96ooa4b 7 
- 112ooa4b 6 

+ 3840a4 b 4 + 4200a3b" - 8960a3b" - 6144a'b s + 28ooa'b" 
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TABLE I. (continued) 

+ 5120a'b 7 + 2560a'b") + 5q4b 12], 

'1'= 4b{px[p2( - 50a'" + 210a9b -140a9 
- 3OOaKb' + 1380a"b + 6OOa" 

+ 140a7b 3 - 26OOa7b' + 1088a7b+ 1920a7 + 1400a6 b 3 

- 4880a6b 2 - 2944a"b + 1280a6 + 3360a'b 3 - 960a'b 2 

_ 3072asb + 2240a4b 3 + I 920a4b ') + q2( _ 140a4b" + 3OOa3b 7 

- 40a'bb - 21Oa'b" + 120a'b 7 + 48a'bb + SOab 9 

- 140ab" - 160ab 7 
- 64ab 6 + lOOb 9 + 280b" + 320b 7 + 128b b)] 

+ p2( _ 125a'" + 7ooa9b _ 1125a"b 2 + 2lOOa"b + 1400a" 

+ 560a7b 3 - 48ooa7b' + 2560a7 + 28ooa6b' - 56ooa6b 2 

- 4480a6 b + I 280ab + 4480as b' - 3072a5 b + 2240a4 b 3 

+ 1920a4b ') 

+ q'( - 175a4b 6 + 400a3b 7 _ 31Sa'b" + looab 9 + loob 9 

+ 280b" + 320b 7 + 128b 6)}. 

TABLE II. The primitive factors. 

rr(1,I) = I, '1'( 1,1) = O. 

0=2 

rr(2,1) =a, '1'(2,1) = -~b, 

rr(2,2) = I, 7(2,2) = o. 

rr( 3,1) = p'a4 + jq'b 4, 

rr(3,2) = p'a', 

'1'(3,1) =ab( -2a+~b), 

'1'(3,2}=b', 

rr(3,3} = p'a', '1'(3,3) = b. 

0=4 

rr(4,I} = p2a7 + q'(5a'b 4 
- 9a'b s + Sab 6), 

rr( 4,2) = p'a6 + q2b". 
rr(4,3} =p'as + q'b S

, 

rr(4,4) = p 2a4 + q'b 4
, 

'1'(4,I} = p'(a - b)( - 5asb + lla4b '} _ ~b 3 (p'a4 + q'b 4
}, 

'1'( 4,2} = 6p2(a _ b)a3b', 

'1'(4,3} =~p'(a-b}(a3b+a2b2). 

'1'(4,4} = 4p'(a - b)a2b. 

0=5 

rr(5,I} = p4a 12 + ~q4b 12 + p'q2( 35a"b 4 _ 144a7 b 5 

+ 252abb 6 _ ~4a5b 7 + 63a4b"), 

rr(5,2) = p4a" + p2q2(28asb 6 _ 48a4 b 7 + 21a3b "}, 

rr(5,3} = p4a'" + p2q'(16asb' - 20a4 b 6 + 5a'b"}, 

rr(5,4) = p4a9 + p'q2(7asb 4 _ 14a3b b + 8a'b 7), 

rr(5,5} = p4a" + p2q2(l5a4b 4 
_ 24a3b 5 + lOa'b 6), 

'1'(5,1) = 2b{p2( - 5a lO + 28a9b - 4Sa"b' + !pa7b 3) 

+ q'( _ 7a4b 6 + 16a3b 7 _ !Jfa'b" + 4ab 9
}}, 

'1'(5,2) =2b{p'(lja"b-24a7b'+ 14a6b 3
) +!q'b 9

}, 

'1'(5,3} =2b{p2qa"_lOa6b 2+8a5b 3} +!q'b 8
}, 

7(5,4} = 2b{p2(4a7 -7a6b + 'la4b 3} + ~q'b 7}, 

'1'(5,5) = 2b{p'(5a6 - 12asb + lfa4 b '} + ~q'b6}. 
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braic relations for the unknown functions F, 
fj 

L h(D,r,r')/(r + r' - 1 )F(D2 - r) 
r= 1 

= 8~F(D2), r' = 1,2, ... ,D, 

where 

(12) 

Yamazaki's solutions 

(11 ) (13) 

contain the Hankel determinant 

/(1) 

/(2)/2 

Mfj = /(3)/3 

/(2)/2 /(3)/3 
/(3)/3 

/(D)/8 

(14) 

/(D)/D /(2D - 1)/(2D - 1) 

and the normalizing factor is 

! 1 
:1 l/6 

1 1 
2 :1 

Nfj= 1 
J 

lID l/(2D - 1) 

The function 

re(r)c(8,r)F(62 - r) 

= ( _ 1)'_ldet(f(s + t - l)/(s + t - 1)), 
det(l/(s+t-l») 

(15) 

where r = 1,2, ... ,8, s = 1,2 ... ,r - l,r + 1, ... ,D and 
t = 2,3, ... ,6, is the cofactor of F(D2) belonging to the element 
in the rth row and first column. 

III. FACTOR STRUCTURE 

It follows from Eqs. (1), (2), and (8) that 

G + H = p1T + Ap'T, (16) 

where the factors p and (T are homogeneous polynomials. 
Comparing (16) with Eqs. (9) we see that the function H 
contributes the terms linear in px while G is the sum of terms 
without a factor px. Hence we can further decompose (16): 

1T=1To+pX1Tl' 'T='TO+PX'Tl' (17) 

where 1T; and 'T; are polynomials in p2, q2, a, and b with 
integer coefficients. Both the function G and H is a linear 
combination of the homogeneous polynomials F(l? - r). 

Thus considering terms in G and H of like homogeneity de­
gree, each of the polynomials F( 82 

- r) must factorize in the 
form 

F(82 
- r) = p1T(6,r) + Ap'T(6,r). (18) 

We have 
fj 

1To = 2 L c(6,r)1T(8,r), (19) 
r= ] 

[; 

'To = 2 L c(D,r)'T(6,r). (20) 
r= I 

The primitive factors 1T( 6,r) and 'T( 6,r) are polynomials 
in p2, qz, a, and b with rational coefficients. They completely 
determine the TS functions. The factors satisfy the relations 
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and 

1 [; 
0"=- L rc(8,r)d(r)1T(8,r)b,-1 

6 ,= 1 

[; 

I rc(8,r)d(r)'T(6,r)a' = 0, 
r= 1 

[; 

L rC(D,r)d(r)1T(D,r)a' = 0, for 8 even. 
r= 1 

(21) 

for 6 odd, 

(22) 

The primitive factors of the first five TS metrics are listed in 
Table II. 

IV. DUALS 

Let PE&' be an arbitrary polynomial in a, b, px, and qy. 
We introduce the involutory automorphism of the ring &' of 
these polynomials 

defined by the mutual substitutions 

px ¢:> - qy, p2 ¢:> q2, a¢:> b. 

(23) 

The image (or dual) under y;; of a polynomial P will be 
denoted 

p* = y;; P. 

The Hankel determinants Mfj are invariant under the 
involution Y;;: 

M~=M{j' 

According to Eqs. (9), we have 

A * = A, G * = G, R * = - R. (24) 

In order to close the set of Yamazaki functions under the 
action of Y;; , we introduce the duals 

1=H*, P=Q*. (25) 

These potentials satisfy the algebraic constraint4 

H2 + 12 - G 2 = 2AG. (26) 

The Ernst potential of a TS space-time, given by 
5 = (H + i1)/G, is self-dual, 
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(27) 

The discrete symmetry properties of the factors can be 
obtained by using the decomposition (1), (2), and (18) of 
the polynomials. We get 

u* = p, p* = u, for 8 odd 

and 

p* = p, u* = - u, for 8 even. 

Furthermore, 

and 

28p = 1T~ - ,.1,270' for 8 odd 

28p = - A,7~ - ,.1,270' 

28u= 1To -1T~, 
for 8 even. 

(28) 

(29) 

(30) 

(31) 

Some further properties of the factors are the following. 
(i) The polynomial 7 contains an overall factor 4b. 
(ii) The factors p and u of an odd TS space-time have 

the form 

p =/(8 + 1)(0-')/2 + 2q2(a - b)Z, 

u=/(8 + 1)(8-1)/2 - 2p2(a - b)Z*, 

where the polynomial Z is of homogeneity degree (82 
- 3) / 

2. 
(iii) The factors p and u of an even TS space-time have 

the structure 

p =/(8)0/2 + (a - b) V, 

u=(a-b)W, 

where the polynomial V is of degree 82/2 - 1 and W is of 
degree 82/2 - 2. 

Property (ii) has been verified to hold for 8 = 1,3,5, 7 
and property (iii) holds for 8 = 2, 4, and 6. 

The 28 primitive factors 1T(8,r) and 7(8,r) and their 
duals satisfy the set of 28 linear homogeneous algebraic rela­
tions 

~ b r - 1c(8,r')1T*(8,r') 

/j 

= I ar
-

1h(8,r,r')1T(8,r), 
r= 1 

~ b r' -lc (8,r')7*(8,r') 

{; 

= - I ar - Ih(8,r,r')7(8,r), 
r= 1 

for 8 odd, 

and 

! b r' - Ic (8,r')7*(8,r') 

{; 

- I ar -
1h(8,r,r')1T(8,r), 

r= 1 
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(32) 

/j 

I ar
- Ih(8,r,r')7(8,r), 

r= ] 

for 8 even, (33) 

where r' = 1,2, ... ,8. These equations have been found by in­
tuition. Substituting back in Eqs. ( 11) and using the symme­
try properties (30) and (31) of the factors, we find that the 
field equations are satisfied. 

The ratios of the primitive factors can be computed from 
the linear algebraic equations (32), (33) and the corre­
sponding dual equations. The arbitrary factor of proportion­
ality does not enter the gravitational field quantities. The 
functions p and u are given by 

p = 8[ 1T*(8,1) - ,.1,27(8,1)], for 8 odd, (34) 

and 

p= -8[,.1,17*(8,1) -,.1,27(8,1)], 

u = 8[ 1T(8, 1) - 1T*(8,l)], for 8 even. (35) 

An obvious advantage of the field equations (32) and 
(33) over ( 11 ) is that they are linear algebraic relations with 
constant coefficients for the functions ar

- 11T(8,r) and 
a r

- '7(8,r). Since the matrix [mik 1 = [8(h(8,i,k)!c(8,k»)1 
is involutory, m2 = 1, and both systems (34) and (35) are 
symmetrically partitioned, their determinant vanishes. One 
can form linear superpositions of the solutions. The coeffi­
cients of superposition are subject to the duality relations 

1T*(8,t) = A27(8,t), for 8 odd, (36) 

and 

A,7*(8,t) + A27(8,t) = 0, 

1T*(8,t) = 1T(8,t), for 8 even, (37) 

with t = 2,3, ... ,8. These symmetry relations among the 
primitive factors follow from the power structure of Eqs. 
(28)-(31). 
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Some new similarity reductions of the Boussinesq equation, which arises in several physical 
applications including shallow water waves and also is of considerable mathematical interest 
because it is a soliton equation solvable by inverse scattering, are presented. These new 
similarity reductions, including some new reductions to the first, second, and fourth Painleve 
equations, cannot be obtained using the standard Lie group method for finding group-invariant 
solutions of partial differential equations; they are determined using a new and direct method 
that involves no group theoretical techniques. 

I. INTRODUCTION 

The Boussinesq equation 

Utt + auxx + b(u2
)xx + cU xxxx = 0, 0.1 ) 

where a, b, and c are constants and sUbscripts denote differ­
entiation, was introduced to Boussinesq in 1871 to describe 
the propagation of long waves in shallow water I (see, also, 
Ref. 2). The Boussinesq equation also arises in several other 
physical applications including one-dimensional nonlinear 
lattice waves,3,4 vibrations in a nonlinear string,S and ion 
sound waves in a plasma.6 

It is well known (and was even to Boussinesq) that the 
Boussinesq equation (1,1) has a bidirectional solitary wave 
solution 

u(X,t) = 3(f + a) 

2b 

{
I (f+a)l12 } X sech

2 2" ----=-;;- (x ± rt) + Xo , 

where rand Xo are constants. 
Recently there has been considerable mathematical in­

terest in the Boussinesq equation, primarily because its 
Cauchy problem (for initial data on the infinite line that 
decays sufficiently rapidly) is solvable by inverse scatter­
ing,S through a third-order scattering problem (see, also, 
Ref. 7). 

The inverse scattering method was originally developed 
by Gardner et al.8 in order to solve the Cauchy problem for 
the Korteweg-de Vries (KdV) equation. In effect, this 
method reduces the solution of the nonlinear partial differ­
ential equation to that of a linear integral equation, and the 
partial differential equation is usually then said to be com­
pletely integrable. Completely integrable partial differential 
equations generally possess almost all of the following re­
markable properties: the existence of multisoliton solutions; 
an infinite number of independent conservation laws and 
symmetries, and recursion operators generating them; a bi­
Hamiltonian representation; a prolongation structure; a Lax 
pair; Backlund transformations; the Hirota bilinear repre­
sentation; the Painleve property, etc. (cf. Ref. 9). However, 
the precise relationship between these properties has yet to 
be rigorously established. 

In this paper we study similarity reductions of the Bous­
sinesq equation. Without loss of generality we shall assume 
that a = 0, b = !, and c = ± 1 in Eq. (1.1) since the equa­
tion 

( 1.2) 

is equivalent to Eq. (1.1) after suitable rescaling and transla­
tion of the variables. If the quantities in the equation are to be 
interpreted as real, then the sign matters and we choose the 
plus sign from here on only for convenience, and leave the 
reader the trivial modifications required for the other sign. 
However, if the quantities are interpreted as complex, then 
the sign does not matter and our analysis is complete. 

The classical method for finding similarity reductions of 
a given partial differential equation is to use the Lie group 
method of infinitesimal transformations (sometimes called 
the method of group-invariant solutions), originally devel­
oped by Lie lO (see Refs. 11-14 for recent descriptions of this 
method). Though the method is entirely algorithmic, it of­
ten involves a large amount of tedious algebra and auxiliary 
calculations which are virtually unmanageable manually. 
Recently symbolic manipulation programs have been devel­
oped, especially in MACSYMA IS and REDUCE,16 in order to 
facilitate the determination of the associated similarity re­
ductions. (See Ref. 17 for a review of the use of computer 
algebra to find symmetries of differential equations. ) 

Bluman and Cole l8 proposed a generalization of Lie's 
method which they called the "nonclassical method of group­
invariant solutions," which itself has been generalized by 
Olver and Rosenau. 19 All these methods determine Lie point 
transformations of a given partial differential equation, i.e., 
transformations depending only on the independent and de­
pendent variables. 

Noether20 recognized that Lie's method could be gener­
alized by allowing the transformations to depend upon the 
derivatives of the dependent variable as ~ell as the indepen­
dent and dependent variables. The associated symmetries, 
called Lie-Backlund symmetries, can also be determined by 
an algorithmic method (see Refs. 13 and 21 ) . 

In a recent paper, BIuman et al.22 introduce an algorith­
mic method which yields new classes of symmetries of a giv­
en partial differential equation that are neither Lie point nor 
Lie-Backlund symmetries. 
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A common characteristic of all these methods for find­
ing symmetries and associated similarity reductions of a giv­
en partial differential equation is the use of group theory. 

In this paper we develop a new method of deriving simi­
larity reductions of partial differential equations and apply it 
to the Boussinesq equation ( 1.2). The unusual characteristic 
of this new method in comparison to the ones mentioned 
above is that it does not use group theory (though we hope 
that a group theoretic explanation of the method will be pos­
sible in due course23

). The basic idea is to seek a reduction of 
a given partial differential equation in the form 

U(X,t) = U(x,t,w(z(x,t)j), (1.3 ) 

which is the most general form for a similarity reduction (cf. 
BIuman and Cole 11). Substituting this into the partial differ­
ential equation and demanding that the result be an ordinary 
differential equation for w(z) imposes conditions upon U 
and its derivatives that enable one to solve for U. For the 
Boussinesq equation (1.2), it turns out to be sufficient to 
take ( 1. 3) in the specialform 

u(x,t) = a(x,t) + p(x,t)w(z(x,t»). (1.4) 

The outline of this paper is as follows: in Sec. II we 
describe the previously known (classical and nonclassical) 
similarity reductions of the Boussinesq equation; in Sec. III 
we present our new method for finding similarity reductions 
of a given partial differential equation and use it to obtain 
new similarity reductions of the Boussinesq equation (1.2); 
in Sec. IV we justify the use of the special form ( 1.4); and in 
Sec. V we discuss our results. 

II. CLASSICAL AND NONCLASSICAL SIMILARITY 
REDUCTIONS 

First we sketch the derivation of the classical similarity 
reductions ofthe Boussinesq equation using Lie group meth­
od as given by BIuman and Cole. 11 Consider the one-param­
eter (E) Lie group of infinitesimal transformations in (x,t,u) 
given by 

5'=X+EX(X,t,u) + O(E2), 

7 = t + ET(x,t,U) + O(E2), 

"I = U + EU(X,t,u) + O(E2
), 

"Is = Ux + EU x + O(E2
), 

"Iss = Uxx + EUxX + O(e2), 

"15555 = Uxxxx + eUxxxx + O(E2), 

"ITT = Ult + eU lt + O(e2
), 

(2.1a) 

(2.1 b) 

(2.1c) 

(2.2a) 

(2.2b) 

(2.2c) 

(2.2d) 

where the functions Ux, U XX, UXXXX, and U lt in (2.2) are 
determined from Eqs. (2.1) (cf. Ref. 11). The Boussinesq 
equation (1.2) is invariant under this transformation if 

"In- + ! ("12) 55 + TJSSS5 = O. (2.3) 

By (2.1) and (2.2), to first order in e, this becomes 

U lt + uUxx + UXX U + 2ux UX + UXXXX = O. (2.4) 

Conditions on the infinitesimals X(x,t,u), T(x,t,u), and 
U(x,t,u) are determined by equating coefficients oflike de­
rivatives of monomials in Ux and u, and higher derivatives. 
Solving these "determining equations" yields the following: 

2202 J. Math. Phys., Vol. 30, No.1 0, October 1989 

X=ax+p, T=2at+y, U= -2au, (2.5) 

where a, 13, and r are arbitrary constants (cf. Refs. 24 and 
25). Similarity reductions are then obtained by solving the 
characteristic equations 

dx dt du 
= 

X(X,t,U) T(x,t,u) U(X,t,U) 

Integration of these ordinary differential equations yields 
the following cases. 

Case (a), a=O: This is the traveling wave reduction 
u(x,t) = fez), z = yx - Pt, wheref(z) satisfies 

Pz.r+~Yf2+'Id,~ =Az+B, (2.6) 
2 dz-

with A and B arbitrary constants of integration. For r = 0, 
this is a form of the first Painleve equation (cf. Ince26

) 

(2.7) 

(or the Weierstrass elliptic function equation for A = 0). 
This reduction of the Boussinesq equation to the first Painle­
ve equation is well known in connection with the Painleve 
conjecture (cf. Refs. 27 and 28) for soliton equations. 

Case (b), a#O: This is the scaling reduction 

u(x,t) = g(z) ,z = (x + 13 fa) , 
[t + y/(2a)] [t + y/(2a)] 1/2 

(2.8) 
where g(z) satisfies 

~ d 2g 7z dg 2 d 2g (dg )2 d 4g_ 0 4 d~ + 4 dz + g+g d~ + dz + dz4 - • 

(2.9) 

This can be solved in terms of solutions of the fourth Painle­
ve equation 

--=- - +-w +4zw +2(~-a)w+-, d2
w 1 (dW)2 3 3 2 b 

d~ 2w dz 2 w 

(2.10) 

where a and b are arbitrary constants29 (see also Appendix 
A). 

However, there also exist similarity reductions of the 
Boussinesq equation that cannot be obtained by the classical 
Lie group method. As noted by several authors, 19,24,25.29 the 
Boussinesq equation ( 1.2) possesses the similarity reduction 

u(x,t) = fez) - 4,1,2t 2, Z = X + At 2, (2.11) 

where A is a constant andf(z) satisfies 

d,r + fdf + Uf= 8,.1, 2Z + A, 
dz dz 

(2.12) 

with A a constant of integration. If, in (2.12), we make the 
transformation 

fez) = "1(5') + 2,.1,5', z = 5' - A /(8,.1, 2), 

then "1(5') satisfies 

d 3; + "I dTJ + U (5' dTJ + 2"1) = o. 
d5' d5' d5' 

(2.13 ) 

Solutions of Eq. (2.13) are known to be related through a 
one-to-one transformation to solutions of the second Painle­
ve equation 
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(2.14 ) 

where a is an arbitrary constaneo-see, also, Appendix A. 
[We remark that this equation also arises from the scaling 
reduction 

u(x,t) = (- 3At)-2/31](S), s=x/( - 3At)-1(3 

of the KdV equation 

u, + UUx + Uxxx = 0 

-see Ref. 27.] 
The infinitesimals that give rise to the similarity reduc­

tion (2.11) of the Boussinesq equation are 

X(x,t,u) = lAt, T(x,t,u) = - 1, U(x,t,u) = 8A 2t, 

(2.15 ) 

which are clearly not a special case of (2.5). Since Eqs. 
(2.15) describe a Lie point transformation of the Boussinesq 
equation, Rosenau and Schwarzmeier25 suggest it can be ob­
tained using the nonclassical method of Bluman and Cole l8 

(see, also, Ref. 11). This method involves more algebra and 
calculations than the classical Lie method; in fact, Olver and 
Rosenau 19 suggest that for some partial differential equa-

I 

tions, the determining equations for these nonclassical sym­
metries might be too difficult to solve explicitly. The princi­
pal reason for this is that although the determining equations 
for the infinitesimals X, T, and U in the classical method are 
a linear system of equations (in X, T, and U), in the nonclas­
sical method, they are a nonlinear system. Furthermore, for 
some equations, such as the linear heat equation, it is well 
known that the nonclassical method does not appear to yield 
any more similarity reductions than the classical Lie method 
does 18 (see, also, Ref. 31). 

III. NEW SIMILARITY REDUCTIONS 

In this section we seek reductions of the Boussinesq 
equation ( 1.2) in the form 

u(x,t) = a(x,t) + P(x,t)w(z(x,t»), (3.1) 

where a(x,t), P(x,t), and z(x,t) are to be determined. [We 
shall show in Sec. IV why it is sufficient to seek a similarity 
reduction ofthe Boussinesq equation ( 1.2) in the form (3.1) 
rather than the more general form ( 1.3). ] 

Substituting (3.1) into ( 1.2) and collecting coefficients 
of monomials of wand its derivatives yields 

pz! w'''' + [6Pz;zxx + 4Px~ ] w", + [P(3Z;x + 4zxzxxx ) + 12Pxzx Zxx + 6Pxxz; + apz; + PZ;] wIt 

+ [pzxxxx + 4Pxzxxx + 6Pxx zxx + 4Pxxx zx + 2axpzx + 2aPxzx + apzxx + 2P,z, + pz" ] w' 

+ [Pxxxx + 2axpx + aPxx + axxp + PIt ] w + P 2Z; ww" + P [4Pxzx + pZxx ] ww' 

+ p 2Z; (W,)2 + [ P; + PPxx ]W2 + [a" + aaxx + a; + a xxxx ] = 0, (3.2) 

where': = d / dz. In order that this equation be an ordinary 
differential equation for w(z) the ratios of coefficients of 
different derivatives and powers of w(z) have to be functions 
of z only. This gives a set of conditions for a(x,t), P(x,t), 
and z(x,t) for which any solution will yield a similarity re­
duction. 

Remark 1: We use the coefficient of w"" (i.e., pz!) as 
the normalizing coefficient and therefore require that the 
other coefficients be of the formpz!r(z), where r is a func­
tion of z to be determined. 

Remark 2: We reserve uppercase greek letters for unde­
termined functions of z so that after performing operations 
(differentiation, integration, exponentiation, rescaling, etc. ) 
the result can be denoted by the same letter [e.g., the deriva­
tive of r(z) will be called r(z)]. 

Remark 3: There are three freedoms in the determina­
tion of a, p, z and w we can exploit, without loss of genera­
lity, that are valuable in keeping the method manageable: (i) 

if a (x,t) has the form a = ao(x,t) + P(x,t)o.(z), then we 
can take 0.=0 [by substituting w(z) -+w(z) - o.(z)]; (ii) if 
P(x,t) has the form P = Po(x,t)o.(z), then we can take 
0.= I [by substituting w(z) -+w(z)/fl(z)]; and (iii) if 
z(x,t) is determined by an equation of the form o.(z) 
= zo(x,t), where o.(z) is any invertible function, then we 

can take o.(z) = z [by substituting Z-+ 0. -I (z)]. 
We shall now proceed to determine the general similar­

ity reductions of the Boussinesq equation using this method. 
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The coefficients of ww" and (W,)2 yield the common 
constraint 

pz!r(z) =p2Z;, 

where r(z) is a function to be determined. Hence, using the 
freedom mentioned in Remark 3(ii) above, we choose 

p=z;. (3.3 ) 

The coefficient of w", yields 

pz!r(z) = 4Pxz! + 6Pz;z""", 

where r(z) is another function to be determined. Hence 
using (3.3) and rescaling r, we have 

zxr(z) + zxx/zx = 0, 

which upon integration gives 

ret) + In Zx = 8(t), 

where 8(t) is a function of integration. Exponentiated this 
becomes 

zxr(z) = 8(t) (3.4 ) 

(recall Remark 2). Integrating again gives 

r(z) = x8(t) + l:(t), 

with l:(t) is another function of integration. By Remark 
3(iii), we have 

z = x()(t) + (7(t), (3.5) 
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where O(t) and a(t) are to be determined. From Eqs. (3.3) 
and (3.5), we have 

f3 = 02(t). (3.6) 

The coefficient of wIt yields 

f3z!r(z) = f3(3z;,x + 4zxzxxx ) + 12f3xzxzxx 

+ 6f3xxz;, + f3(az;, + Z;), 
where r(z) is to be determined, and by Eqs. (3.5) and (3.6) 
this simplifies to 

04r(z) =a02+(x dO + da)2. 
dt dt 

Hence by Remark 3 (i) above 

1 ( dO da)2 
a= - 02(t) xTt+Tt . (3.7) 

Let us see how Eq. (3.2) looks with the simplifications as 
determined so far, viz. (3.5)-(3.7): 

06{W"" + ww" + (W')2} 

+ 02(X d
2
0 + d

2
a) w' + 20 d

2
0 w 

dt 2 dt 2 dt 2 

(3.8) 

We continue to make this an ordinary differential equation 
for w(z). Then the remaining coefficients yield 

6 2 ( d
2
0 d

2a) o rl (z) = 0 x --2 + --2 ' 
dt dt 

(3.9) 

d 20 
06r2 (Z) = 20--2 ' 

dt 
(3.10) 

_ ~ [ { J.. (x dO + da)}2] 
dt 2 0 dt dt 

(3.11 ) 

with rl(z), r2(z), and r3(z) to be determined. First, since 
z = xO(t) + a(l) and the right-hand sideofEq. (3.9) is lin­
ear in x, consequently rl (z) = Az + B, where A and Bare 
constants, and so 

d 20 d 2a 
04[A(xO+a) +B] =X dt2 + dt 2 . 

Equating coefficients of powers of x gives 

d
2
0 =A0 5 

dt 2 ' 

d
2
a =04(Aa+B). 

dt 2 

(3.12) 

(3.13 ) 

(3.14 ) 

It is then easily seen fromEqs. (3.10) and (3.11) that 

r2(Z) = 2A, r3(z) = - 2(Az + B)2. 

[The Boussinesq equation is special in that, having satisfied 
Eq. (3.9), Eqs. (3.10) and (3.11) are satisfied automatical­
ly; slight modifications of the equation would not have sig­
nificantly affected the application of the method until this 
point when further restrictions, on 0(1) and a(t), would 
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arise from (3.1O)and (3.11), severely limiting the set ofsi­
milarity reductions.] 

We conclude that the general similarity reduction of the 
Boussinesq equation (1.2) is given by 

u(x,t) = 02(t)W(Z) - _2_1- (x dO + da)2, (3.15a) 
o (t) dt dt 

z(x,t) = xO(t) + a(t), (3.15b) 

where O(t) and a(t) satisfy Eqs. (3.13) and (3.14), and 
w(z) satisfies 

w"" + ww" + (W')2 + (Az + B)w' + 2Aw 

=2(Az+B)2. (3.16) 

It can be shown that of all the equations of the form 

Willi + ww" + (W')2 + f(z)w' + g(z)w = h(z), 

with fez), g(z), and h(z) analytic, (3.16) is the most gen­
eral one having the Painleve property, that is, having no 
solutions with movable singularities except poles. In general, 
(3.16) is equivalent to the fourth Painleve equation; but, 
when A = 0, it is equivalent to the second Painleve equation, 
and, when B = 0 as well, it is equivalent to either first Painle­
ve equation of the Weierstrass elliptic function equation­
see Appendix A for details. We remark that it is not essential 
to our method that all ordinary differential equations arising 
from similarity reductions are equivalent to one of the Pain­
leve equations (or more generally possess the Painleve prop­
erty). The Boussinesq equation is a completely integrable 
soliton equation for which the Painleve conjecture28 asserts 
that every ordinary differential equation arising from a simi­
larity reduction is necessarily of the Painleve type, in agree­
ment with our results. 

Henceforth, new symbols appearing in an equation ob­
tained by integration are generally understood to be arbi­
trary constants. Furthermore, whenever we set a constant to 
be a specific value without further explanation, it is implied 
that this is easily seen to be without loss of generality. 

There are three cases to consider. 
Case 1. A =0, B=O: In this case, the general solutions of 

Eqs. (3.13) and (3.14) are 

0(1) = alt + ao' a(l) = bit + bo, 

and the similarity reduction of the Boussinesq equation is 

z = x(alt + ao) + bit + bo, 

where w(z) satisfies 

wIt +! w2 = CIZ + Co' 

(3.17a) 

(3.17b) 

(3.17c) 

Equation (3.17c) is the same as Eq. (2.6) and so, as we 
remarked in Sec. II, it is equivalent to either the first Painleve 
equation (2.7) or the Weierstrass elliptic function equation. 
We note also that the traveling wave reduction arises as the 
special case of (3.17) where a l = 0 and bl #0. However, if 
a l = 0, then we set a l = 1, ao = b l = bo = 0, and obtain the 
similarity reduction 

u(x,t) = t 2w(z) - X2/t 2, z = xt, (3.18) 

where w(z) satisfies Eq. (3.17c). This is a new reduction of 
the Boussinesq equation to the first Painleve equation. 
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With z and was invariants, Eqs. (3.18) define the point 
transformation group 

(x,t,u) -+ (r-Ix,rt,ru + (f - r-4)x2/t 2). 

The infinitesimals associated with this are 

x= -x, T= t, U= 2u + 6x2/t 2, (3.19) 

which clearly are not a special case of the infinitesima1s ob­
tained by the classical Lie group method [cf. (2.5)]. 

Case 2. A=O, B:rf=O: In this case the general solution of 
Eqs. (3.13) and (3.14) are 

O(t) = alt + ao, 

_ {3b Ba l- 2(alt + ao)6 + bIt + bo, if al ::;60, 
u(t) - 2 2 ·f 0 

~ Baot + bIt + bo, 1 a l = . 

Case (a). a] =0: The similarity reduction of the Boussin­
esq equation is 

u(x,t) = a6w(z) - (Ba6t + bl )2/a6 , 

z = aoX +! Ba6t2 + bIt + bo, 

where w(z) satisfies 

w'" + ww' + Bw = 2B 2Z + co. 

(3.20a) 

(3.20b) 

(3.21 ) 

Equation (3.21) is the same as Eq. (2.12) and so, as re­
marked in Sec. II, it is equivalent to the second Painleve 
equation (2.14 )-see, also, Appendix A. We set ao = 1, 
bl = bo = 0, in (3.20), in which case it just reduces to the 
"nonclassical" similarity reduction (2.11) (cf. Refs. 19, 24, 
25, and 29). 

Case (b). a]:rf=O: The similarity reduction of the Boussin­
esq equation is 

u(x,t) = (alt + ao)2w(z) 

_ 
( 

ai x + ! B(alt + ao)5 + alb l )2, 

a l (alt + ao) 
(3.20a') 

z = x(alt + ao) + [B /30ai ] (alt + ao)6 + bIt + bo, 

(3.20b') 

where w(z) satisfies (3.21). We set al = 1, ao = b l = bo 
= 0, and obtain 

U(x,t) =t 2w(z) - (X+,.1.t 5 )2/t 2, z=xt+!,.1.t6, 

(3.22) 

where w(z) satisfies (3.21) (we have also set B = 5,.1.). This 
is another new reduction of the Boussinesq equation; this 
time to the second Painleve equation (2.14). The infinitesi­
mals associated with the transformation group defined by 
(3.22) are 

X=-(x+,.1.t 5
), T=t, 

(3.23 ) 

[We note that if A. = 0 in (3.22) and (3.23), they reduce to 
(3.18) and (3.19).J 

Case 3. A:rf=O:In thiscasewecansetB = OinEq. (3.14). 
Multiplying Eq. (3.13) by dO /dt and integrating gives 

( dO)2 = ~A06 + A 
dt 3 0' 

(3.24) 
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where Ao is a constant. There are two possibilites. 
Case (a). Ao = 0: Equation (3.24) has the solution 

O(t)=co(t+tO)-1/2, (3.25) 

with c~ = 3/(4A). Substituting this into Eq. (3.14) and 
solving yields 

u(t) = CI (t + to)3/2 + c2(t + to) -1/2. 

Therefore we may set to = 0, Co = 1, and C2 = 0, and obtain 
the similarity reduction 

u(x,t) = t -IW(Z) -l t -2(X - 3clt 2)2, 

z = xt -1/2 + c l t
3/2, 

where w(z) satisfies 

W'II' + ww N + (W')2 + ~zw' + 1 w = ;r. 

(3.26) 

(3.27) 

Note that the scaling reduction (2.8) arises as the special 
case of (3.26) with CI = o. If CI ::;60, this is a new similarity 
reduction, namely, to the fourth Painleve equation, since if 
in (3.27) we make the transformation w(z) = g(z) + z2 /4, 
theng(z) satisfies Eq. (2.9) and therefore Eq. (3.27) is also 
equivalent to the fourth Painleve equation (2.1O)-see, also, 
AppendixA. 

Case (b). A:rf=O: Equation (3.24) can be solved in terms 
ofJacobian ellipticfunctions (cf. Ref. 32). Furthermore we 
may set 

Ao=k 2, A=(k 2+1)/3k 2, (3.28) 

where k is a constant to be chosen. For this choice of con­
stants, the transformation 

02(t) = 1/[ rl(t) - A] 

reduces (3.24) to the normal form 

provided that 

P =!(1 ± iJ"J) 

(3.29) 

(3.30) 

(3.31) 

(which we may assume without loss of generality). The so­
lution of (3.30) is the Jacobian elliptic function sn (t + to;k) , 
and so 

O(t) = (sn2(t + to;k) - (k 2 + 1)/3k 2)-1/2. (3.32) 

Equation (3.14) becomes 

d 2u k 2 + 1 4 --=---0 U 
dt 2 3k 2 

' 

which has the solution 

u(t) = [C([(2-k2)/3k2]t 

- k -2E(t + to;k») + D ]O(t), 

(3.33 ) 

where E(t + to;k) is the elliptic integral of the second kind 
given by 

E(t+ to;k) = 1'+'0 [1- k 2 sn2(s;k)]ds 

and C and D are arbitrary constants-we set D = o. 
Therefore we have the following similarity reduction: 
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U(X,t) = (sn2 (t + to;k) - A )-IW(Z) 

- [C(sn2(t+to;k) -A)-{x+C([(2-k 2)/3k 2]t-k-2E(t+to;k»)} 

X [sn(t + to;k)~(l - sn2 (t + to;k»)(l - k 2 sn2(t + to;k) )I(sn2 (t + to;k) - A) p, (3.34a) 

with 

z = [x + C([ (2 - k 2)/3k 2]t - k -2E(t + to;k»)] 

X(sn2(t+to;k) _A)-1/2, (3.34b) 

and 

where w(z) satisfies 

w"" + ww" + (W,)2 + Azw' + 2Aw = 2A 2r. (3.34d) 

This is another new similarity reduction, again to the fourth 
Painleve equation (2.10). 

As for the other new similarity reductions given above 
[ (3.18) and (3.22)], we can write down the infinitesimals 
associated with the transformation groups defined by (3.26) 
and (3.34). Again they are not special cases of those ob­
tained by the classical Lie group method. 

In all three cases we have obtained new similarity reduc­
tions of the Boussinesq equation more general than those 
previously obtained (though, interestingly, the resulting or­
dinary differential equations are the same). As mentioned 
above, these similarity reductions are associated with Lie 
point transformations (since they depend only on the inde­
pendent and dependent variables and not upon the deriva­
tives of the dependent variable). It remains an open question 
as to whether all these new similarity reductions and their 
associated transformations can be obtained using any of the 
other generalizations of the classical Lie method, such as the 
nonclassical method ofBIuman and Cole l8 (cf. Ref. 23), and 
the method developed by BIuman et al. 22 However, even if 
theoretically they can be obtained by either of these methods 
it seems that our method is somewhat simpler to implement; 
in fact, it appears to be simpler than calculating the classical 
Lie point symmetries manually. 

It can be shown that for the similarity reductions of the 
Boussinesq equation that cannot be obtained using the clas­
sical Lie group method, the associated group transformation 
does not map the Boussinesq equation into itself, whereas 
the similarity reductions obtained by the classical Lie group 
method do. For example, consider the similarity reduction 

u(x,t) = t 2w(z) - (X+At 5 )2It 2, z=xt+!,1t 6
• 

(3.22) 

The one-parameter (y) group associated with this similarity 
reduction is given by 

x-y-Ix + !,1y-l(1- t)t 5 , 

t-yt, 

u-Tu + T(1 - y-6) 

( 3.35a) 

(3.35b) 

X {x2lt 2 + j ,1xt 3 + fc, A. 2t 8(1 - 25y-6)}. 

(3.35c) 

This group maps solutions of the Boussinesq equation (1.2) 
into solutions of 

Uti + UU xx + u~ + Uxxxx = (y6 - l)t -2<1>, (3.36a) 

where 

<1>: = (X2 + j,1xt 5 
- p. 2t IO)Uxx + 4(x +At 5 )Ux + 2u 

+ 5,1t 6u _ t 2u + 6x21t 2 + 2,1xt 3 _ 112 12t 8 3 x," j A • 

(3.36b) 

If U is the similarity reduction (3.22), then it is easily seen 
that <1>:=0, i.e., the group (3.35) maps the Boussinesq equa­
tion (1.2) into the "perturbed Boussinesq equation" 
(3.36a), but (3.36b) is identically zero. Therefore the per­
turbed equation is identical to the Boussinesq equation when 
U is given by (3.22). 

In order to understand why the perturbation <I> must 
vanish identically, consider the infinitesimals 

X=-(x+,1t 5
), T=t, 

(3.23 ) 

for the similarity reduction (3.22). The similarity reduction 
necessarily satisfies the invariant surface condition 

X(x,t,u)ux + T(x,t,u)u, = U(x,t,u), 

i.e., 

if;: = (x + ,1t 5 )ux - tu, 

+ 2u + 6x21t 2 + lAxt 3 - 4,1 2t 8 = O. (3.37) 

It is easily shown that 

<I> = (x - j ,1t 5 )if;x + tif;, + if;. (3.38) 

IV. JUSTIFICATION OF THE SPECIAL FORM (1.4) 

We show here that it is sufficient to seek a similarity 
reduction of the Boussinesq equation (1.2) in the special 
form 

U(X,t) = a(x,t) + {3(x,t)w(z(x,t»), 

rather than the more general form 

u(x,t) = U(x,t,w(z(x,t»)). 

Substituting (4.2) into (1.2) yields 

(4.1 ) 

(4.2) 

[U" +2U,ww'z, + Uww (W')2Z;+ Uw(w"z, +w'z,,)] + U[Uxx + 2 Uxw w'zx + Uww(W')2~ + Uw(w"zx +w'zxx)] 

+ U~ + 2Ux Uww'zx + U~ (W')2~ + Uxxxx + 4Uxxxw w'zx 

+ 6Uxxww(W')2~ + 4Uxwww(W,)3Z! + Uwwww(W,)4Z! + 6Uxxw (w'zxx + w"~) + 12Uxww [w'w"z! + (w') 2zx zxx] 
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+ 6Uwww [(W')2W"z! + (W')3Z;ZXX] + 4U"w (WIHz! + 3w"z"z"" + w'zxxx) 

+ Uww [{4w'w"' + 3(w"f}z! + 18w'w"Z;z"" + (w')2(4z"z"xx + 3Z;,,)] 

+ Uw[w""z! +6w'"z;z"" + w"(4z"z"xx +3Z;,,) +W'ZXXXX] =0. (4.3) 

For this to be an ordinary differential equation in w(z), the ratios of different derivatives of w(z) must be functions of wand z. 
Using the coefficient of win (i.e., U wZ! ) as the normalizing coefficient, the coefficients of w'wIH and (w") 2 require that 

Uwz!r(w,z) = Uwwz!, 

where r(w,z) is a function to be determined. Hence 

r(w,z) = UwwlUw , 

which after two integrations yields 

U(x,t,w) = 0(x,t)r(w,z) + <I'(x,t), 

(4.4) 

(4.5) 

with 0(x,t) and CP(x,t) arbitrary functions (cf. Remarks 2 and 3 in Sec. III). Therefore it is sufficient to seek similarity 
reductions of the Boussinesq equation (1.2) in the form (4.1). 

Therefore, if we seek a similarity reduction of the Boussinesq equation in the general form (4.2), we are naturally led to 
the special form (4.1). Although, for many partial differential equations such as the Boussinesq equation, it is sufficient to 
seek similarity reductions in the special form (4.2), for some others it may be necessary to transform the dependent variable 
before using (4.1); however, the assumption (4.2) leads naturally to the required transformation. 

For example, consider the Harry-Dym equation (cf. Ref. 33). 

u, + 2(u- 1/2 )xxx = 0, (4.6) 

which can be solved by inverse scattering34 (see, also, Ref. 12) and is related to the Korteweg-de Vries and modified 
Korteweg-de Vries equations through hodograph transformations. 35 Let us seek a similarity reduction in the form (4.2). 
Substitution yields 

U, + Uww'z, _ljU-7/2 CUx + UwW'zx)3 

+ ~U-5/2( Ux + Uww'zx) [U"" + 2U"ww'zx + Uww (W')2Z; + Uw (w"Z; + w'z"x)] 

- U- 3/2[ Uxxx + 3Uxxw w'zx + 3Uxww (W,)2Z; + Uwww (W')3z! + 3Uxw (w"Z; + w'zxx) 

+ 3Uww {w'w"z! + (w')2zxzxx} + Uw (wIHz! + 3w"zxzxx + w'zxxx)] = o. (4.7) 

Using the coefficient ofwIH (i.e., U- 3
/
2 Uw z!) as the normal­

izing coefficient, the coefficient of w'w" requires that 

U- 3/2 U ~r(wz) = 3U-5/2 U 2 Z3 _ U- 3/2 U ~ 
w x '2 w x ww x' 

that is, 

(4.8) 

where r(w,z) is a function to be determined. Integrating 
twice yields 

U- 1/2(x,t) = 0(x,t)r(w,z) + <I'(x,t) , (4.9) 

with 0(x,t) and CP(x,t) arbitrary functions (cf. Remark 2 in 
Sec. III). Hence it is sufficient to seek similarity reductions 
of the Harry-Dym equation (4.6) in the form 

u- 1/2 (x,t) = a(x,t) + ,8(x,t)w(z(x,t») . 

Alternatively we could first make the transformation 
v = u - 112 and then seek similarity reductions in the form 
( 4.1 ). Obvious as this transformation is, our method leads to 
it systematically. 

v. DISCUSSION 

In this paper we have developed a direct method for 
determining similarity reductions of a given partial differen­
tial equation. However, there are a number of open questions 
our method poses. First, what is the relationship (if any) 
between our method and other generalizations of the classi­
cal Lie method, such as those of Bluman and Cole l8 (cf. Ref. 
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, 
23), Olver and Rosenau,19 and BIuman et al. 22 ? In their 
generalization of the method of BIuman and Cole, 18 Olver 
and Rosenaul9 showed that in order to determine a group­
invariant solution to a given partial differential equation, one 
could try any group of infinitesimal transformations whatso­
ever. Generally, for any specific group and any specific equa­
tion, there will be no solutions of the equation invariant un­
der the group, and so the question becomes how does one 
determine a priori which groups will give meaningful simi­
larity reductions? One possibility is that by seeking a reduc­
tion of a certain form (as done in this paper), one is naturally 
led to the appropriate group (i.e., the requirement that the 
similarity reduction reduce the partial differential equation 
to an ordinary differential equation is equivalent to the side 
conditions in the terminology of Olver and RosenauI 8

). 

Second, what kind of "symmetries" of the Boussinesq 
equation are those we have obtained that are not found using 
the classcial Lie method? (They are "weak symmetries" in 
the terminology of Olver and Rosenau. 19) As shown in Sec. 
III, the associated group of infinitesimal transformations 
does not map solutions of the Boussinesq equation into other 
solutions of the Boussinesq equation, but rather into solu­
tions of other equations. 

The idea of making the ansatz that a similarity reduc­
tion of a given partial differential equation have a particular 
form has been suggested previously in the literature. For 
example, (i), Gilding36 seeks solutions of the porous media 
equation 

P. A. Clarkson and M. D. Kruskal 2207 



                                                                                                                                    

U, = (Um)xx' m> 1, 

in the form 

u(x,t) =f-l(t)f(z), z=p(t)[X+A(t)]; 

and (ii), Fushchlich, in a series of papers with various co­
authors,37 has obtained exact solutions of several nonlinear 
relativistic and nonlinear wave equations (including the 
nonlinear Dirac, Klein-Gordon, Maxwell, and Schrodinger 
equations) in three spatial and one temporal dimension, us­
ing their symmetry properties and seeking solutions in the 
form 

U(Xo,X\,X2,X3) = A (xO,x\,X2,X3)W(z\,Z2,Z3) 

+ B(xO'x\,X2,X3) , 

where 

Z3 (xo,x \,X2'X3» 

are the new independent variables, W(Z\,Z2,Z3) the new de­
pendent variable, and A (xo,x \'X2'X3) and B(xo,x \'X2'X3) are 
determined. 

We have applied the method to several other integrable 
equations including Burgers' equation 

U, + UU x + Uxx = 0, (5.1 ) 

which can be mapped into the linear heat equation through 
the Cole-Hopf transformation38

; the Korteweg-de Vries 
equation 

U, + UU x + Uxxx = 0, (5.2) 

which can be solved by inverse scattering8
; and the modified 

Korteweg-de Vries equation 

(5.3 ) 

which also can be solved by inverse scattering.39 However, 
for these three equations, the similarity reductions obtained 
are precisely the same as those obtained using the classical 
Lie method of infinitesimal transformations (for further de­
tails see Appendices B, C, and D, respectively, which also 
provide further examples of the application of our method). 

There is much current interest in the mathematically 
and physically significant determination of similarity reduc­
tions of given partial differential equations. (In addition to 
the references mentioned above, the interested reader might 
also consult Refs. 40-43, and the references therein.) Our 
method is a practical and direct one for finding similarity 
reductions; it has generated similarity reductions that, to the 
best of our knowledge, are previously unknown. It seems 
probable that the method can be generalized to higher-order 
equations with more independent and dependent variables. 
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APPENDIX A: REDUCTION TO PAINLEVE EQUATIONS 

In this appendix it is shown that of all the equations of 
the form 

w'''' + WW" + (W,)2 + f(z)w' + g(z) = h(z), (AI) 

withf(z), g(z), and h(z) analytic, the most general one 
having the Painleve property, that is, having no solutions 
with movable singularities except poles, is given by 

w"" + WW" + (W,)2 + (Az + B)w' + 2Aw = 2(Ax + B)2, 
(A2) 

where A and Bare arbitary constants. To show this we follow 
Ablowitz et al.28 in seeking a solution of Eq. (A2) in the 
Laurent series form 

ao 

w(z) = L wj(z - zo)HP, 
j~O 

(A3) 

with zo an arbitrary constant, wo#O and wj,}>O, constants 
to be determined. Leading-order analysis shows that 

Wo = - 12, P = - 2. (A4) 

Substituting into (AI) and equating coefficients of powers 
yields for }> 1 the recursion relation 

(j + 1) (j - 4) (j - 5) (j - 6) Wj 

1 j-I 

+-(j-4)(j-5) L WkWj _ k 
2 k~\ 

where 

j-3 
- L fk(j-k-5)wj _ k _ 3 

k~O 

j-4 
- L gk Wj-k-4 + hj _ 6 , 

k~O 

ao 

fez) = L fdz-zo)\etc. 
k~O 

(A5a) 

(A5b) 

(defining Wj = 0 for) < 0, etc.). This determines Wj for}> 1 
except for} = 4,5,6, which are the so-called resonances. For 
each resonance there is a compatibility condition that must 
be identically satisfied for Eq. (AI) to have a solution in the 
form (A3). From Eq. (AS) we obtain 

W\ = 0, W2 = 0, W3 = fo . 
The compatibility conditions for} = 4 and} = 5 are 

go = 2f.., g \ = 21z , 

respectively. Since Zo is arbitrary, necessarily 

g(z) = 2 df, dg = d
2
f. 

dz dz dr 

These hold simultaneously if and only if 

d 2f -=0 
dr ' 

i.e., 

fez) =Az+B, g(z) =2A, 

(A6) 

(A7) 

(A8a) 

with A and B arbitrary constants. The compatibility condi­
tion for} = 6 is 
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ho = 2f~ . 

Thus 

h(z) = 2(Az + B)2 . (A8b) 

Unlessf(z), g(z), and h(z) are as given in Eqs. (A8), the 
compatibility conditions are violated and so Eq. (AI) has 
the Painleve property only ifit has the special form (A2). 

In order to complete the proof that Eq. (A2) has the 
Painleve property, we show that no solution of it has a mov­
able essential singularity by reducing it to known such equa­
tions. 

Case (a). A=O, B=O: Integrating Eq. (A2) twice yields 

d 2w 1 dr +T W2 =C1Z+CO ' (A9) 

If C1 = 0, w(z) is a Weierstrass ellipticfunction (cf. Ref. 32); 
otherwise (A9) is the first Painleve equation (cf. Ref. 26). 
In either case, all solutions possess the Painleve property (in 
fact, are meromorphic); hence no solution ofEq. (A9) has a 
movable essential singularity. 

Case (b). A=O, B¥O: Integrating Eq. (A2) once yields 

d 3w dw 2 
--+w-+Bw= 2B z+c2 . 
d7 dz 

Then make the transformation 

w(z) = B 2/3 W(Z) + Bz + c2/2B, 

Z = - (B 1I3Z + ! c2B -5/3) , 

which produces 

d 3 W + W dW _ (2 W + Z dW) = 0 . 
dZ 3 dZ dZ 

(AW) 

(All ) 

(A12) 

Whitham (see Refs. 27 and 30) noted that solutions of this 
equation are related to solutions of the second Painleve equa­
tion 

d 2 v 3 
--2 =2V +ZV+a, 
dZ 

(A13) 

with a an arbitrary constant. Actually, as shown by Fokas 
and Ablowitz,30 there is a one-to-one correspondence 
between solutions of (Al2) and (A13) given by 

W(Z) = - 6(V'(Z) + V 2 (Z»), 

V(Z) = [W'(Z) + 6a]l[2W(Z) - 6ZJ , 

(A14a) 

(A14b) 

where I: = d IdZ. [Equation (AI4a) is just the scaling, or 
self-similar, reduction of the Miura transformation44 relat­
ing solutions of the modified Korteweg-de Vries equation 
(5.3) to solutions of the Korteweg-de Vries equation 
(5.2).J All solutions of the second Painleve equation possess 
the Painleve property (in fact, are meromorphic); hence no 
solution ofEq. (AW) has a movable essential singularity. 

Case (c). A¥O: The transformation 

w->(4A)I12W Z->(_3_)1/4Z_.!!.. 
3 ' 4A A' 

takes (A2) to the form 

w"" + w" + (W')2 + ~ZW' + ~ w = ~ Z2. CA15) 

Hirota and Satsuma45 show that there is a "Miura-type" 
transformation relating solutions of the modified Boussinesq 
equation 
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(AI6) 

to solutions of the Boussinesq equation (1.2) (see, also, 
Refs. 29 and 46). The Backlund transformation 

Vx (x,t) = - qt + .,j3qxx - ! q; , (A17a) 

vt(x,t) =.,j3qxt +qxxx -qAt -~q! +0, (AI7b) 

where 0 is a constant, is easily seen to take a solution q of the 
modified Boussinesq equation (A 16) to a solution v of the 
potential Boussinesq equation 

(AI8) 

furthermore U = Vx is a solution of the Boussinesq equation 
(1.2). The modified Boussinesq equation (AI6) has the si­
milarity solution (cf. Ref. 29) 

q(X,t) = -rlnt+p(z), z=xt- 1
/
2 , (A19) 

wherep(z) satisfies 

r+ 3z pi + r p" + (r+ J...Zp'\"" 
4 4 2 Y 
_ +(pl)2p " + p"" = 0, 

with I: = d I dz; and if we now make the transformation 

pi (z) = - 33
/
4 Q(Z) - z, Z = 31/4z/2 , (A20) 

then Q(Z) satisfies the fourth Painleve equation 

d
2
Q = _1 (dQ)2 + ~Q3 + 4ZQ2 

dZ 2 2Q dZ 2 

+2(Z2-a)Q+~, 
Q 

(A2l) 

with a = 8rl(9.,j3) and fJ an arbitrary constant (see, also, 
Ref. 46). The Boussinesq equation (1.2) and the potential 
Boussinesq equation (A 18) possess the similarity reduc­
tions 

U(X,t) =t-1w(z) _x2/4t 2 , z=xt- 1/2 , (A22a) 

V(X,t)=t-l/2r(z), z=xt- 1/2 , (A22b) 

where w(z) satisfies Eq. (A15) and r(z) satisfies 

r"" + r'r" -! (r+zr') = O. (A23) 

Therefore, Eqs. (A 17)-(A22) show that if Q(Z) is a solu­
tion of the fourth Painleve equation, then 

w(z): = - 3.,j3 (d
Q + Q2(Z) + 2ZQ(Z) + 3Z 2 ) 

2 dZ 

+ 9f a - .,j3 , (A24a) 

(A24b) 

is a solution ofEq. (AtS). 
What all this shows is that from any solution of the 

fourth Painleve equation we can obtain a solution of (A 15). 
To obtain the converse we substitute the similarity reduc­
tions (AI9) and (A22) into the Backlund transformation 
(A 17) and easily see that if r(z) is a solution of (A23 ), then 
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_3/4(~(r - Zr') + !3r" - z3 - 2!3Z) 
Q(Z): = - 3 , 

r' + z? + 2r - !3 
Z = 3If4Z/2, (A25) 

satisfies the fourth Painleve equation (A21); furthermore 
solutions ofEqs. (AI5) and (A23) are related by 

dr z? 
w(z) =-+-. (A26) 

dz 4 

Equations (A24)-(A26) provide a one-to-one relationship 
between solutions of Eq. (A 15) and solutions of the fourth 
Painleve equation. All solutions of the fourth Painleve equa­
tion possess the Painleve property, i.e., have no movable es­
sential singularities (in fact, are meromorphic). Therefore 
no solution ofEq. (A 15) has a movable essential singularity. 

We remark that there is also a direct method to show 
that no solution ofEq. (A2) has a movable essential singu­
larity. Making the transformation 

w(z) = v'(z) - (Az + B)2/A, (A26') 

we obtain a fifth-order equation easily integrated twice to 
yield 

v"'+~(v')2- Az+B [(Az+B)v'-Av] =CIZ+C2 . 
2 A 

Multiplying by v" and integrating again yields 

1 (V")2 + !(V,)3 - (l/2A)[ (Az + B)v' _AV]2 

= (cl/A)[ (Az + B)v' - Av] + C2v' + c3 . 

(A27) 

(A28) 

This is equivalent (through rescaling and translation of the 
variables) to an equation given by Chazy,47 

(y")2 + 4(y')3 + (zy' - y)2 + ay' + f3 = 0, (A29) 

with a and f3 constants. According to Chazy, this is "an 
algebraic transformation of the fourth Painleve equation" 
[Eq. (A29) is sometimes referred to as Chazy IV, cf. Refs. 
29 and 48]. Furthermore, as shown by Chazy,47 for any solu­
tion of (A29), exp{SZy(s)ds} is analytic except at the points 
0,00. Hence we conclude that no solution ofEq. (A26), and 
hence also ofEq. (A2), has a movable essential singularity. 

APPENDIX B: BURGERS' EQUATION 

In this appendix we outline how to determine the simi­
larity reductions of Burgers' equation 

(Bl) 

using the method developed in this paper. As with the Bous­
sinesq equation (1.2), it suffices to seek similarity reductions 
in the special form 

u(x,t) =a(x,t) +f3(x,t)w(z(x,t»). (B2) 

Substituting (B2) and (Bl) and collecting coefficients 
yields 

f3i!w" + (2f3x zx + f3zxx + f3Zt + af3zx )w' 

+ (f3xx + f3t + af3x + a xf3)w 

+ f32zxww' + f3f3xw2 + a xx + at + aax = O. (B3) 

We use the coefficient of w" as the normalizing coefficient. 
For this to be an ordinary differential equation, from the 
coefficient of ww' we get 
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f3i!r(z) =f3 2zx , 

where r(z) is to be determined. Using the freedom in Re­
mark 3 (i) in Sec. III, we take 

f3= Zx . (B4) 

The coefficient of w2 gives 

f3i!r(z) = f3f3x , 

where r(z) is to be determined. Using (B4), integrating 
twice, and using the freedoms in Remark 2 and 3(iii), we' 
have 

z = xO(t) + a(t), f3 = O(t) , (B5) 

where O(t) and a(t) are to be determined. Equation (B3) 
simplifies to 

03(W" + ww') + o{(x ~~ + ~~) + aO }w' 

+ { ~~ + axo}w + a xx + at + aax = o. (B6) 

This is an ordinary differential equation for w(z) provided 
that 

(B7) 

(B8) 

(B9) 

with A and B arbitrary constants. Multiplying (B8) by 
20 -2 dO /dt and integrating gives 

(~~r =A 20
6 + C 2

0
4

, (BlO) 

with C an arbitrary constant. 
Therefore the general similarity reduction of Burgers' 

equation (Bl) is given by 

u(x,t) = O(t)w(z) -- x-+- , 1 (dO da) 
o dt dt 

z = xO(t) + a(t) , 

where OU) and a(t) satisfy (B9) and (BlO). 
There are four cases to consider. 
Case 1. A=O, C=O.· Here the solutions are 

O(t) = 00, a(t) = Bt 2 + Cit + C2 . 

We set 00 = 1 and obtain the similarity reduction, 

u(x,t) = w(z) - 2Bt - CI, z = X + Bt 2 + CI + C2 . 

(Bll) 

Case 2. A~-o, C=O.· We set A = -! and B = O. Then 

O(t) = (t - to) -1/2, 

a(t) = c3(t - to) 1/2 + c4 (t - to) -1/2. 

Setting to = 1, C4 = 0, we obtain 

u(x,t) = t -1/2W(Z) + x/2t -! C3 . (BI2) 
Case 3. A=O, C~O.· We set C = - 1. Then 

O(t) = (t-tO)-I, 

a(t) = B(t - to)-2 + cs(t - to)-1 + C6 • 
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Setting to = 1, c5 = 0, and c6 = 0, we obtain 

x 2B x B 
U(x,t)=t-Iw(z) +-+-2 ,z=-+z. (B13) 

t t t t 

Case 4. A¥O, C¥O:WesetA 2 = - I,B = 0, C 2 = 1. Then 

O(t) = (t 2 ± 1) -1/2, u(t) = c7t + Cg (t2 ± 1) -1/2. 

Setting Cg = 0, we obtain 

/ xt - C 
u(x,t) = (t 2 ± 1) -I 2W (Z) + ----Z--17 , 

t ± 
x + c7t z=---. 
t

2 ± 1 

(BI4) 

The infinitesimals for Burgers' equation obtained using 
the classical Lie method are 

x = ax + f3t + yxt + 8 , 

T = 2at + yt 2 + K , 

U = - au + y(x - tu) + f3 , 

(BI5a) 

(BI5b) 

(BI5c) 

with a, f3, y, 8, and K arbitrary constants (cf. Ref. 49). It is 
easily shown that all the similarity reductions obtained by 
our method (Bll)-(BI4) for Bergers' equation (B1) can 
also be obtained from these infinitesimals (cf. Ref. 49). 

APPENDIX C: KORTEWEG-dE VRIES EQUATION 

In this appendix we outline how to determine the simi­
larity reductions of the Korteweg-de Vries equation 

(Cl) 

using the method developed in this paper. It suffices to as­
sume the special form 

U(x,t) = a(x,t) + f3(x,t)w(z(x,t». 

Substituting and collecting coefficients yields 

f3z!w'" + (3f3x~ + 3f3zxzxx )w" 

+ (3f3xx zx + 3f3xzxx + f3zxxx + f3z, + af3zx )w' 

(C2) 

+ (f3xxx + f3, + af3x + a xf3)w + f3 2zxww' + f3f3xw2 

+axxx +a, +aax =0. (C3) 

We use the coefficient of w'" as the normalizing coefficient. 
For this to be an ordinary differential equation, from the 
coefficient of ww' we get 

f3z~r(z) =f32zx , 

where r(z) is to be determined. Using the freedom in Re­
mark 3 (i) in Sec. III, 

f3=~. (C4) 

The coefficient of w2 gives 

f3z!r(z) =f3f3x 

where r(z) is to be determined. Using (C4), integrating 
twice, and using the freedoms in Remarks 2 and 3(iii), we 
have 

z = xO(t) + u(t), f3 = 02(t), (C5) 

where O(t) and u(t) are to be determined. Equation (C3) 
simplifies to 
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05(W'" + ww') + 02{ (x ~~ + ':;;) + aO }w' 

+ {20 ~~ + a xo2
}w + a xxx + a, + aax = O. (C6) 

The conditions for this to be an ordinary differential equa­
tion give successively, from the coefficients of w', w, and 1, 

a = _ ~ (x dO + du) , 
o dt dt 

(C7) 

dO =A0 3 

dt ' 
(C8) 

Od
2
u -2 dO du =206(A2u+B), 

dt 2 dt dt 
(C9) 

with B another arbitrary constant. 
Therefore the general similarity reduction of the 

Kortweg-de Vries equation (C 1 ) is 

u(x,t) = 02(t)W(Z) _ ~(x dO + du), 
o dt dt 

z = xO(t) + u(t) , 

where O(t) and u(t) satisfy (C8) and (C9). 
There are two cases to consider. 
Case 1. A¥O: We set A = - j, B = O. Thus 

e = (t - to) -1/3, u(t) = CI (t - to)2/3 + c
2
(t - to) -1/3. 

We set to = 0, C2 = 0 and obtain the similarity reduction 

-2/3 x 2 x + C t u(xt)=t w(z)+---C Z= __ I_. 
, 3t 3 I' t 1/3 

Case 2. A =0. We set 0 = 1, and then 

u(t) = Bt 2 + c3t + C4 • 

Now set C4 = 0 and obtain the similarity reduction 

(CIO) 

u(x,t) =w(z) -2Bt-c3, z=x+Bt 2 +clt. (CIO') 

The infinitesimals for the Korteweg-de Vries equation 
obtained using the classical Lie method are 

X = ax + f3t + y, T = 3at + 8, 
(Cll) 

u= - 2au +f3, 

with a, f3, y, and 8 arbitrary constants (cf. Ref. 16, p. 129, 
and Refs. 41-43). It is easily shown that both the similarity 
red uctions (C 10) and (C 11) for the Korteweg-de Vries 
equation (C 1 ) can be obtained from these infinitesimals (cf. 
Ref. 16, p. 196, and Ref. 43). 

APPENDIX D: MODIFIED KORTEWEG-dE VRIES 
EQUATION 

In this appendix we outline how to determine similarity 
reductions of the modified Korteweg-de Vries equation 

(Dl) 

using the method developed in this paper. It suffices to as­
sume 

U(x,t) = a(x,t) + f3(x,t)w(z(x,t)). (D2) 

Substituting and collecting coefficients yields 
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/3z!w'" + (3/3xi! + 3/3zxzxx )w" + (3/3xx zx + 3/3xzxx 

+ /3zxxx + /3Zt + a 2/3zx )W' + (/3xxx + /3t + a2/3x 
+ 2aax/3)w + /33zxW2W' + /32/3xW3 + 2a/32zxww' 

+ (2a/3/3x + a x/3 2)w2 + axxx + at + aax = O. 

(D3) 

We use the coefficient of WIll as the normalizing coefficient. 
For this to be an ordinary differential equation for w(z), 
from the coefficient of w2 w' we get 

/3z!r(z) =/3 3zx , 

where r(z) is to be determined. Using the freedom in Re­
mark 3 ( i) of Sec. III, 

/3 = Zx . (D4) 

The coefficient of w3 gives 

/3z!r(z) =/3 2/3x, 

where r(z) is to be determined. Using (D4), integrating 
twice, and using the freedoms in Remarks 2 and 3 (iii), we 
have 

z = xO(t) + a(t), /3 = O(t) , (D5) 

where O(t) and aCt) are to be determined. The coefficient of 
ww' gives 

/3z!r(z) = 2a/32zx , 

where r(z) is to be determined. Using (D4) and the free­
dom in Remark 3(i), we have 

a=O. (D6) 

Equation (D3) simplies to 

04(W'" + ww') + o(x dO + da)w' + dO w = O. 
dt dt dt 

(D7) 

This is an ordinary differential equation for w(z) provided 
that 

dO = A0 4 , 

dt 

da =03(Aa+B), 
dt 

where A and B are arbitrary constants. 

(D8a) 

(D8b) 

Therefore the general similarity reduction of the modi­
fied Kortweg-de Vries equation is 

u(x,t) = O(t)w(z), z = xO(t) + aCt) , 

where O(t) and aCt) satisfy Eqs. (D8). 
There are two cases to consider. 
Case 1. A¥O: We setA = - j, B = O. Hence 

O(t) = (t - to) -1/3, aCt) = C1 (t - to) -1/3 . (D9) 

Setting to = 0, C1 = 0, we obtain the similarity reduction 

U(x,t) =t- I
/ 3W(Z), z=xt- I / 3. 

Case 2. A=O: Solving (D8), 

O(t) = C2, aCt) = Bt + C3 . 

(DlO) 

Setting C2 = 1, c3 = 0, we obtain the similarity reduction 

U(X,t) = w(z), z = x + Bt. (DIl) 

The infinitesimals for the modified Korteweg-de Vries 

2212 J. Math. Phys., Vol. 30, No.1 0, October 1989 

equation obtained using the classical Lie method are 

X=ax+/3, T=3at+r, U= -2au, (DI2) 

with a, /3, and r arbitrary constants (cf. Ref. 42). It is easily 
shown that both the similarity reductions (DIO) and (DII) 
for the modified Korteweg-de Vries equation (D I) can be 
obtained from these infinitesimals (cf. 42). 
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The effect of enlarging the class of admissible movable singularities in Painleve analysis to 
include all rational algebraic branch points is examined for a class of quartic polynomial 
potentials. Eight homogeneous quartic potentials are found in addition to the seven integrable 
cases given by weak Painleve analysis. They are examined using various numerical techniques 
and Ziglin's theorem. Only one of them remains a candidate for integrability, which indicates 
that, in general, most rational algebraic branch points are incompatible with integrability. 
Movable logarithmic singularities also appear to be inconsistent with integrability. However, 
the remaining potentials are either regular or nearly regular for the energies examined, and are 
therefore still of interest for numerical purposes. The corresponding surfaces of section are 
found to be particularly simple in structure and belong to a small number of topologically 
distinct classes. Their stable and unstable periodic orbit structures are examined to provide 
information about their regularity and for use in Ziglin's theorem. There appears to be a 
correlation between the resonances of the stable periodic orbits and the order of the 
corresponding movable singularities. 

I. INTRODUCTION 

Integrable systems are the exception and not the rule. 
Most nonlinear systems possess chaotic regions of various 
sizes in their phase spaces, indicating the absence of a full 
complement of global isolating integrals of the motion. The 
problem is how to locate these integrable systems. 

Ablowitz et al. I suggested that if a partial differential 
equation was soluble by inverse scattering transform meth­
ods, then every ordinary differential equation arising as a 
similarity solution is of Painleve type. They then presented 
an algorithm that allows the user to determine whether an 
ordinary differential equation possesses the Painleve proper­
ty, that is, its only movable singularities are poles. Chang et 
al. 2 and Segur3 applied such an algorithm, which we call 
Painleve analysis, to the Henon-Heiles and Lorenz systems. 
They found that all the resulting systems were integrable. 
This lead to the idea, which we will refer to as the Painleve 
conjecture, that a system possessing the Painleve property 
will be integrable. This conjecture has been used successfully 
by a number of authors, including Bountis et al.,4 to predict 
integrable cases of a wide range of systems. A generalization 
of the original conjecture by Ramani et al. 5 and Grammati­
cos et al.,6 who allowed limited types of movable algebraic 
singularities as well as poles, was able to predict a number of 
additional integrable cases. 

The essence of the Painleve conjecture is that if the solu­
tions of the equations of motion have a particular movable 
singularity structure, then there exist a full complement of 
isolating integrals of the motion and the system is integrable. 
The continued success of various versions of the conjecture 
suggests that some form of it is correct. The question is what 
types of movable singularities should be admitted? The origi­
nal variation used by Chang et al.2 allowed only movable 
poles, while Ramani et al. 5 allowed some movable branch 
points. Conversely, Yoshida7 showed that movable complex 
and irrational algebraic branch points were not consistent 
with integrability. It is the remaining class of movable ra-

tional algebraic branch points, not covered by weak Painleve 
analysis, that are of interest here. 

In this paper we examine a collection of quartic polyno­
mial potentials whose only movable singularities are rational 
algebraic branch points, using Ziglin's theorems and explicit 
calculation of additional integrals of the motion. Their inte­
grability or lack thereof can also be explored by various nu­
merical techniques, such as the method of surface of section 
and an examination of their periodic orbit structures. Of par­
ticular interest are the invariant curves of unstable periodic 
orbits that indicate regular behavior for the system. It will be 
found that all the regular quartic potentials examined have 
common properties and are naturally ordered by the reson­
ances exhibited by their stable periodic orbits. 

II. PAINLEVE ANALYSIS OF THE VERHULST 
POTENTIALS 

The quartic polynomial potentials of interest here were 
first studied by Verhulst.9 He examined the existence and 
stability of bifurcations of orbit families, using averaging 
procedures and modified Birkoff transformations. The deri­
vation of this discrete-symmetric quartic potential as a trun­
cated Taylor series appears in Verhulst. 9 The Verhulst po­
tentials are of the form 

V(x,z) = + (wi X2 + w~r) - (~I X3 + A2xr) 

__ I X4+_2 x2r+_3 Z4 
(

B B B) 
4 2 4' 

(1) 

where the coefficients wi, wL AI, A 2, B I , B2, and B3 are all 
real. We will restrict ourselves to potentials with B I , B2 , and 
B3<O. The equations of motion are 

x + wix = A l x
2 + A 2r + B l x

3 + B2xr, (2a) 

Z + w~z = 2A 2xz + B2x
2Z + B3r . (2b) 
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The homogeneous quartic potential 

V(x,z) = AIX4 + 2x2z2 + A3z4 , (3) 

is obtained from the full Verhulst potential ( I) by setting all 
the lower-order terms to zero. We have defined AI = B II B2 
and ...1.3 = B31 B2• 

A number of authors2
-4 have successfully applied stan­

dard Painleve analysis to various systems, including the 
Henon-Heiles and Lorenz systems, Toda lattices with var­
ious boundary conditions and homogeneous quartic poten­
tials and found a range of integrable cases. They all required 
that the only movable singularities exhibited by the equa­
tions of motion be poles. 

Ramani et a[.5 found an integrable quintic potential 

v = x 5 + x 3y2 + foxy4 , (4) 

with an independent second integral 

I =y(yx _ xy) + ~4y2 + §x2y4 + ~y6. 
Singularity analysis revealed a leading-order behavior of 
(t - to) -2/3. This showed that integrable systems with more 
general singularity structures than poles do exist. This lead 
Ramani et al.5 to propose a generalization, termed weak 
Painleve analysis, allowing a very restricted type of rational 
algebraic branch point in addition to the previously allowed 
poles. The type of singularity allowed is closely related to the 
degree of the polynomial potential being examined. Gram­
maticos et al.6 clarified this by saying that a polynomial po­
tential had the weak Painleve property if it had expansions in 
terms of 

(t - to) IIr , 

where 

r- {
p, 

p12, 

forp odd, 
forp even, 

where the polynomial potential has degree p + 2. So for the 
quintic potential (4), with p = 3, they looked for expansions 
in terms of (t - to) -113, as well as those in terms of 
(t - to)-I. For any polynomial potential there are always 
two types of singularity expansion to be examined. The first 
are poles and the second are a very specific type of rational 
algebraic branch point whose order is related to the degree of 
the potential. It is, however, not obvious how to define this 
extra allowed exponent for nonpolynomial potentials. 

Yoshida7 showed that the existence of irrational and 
complex algebraic branch points is inconsistent with a sys­
tem being integrable. This leaves systems whose movable 
singularity structures belong to the vast class of all rational 
algebraic branch points. The single extra expansion allowed 
by weak Painleve analysis is but a single member of this 
infinite class of possible expansions. Solutions with these sin­
gularity types have not been examined before and it is one of 
the purposes of this paper to determine which, if any, of these 
rational algebraic branch points, in addition to the two al­
lowed by weak Painleve analysis, are consistent with integra­
bility for the class of quartic potentials above. 

The standard Painleve analysis algorithm presented by 
Ablowitz et al. I remains unchanged for all the variations and 
consists of the three following parts. 
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(a) Finding the dominant behavior of the solution near 
any movable singularity. This is accomplished by substitut­
ing the expressions 

x = a(t - to)P, z = b(t - to)q 

into Eqs. (2) and finding all values of p and q for which the 
leading-order terms balance. 

(b) Finding the resonances: These indicate which terms 
in the Laurent series expansions of the solutions have arbi­
trary coefficients. The expressions 

x = aat P + aat P + r, Z = bat q + pat q + r , 

where at = t - to are substituted into Eqs. (2) and the cor­
responding values of r are calculated for each pair of p and q 
values. 

(c) Determining the constants of integration involves 
calculating all the coefficients in the Laurent series expan­
sions occurring up to the final resonance. This indicates the 
existence or otherwise of logarithmic branch points. In the 
original application of the conjecture, Chang et al. 2 suggest­
ed that the existence oflogarithmic branch points was incon­
sistent with integrability. 

In standard Painleve analysis only poles were allowed. 
All the leading-order powers p and q and resonances r were 
required to be integers. In weak Painleve analysis they are 
allowed to be integer or integer multiples of~. Now we wish 
to allow the movable singularities to be any type of rational 
algebraic branch point. The leading-order powers p and q 
and the resonances r then take all rational values. 

For Eqs. (2) there are five cases of balancing. The ex­
pressions for p, q, and the corresponding resonances and ex­
istence criterion are given in Table I for each of these cases. 
All the leading-order powers and resonances for all five cases 
are rational if the expressions 

! - !~1 + 8/...1. 1, ! + ~~1 + 8/...1.3, 1 + !~25 + 16r 
(5) 

are all rational numbers of the form ml/n, m2ln, and m3/n, 
respectively, where m l , m 2 , m 3 , and n are all integers and 
r=(2-A I -A3)/(AIA3-l). These three conditions 
arise from q from case 2b, p from case 3a, and the third 
resonance '3 from case 1, respectively. We will define the 
order of each potential to be the integral denominator n. The 
Laurent expansion of the solution is then written in terms of 
(t - to) lin and possesses a finitely branched movable singu­
larity of order n. In weak Painleve analysis only n = 2 is 
allowed. 

To determine the values of AI and ...1.3 that satisfy the 
rationality conditions (5), we choose a value of n, beginning 
with n = I, and systematically use all appropriate values of 
m l , m2, and m3 and attempt to solve for AI and ...1.3' In most 
cases there is no solution. The first 14 sets of coefficients AI 
and ...1.3, with the lowest values of n satisfying these condi­
tions, are given in Tables II and III. Those in Table III corre­
spond to homogeneous quartic potentials of the form 

Vn (x,z) = AI(n)x4 + 2x2z2 + A3(n)z4 , (6) 

which we call V", .. , V IO' Of these, only VI can be found using 
weak Painleve analysis. None of the potentials in Tables II or 
III possess any movable irrational or complex algebraic 
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TABLE I. The leading-order powers p and q and the resonances are given for each of the five possibl~ cases of the leadi~g-order ter~s bal~ncing. C:ase 2b and 
3b exist only under restricted circumstances. The last column of this table gives the number of arbitrary parameters m the resultmg senes solutions. 

Case p q r, f2 f3 f. 

Existence 
conditions 

Number of 
parameters 
in solution 

-I -1 -I ~ ± !~25 + 16y 4 40r 3 

3 2a -I ! + !~I + 8/,1, -I 0 
2b -I !-!~1+8/A, -I 0 
3a ! + !~I + 8/,13 -I -I 0 
3b ! - !~I + 8/,13 -I -I 0 

branch points. There are more potentials with higher order 
(n> 19) rational algebraic singularities, which will not be 
examined here. 

For each of the potentials in Table II it is necessary to 
determine whether or not it possesses any logarithmic singu­
larities by calculating the constants of integration. For con-

2 2 1· h . I venience we set wi = 1 and W 2 = w by sca mg t e potentia. 
The restrictions in Table II all arise from the requirement 
that there be no movable logarithmic singularities. Any po­
tential with these A 1 and ..1,3 values, which does not satisfy the 
corresponding restrictions possesses logarithmic singulari­
ties. The corresponding homogeneous versions of these po­
tentials had previously been found by Bountis et al.4 and 
Ramani et al.5 using standard and weak Painleve analysis, 
respectively. Integrals of the motion for the full potentials in 
Table II will be given in the next section. Integrals were only 
found for those subclasses whose solutions contained no 
logarithmic singularities. This will be discussed in more de­
tail later. Numerical surface of section calculations for these 
potentials are described in Sec. IV. Again, any potenti~l p~s­
sessing logarithmic singularities was found to have slgmfi­
cant chaotic regions and was therefore nonintegrable. 

Performing the logarithmic analysis on the ten homoge­
neous potentials, given in Table III, we find that VI and V3 
both possess movable logarithmic singularities. The surfaces 
of section for both potentials, discussed in Sec. IV, contain 
large chaotic regions and are nonintegrable. The existence of 
logarithmic singularities appears to be incompatible with in­
tegrability for these types of potentials. This may not be uni­
versally true for all systems. There certainly exist integrable 
one-dimensional systems with movable logarithmic singu-

TABLE II. Seven families of potentials obtained by using weak Painleve 
analysis. The first three potentials have movable poles. The others have 
Laurent series expansions in (t - to) 112. 

Potential A, ,1.3 Restrictions Resonance 

V, A, =0, A 2 =O 1:1 
V2 A, = 3A2, B2 = - 2A~ 1:1 

V3 ol= I, A, =A2 1:1 

V. A, = 8A2, ol =! +A~/B2 1:1 

Vs (J)2 =! + 02/B2(A, - 6A2 ) 2:1 

V6 (J)2 = 4 + A z/B2 (8A, - 5A 2 ) I: I 

V 7 (J)2 = 4 + A z/B2 (8A, - 3A2 ) 2:1 
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4 
~I + 8/,1, 4 4 

4 3 
~I + 8/,13 4 4 

larities. The only movable singularities possessed by the re­
maining eight potentials in Table III are rational algebraic 
branch points of order n > 2. 

III. INTEGRALS OF THE MOTION 

In Sec. II we found a series of potentials whose only 
movable singularities were rational algebraic branch points 
or poles. Ultimately, the only way to prove that a potential is 
integrable is to find all the required integrals of the motion. 
For two-dimensional Hamiltonian systems it is necessary to 
find a second integral independent of the Hamiltonian. In 
this section we give second integrals, which are quadratic in 
the velocities, for the families of potentials in Table II. To 
find integrals of the motion by direct methods one assumes a 
particular form for the integral and then determines condi­
tions on all the coefficients of the velocity terms by requiring 
the Poisson bracket {H,G} to vanish. This gives a collection 
of PDE's that must be solved for the coefficients. Hietar­
inta 10 discusses the subject of finding such additional inte­
grals of the motion by direct methods and summaries all the 
previous results in an extensive review article. 

The potential UI is integrable since it possesses a second 
integral of the form 

TABLE III. Pairs of coefficients A, and ,13 for which the corresponding 
homogeneous quartic potential V. (X,z) = A,x' + 2x2z> + A3z' satisfies the 
first two steps of the generalization of Painleve analysis. The value of q is the 
power of the first term in the Laurent series expansion of the solution in .each 
case. The resonances of the stable nonaxial periodic orbits are also given. 
Note that f.l3 is the integrability coefficient for the inclined straight line peri­
odic orbits. This is used in the application of Ziglin's theorem. 

Potential q A, ,13 Resonance f.l3 

V, -~ 
, 3:1 4~ no 

V2 
_1 32 , 2:1 28 • ,. 11) 

V3 -1 32 32 4:lor5:1 13~ • ,. rm 
V. --6 llts , 3:1 78 n 
Vs -f.> 17:tI , 4:1 171 21 

V6 -it, 18ft 32 4:1 167.32 m 
V7 

- , 18ft 9 4:1 83.08 TIl m , 8:1 40~ V8 -it, 18ft no 
24~ 

, 4:1 325 V9 -Y; 2& , 5:1 561 VIO -f, 32~ JO 
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G = Bz(xz - zx)z + 2«(t.lz - l)(r + (t.lzr 

- B 2r(X
2 + r)/2). 

This integral has previously been given by Hietarinta. II 
Bountis et al.4 suggested that potentials of this form only 
possessed the Painleve property for (t.lz = 1, for which the 
potential becomes trivially separable in polar coordinates 
with the angular momentum as the second integral. How­
ever, this class of potentials does possess the standard Painle­
ve property for all values of (t.lz. 

The potential Uz possesses a previously unknown sec­
ond integral of the form 

G = 4A ~ (zx - xz)z + 4Azz(zx - xz) 

- A zr[Az(x2 + r) - xl 

+ (4(t.l2 - 1) [x2 + x2 - A zx(2x2 + r) 
+ A ~X2(XZ + r)] , 

and is therefore integrable. The potentials UI and Uz are the 
only potentials with IL I = 1L3 = 1 that possess no movable 
logarithmic singularities. They are also the only potentials 
with ILl = 1L3 = 1 that possess quadratic second integrals. 
This potential cannot be obtained from UI by any linear 
transformation. 

The potential U3 is separable under the canonical trans­
formation to new variables x + z and x - z, given in Aizawa 
and Saito. IZ A second integral of the motion independent of 
the Hamiltonian is then 

G = xz + xz - A Z(x2z + f/3) - (B2/3)xz(x 2 + r) . 
This potential is therefore integrable. Bountis et al.4 found a 
restricted version of this potential with A I = A2 = 0, using 
the standard Painleve analysis algorithm. The full potential 
can be obtained from the restricted Bountis et af. version by a 
translation in the x direction. Again, the only potentials with 
ILl = 1L3 = !, for which an additional integral was found, are 
those that possess no movable logarithmic singularities. 

The potential Us is integrable. The required second inte­
gral is 

G = z(xz - zx) + (6A z - AI) [xz + x 2 

2B2 

- ~ A IX3 - -±- B2X4] 
3 3 

- ~ (4A 2 -AI)xzr + ..iL z4 
2 4 

+[ ~z (2x
z
+r) + ((t.lZ_ ~)]xr. 

This potential can be simplified by a suitable translation in 
the x direction. It can be rewritten as a linear combination of 
the integrable homogeneous combinatorial potentials x, 
4xz + r, 2x3 + xr, and 16x4 + 12xzz2 + Z4, which are giv­
en in Hietarinta. 11 Such a global coordinate transformation 
does not affect the integrability of the system. 

New quadratic second integrals were found for two sub­
classes of the U7 family of potentials. The first is given by 

(t.lz=4, AI=Az=O, ILI=~' 1L3=~' 
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with integral 

G = x(zx - xz) + x 2z[ (Bz/6)(x2 + 2r) - 1 1 . 
The second is given by 

(t.l2=1, 2AI=A2' 3Bz = -A~, ILI=~' 1L3=~' 

with the corresponding integral 

G = B2x(zx - xz) - 2A lxz - (BzX + 2A I ) 

X [xz _.:iL z(3xz + 2r) - !!.J:.... xz(xz + 2r)] . 
3 6 

The above collection of potentials with quadratic sec­
ond integrals is complete. Any other integrable Verhulst po­
tential must have an integral that is quartic or higher order in 
the velocities. After appropriate translations all the above 
potentials and integrals belong to the four general classes of 
real potentials with quadratic second integrals given by Dor­
izzi et al. 13 They are presented here to verify that these po­
tentials are in fact integrable. 

The second integrals for the homogeneous potentials U4 

and U6 are quartic in the velocities and are given by Ramani 
et al. s Therefore we do not expect the second integrals for the 
full U4 and U6 potentials to be quadratic in the velocities. 
The homogeneous Us and U7 potentials, which are reflec­
tions of each other, have quadratic second integrals. How­
ever, for the full U7 potential we only find two special cases 
possessing quadratic second integrals of the motion. This 
suggests that a general second integral is at least quartic in 
the velocities with two quadratic subcases for which the 
higher-order terms vanish. Four of the classes of potentials 
in Table II are integrable and some subset of each of the 
remaining three potentials are also integrable. The potentials 
U4 , Us, and U7 cannot be decomposed into linear combina­
tions of known integrable homogeneous potentials, as was 
the case for Us. 

It should be noted that the same conditions arose from 
the requirement that the solutions possess no movable loga­
rithmic singularities, as were found necessary for the exis­
tence of second integrals. No integrable potential had loga­
rithmic singularities and every potential without 
logarithmic singularities had a second integral. 

IV. SURFACES OF SECTION 

The Verhulst potentials have four-dimensional phase 
spaces. Energy is conserved, so all orbits are constrained to 
lie on three-dimensional energy submanifolds. In order to 
study these systems, we lower the dimension of the problem 
to two by taking the intersection of the energy surface with 
the plane z = 0, simultaneously requiring z> 0, to give a 
well-defined surface of section parametrized by x and X.14,15 

Each time an orbit intersects the z = ° plane with z> 0, a 
point is placed in the surface of section. So instead of dealing 
with a four-dimensional phase space governed by a set of 
differential equations we have a two-dimensional surface of 
section with the Poincare map determining the location of 
successive iterates. A periodic orbit appears in the surface of 
section as a finite collection of points. A quasiperiodic orbit, 
for which there is a locally conserved quantity, is represented 
in the surface of section by a smooth closed invariant curve 
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surrounding a fixed point. Chaotic orbits, for which only the 
energy is conserved, densely fill two-dimensional regions of 
the surface of section. We note here that the surface of sec­
tion is always symmetric with respect to reflection in the x 
axis. We shall say that a potential is regular for the energy E 
if there are no chaotic regions in the corresponding surface of 
section. 

The Henon-Heiles system is obtained by setting 
B 1 = B2 = B3 = 0 in the general Verhulst potential (1). 
Henon and Heiles 14 found that the existence of the second 
integral was dependent upon the energy. At low energies, 
such as E = n, the surface of section was regular. However, 
at higher energies, E = !, the invariant curves disintegrated 
producing large-scale chaos. For the quartic Verhulst poten­
tial there does not appear to be any such corresponding phe-
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FIG. J. (a) Surface of section for the U3 potential with W Z = I and A, = I, 
Bz = - 1 for the energy E = 1000. (b) Surface of section for the perturba­
tion of the U3 potential with W

Z = A I = Az = I, B I = B, = - j, and 
B2 = -! for the energy E = 1000. (c) Surface of section for the perturba­
tion of the U, potential with {J/ = A, = A2 = I, B, = - j, and 

B2 =B3 = -~. 

nomenon. Even up to energies ofthe order of 103 or 104 the 
invariant curves do not break up. This apparent dependence 
of the second integral on the energy may be a consequence of 
the Henon-Heiles potential not being bounded for all ener­
gies. All surfaces of section and all orbits in this paper will be 
calculated for E = 1000. 

Surfaces of section were calculated for the potentials U3, 

U4 , U6 , and U7 to provide information about their integrabi­
lity. The importance of the restrictions, given in Table II, to 
the integrability of each potential, was then investigated for 
each case by systematically breaking them, one at a time, and 
then in combinations, and examining the effects on the sur­
face of section. Every perturbation to one of these potentials, 
which violated the conditions in Table II, possesses movable 
logarithmic singularities. The surface of section for every 
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one of these demonstrated nonintegrable behavior. 

12 

Figure 1 (a) shows the surface of section for a typical U3 

potential. This structure is completely regular with no chao­
tic regions and no chains of islands. Figures 1 (b) and 1 (c) 
show surfaces of section for two different perturbations to 
the previous integrable potential and demonstrate the sub­
stantial effects that arise when breaking the restrictions giv­
en in Table II and introducing logarithmic singularities. 

For the U4 potentials, the conditionAl = 8A2 was found 
to be necessary to the integrability of the system, just as the 
condition A 1 = A z was for U3• Any perturbation to the cubic 
terms always produced surfaces of section with chains of 
islands. Perturbations in ..t I and..t3 produced surfaces of sec­
tion with substantial chaotic regions, regardless of whether 
the condition A I = 8Az was satisfied. Violating the condition 
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FIG. 2. (a) Surface of section for the Us potential with ui = f2, Al = 1, 

A2 = ! and HI = - 8, H2 = - 3, and H3 = - 1. (b) Surface of section for 
the Ub potential with oi = 4, Al = A2 = 0 and HI = - j, H2 = - 1. and 
H3 = -~. (c) Surface of section for the U7 potential with {j)2 = 4. 

Al = A2 = 0 and HI = -~. H2 = - 1. and H3 = -~. 

on (j)2 gave surfaces of section with no noticeable chaotic 
regions, but with some chains of islands, indicating noninte­
grability. All the surfaces of section belonging to the pertur­
bations of the U4 potentials always exhibited nonintegrable 
behavior. 

Perturbations to the U6 and U7 potentials produced re­
sults similar to those obtained for U3 and U4 potentials. Fig­
ures 2(a), 2(b), and 2(c) are typical examples of the sur­
faces of section for the U5 , U6 , and U7 potentials, 
respectively. Any potential not satisfying the restrictions in 
Table II has logarithmic singularities and always possessed 
features inconsistent with integrability. All the potentials ex­
amined' which satisfied the restrictions, did not have loga­
rithmic singularities and looked numerically integrable. 
This supports the suggestion that the full U4 , U6 , and U7 

Paul W. Cleary 2219 



                                                                                                                                    

potentials are integrable. Their surfaces of section are all 
topologically very simple, unlike the surfaces of section pro­
duced by nonintegrable potentials, such as those shown in 
Figs. 1 (b) and 1 (c), whose solutions possess movable loga­
rithmic singularities. 

The potentials VI and V3 both have substantial chaotic 
regions. Their surfaces of section are given in Figs. 3 (a) and 
3(b), respectively. They both possess movable logarithmic 
singularities in their solutions. Note that VI has the largest 
chaotic region and it has its logarithmic singularity in the 
fourth term of its Laurent series expansion; V3 has the next 
largest and still significant chaotic region. Its logarithmic 
singularity is at sixth order. The size of the chaotic region 
appears to depend on the point at which the logarithmic 
singularities enter the Laurent series. 

The other eight homogeneous potentials in Table III do 
not possess any movable logarithmic singularities. Any 
chaotic regions in their surfaces of section are all extremely 
small and surround hyperbolic points. Large-scale chaos 
was only found in conjunction with logarithmic singulari­
ties. 

V. PERIODIC ORBIT STRUCTURE 

It is useful to study the periodic orbits possessed by a 
potential. The application of Ziglin's theorem requires 

(a) 

-~~----~~--~~--~~~ 
-7 0 7 

X 

FIG. 3. (a) Surface of section for the homogeneous potential V" The large 
scale chaos is due to the existence of a logarithmic singularity at fourth 
order. (b) Surface of section for the homogeneous potential V3 • It has a 
logarithmic singularity at sixth order. 
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knowledge of the stability and resonances of the periodic 
orbits. The existence of rational invariant curves, consisting 
of an infinite number of unstable cycles and the absence of 
stable cycles, which generate island chains, provide impor­
tant information about the regularity of the potential. Final­
ly the stable periodic orbits form a framework for the entire 
dynamical structure of the phase space. They generate all the 
quasiperiodic orbits in state space or invariant curves in the 
surface of section. 

Periodic orbits can be easily located numerically by de­
termining the fixed points of the appropriate multiple of the 
Poincare map P: S ->S, where S is the surface of section. For 
xES, if p(n) (x) = x then x is a fixed point of p(n) or an n­
cycle. The fixed point determination is carried out by a stan­
dard shooting method algorithm. The surface of section can 
be searched systematically for fixed points of a particular 
order n by performing the shooting method at each point on 
a grid of appropriate dimensions. The stability of a periodic 
orbit is determined by linear stability analysis. An orbit is 
stable if the two eigenvalues of the corresponding Jacobian 
matrix are complex conjugates of each other and of modulus 
one. If the eigenvalues are real, and one has an absolute value 
exceeding unity, then the orbit is unstable. 16 

For the purposes of classification, periodic orbits may be 
compared with Lissajous figures. These are obtained by or­
thogonal superposition of the harmonic oscillators, 

The resonance of an orbit is given by the ratio 0)1/0)2 repre­
sented in the form m:n, where m and n are coprime integers. 
No significance will be attached to the order of the numbers 
m and n in the ratio. Here 1: 1 resonance periodic orbits are 
the most common. The 1: 1 resonance periodic orbits are of 
two types; linear-these straight line orbits can be either 
axial or inclined to the axes; elliptic-with major and minor 
axes perpendicular, but not necessarily coinciding with the x 
and z axes. Higher-order m:n resonance periodic orbits will 
be classified as m:n linear or elliptic periodic orbits by com­
parison with the 1: 1 resonance periodic orbits. For example, 
Fig. 4(a) shows a 3:1 resonance linear orbit. This orbit has 
the property, as does the 1:1 resonance linear orbit, that the 
orbit touches the zero velocity curve (ZVC) at both ends. 
The particle proceeds along the orbit to an end point, stops, 
and then exactly retraces its path. There is no net angular 
momentum in any part in the orbit. In Fig. 4(b), we have a 
5: 1 resonance elliptic orbit, which again shares the proper­
ties of the 1: 1 resonance analog, namely, that in each loop of 
the orbit there is a definite sense of rotation and a net angular 
momentum. These periodic orbits do not meet the ZVC any­
where. Linear orbits correspond to a phase difference 
1>1 - 1>2 = 0, and elliptic orbits to a phase difference of 
1>1 - 1>2 = 1T/2. 

Consider any torus in the phase space that has a rational 
winding number. Any orbit on the torus is a closed curve and 
therefore periodic. There are an infinite number of these pe­
riodic orbits, all with the same period, densely covering the 
torus. All these periodic orbits are unstable. Taking the in­
tersection of the torus with the plane z = ° gives a corre­
sponding smooth invariant curve in the surface of section. 
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FIG. 4. (a) A 3:1 resonance linear periodic orbit. The stable nonaxial peri­
odic orbits in the potential V. are of this type. (b) A 5:1 resonance elliptic 
periodic orbit. The stable nonaxial periodic orbits in the potential V7 are of 
this type. 

Such an invariant curve will be described as rational. Each of 
the periodic orbits on the torus produces an n-cycle in the 
surface of section, for some integer n. Therefore any rational 
invariant curve can be regarded as an infinite collection of 
unstable n-cycles. If a potential is integrable then there are 
an infinite number of rational invariant curves, since the 
winding number varies continuously from one invariant 
curve to the next. If an integrable potential is subjected to a 
nonintegrable perturbation, then some of these rational in­
variant curves disintegrate. When such an invariant curve of 
n-cycles disintegrates there remain only 2n points in the sur-
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face of section. These points form two n-cycles, one stable 
and one unstable. The points of the two cycles alternate, such 
that between any two points of the stable n-cycle is a point of 
the unstable n-cycle and similarly between any two points of 
the unstable n-cycle is a point of the stable n-cycle. The 
points belonging to the stable n-cycle are elliptic points and 
those belonging to the unstable n-cycle are hyperbolic 
points. The points on the stable n-cycle generate an island 
chain in the surface of section. For more details on elliptic 
and hyperbolic cycles see Henon. 15 

Ifthere exists a stable n-cycle, for a given potential, then 
there is a corresponding unstable cycle, whose points sepa­
rate those of the stable one. Tllis indicates that a rational 
invariant curve has disintegrated and that the potential is 
nonintegrable. If a systematic search reveals the existence of 
an invariant curve for each rational value of the winding 
number around each fixed point, then there are no stable 
cycles and the potential is regular at that energy. Therefore 
regularity can, in theory, be checked by calculating all the n­
cycles in the surface of section and determining whether or 
not they form smooth invariant curves. Since it is not feasible 
to calculate all n-cycles for all values of n, checking whether 
cycles lie on invariant curves can be used as a guide to regu­
larity when the surface of section does not have sufficient 
resolution to find the smaller island chains. Conversely, if 
there exists a single stable cycle then the potential is not 
integrable. The existence and location of periodic orbits can 
provide important information about the global integrability 
of the corresponding potentials. 

All the potentials given in Table II, aside from Us and 
U7, have 1: 1 resonance periodic orbits. The remaining two 
have 2: 1 resonance periodic orbits. The periodic orbits for 
the potentials given in Table III will now be explored. We 
shall determine the number and type of periodic orbits pres­
ent in each potential and examine their stability. In each case 
there exist x- and z-axis orbits, defined as z = Z = ° and 
x = x = 0, respectively. These are always 1: 1 resonance lin­
ear orbits whose stability depends on the potential. 

The surface of section, shown in Fig. 5(a), for the poten­
tial 

(8) 

is symmetric with respect to x and x, so it suffices to system­
atically search only the first quadrant for periodic orbits. 
There are only three stable periodic orbits. The z-axis orbit is 
stable and generates the outer family of invariant curves. 
There are a pair of stable fixed points at ( ± 1.873,0) in the 
surface of section, which are produced by 3: 1 resonance el­
liptic orbits. The z-axis orbit, defined by x = x = 0, is unsta­
ble and coincides with the hyperbolic point on the separa­
trices. The separatrices divide the invariant curves into three 
families, one set around each of the three stable periodic 
orbits. There is a second pair of unstable fixed points at 
(0, ± 39.723) that corresponds to 4: 1 resonance elliptic or­
bits. 

Earlier we discussed the existence of rational invariant 
curves surrounding the periodic orbits in integrable poten­
tials. When such a potential is perturbed these curves are 
destroyed leaving a pair of periodic orbits, one stable and the 
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FIG. 5. (a) Surface of section for the homogeneous potential V •. It is com­
pletely regular. This potential remains a candidate for integrability. (b) 
Surface of section for the homogeneous potential V7• It is regular at 
E = 1000. (c) Surface of section for the homogeneous potential V9 • 

other unstable. In the present case we have the required un­
stable orbits but there are no corresponding stable 4: 1 reso­
nance orbits anywhere in the phase space. The unstable 4: 1 
resonance elliptic orbits are not produced by the disintegra­
tion of a rational invariant curve. Furthermore, systematic 
searching revealed that there were no stable two or three­
cycles anywhere in the surface of section. In fact, there were 
no two-cycles present .at all. This potential appears to be 
completely regular at E = 1000. 

Since V4 is a good candidate for integrability we exam­
ined its surface of section for various other energies. No orbit 
bifurcations, chaotic orbits, or island chains were in evidence 
for the range of energies E = 0.1, 1, 10, 100, 1000, and 
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10 000. In all cases the surfaces of section were topologically 
identical. Again this is consistent with integrability. A sys­
tematic search for an integral of the motion that is sixth 
order in the velocities failed to reveal one. Integrals oflower 
order do not exist for this potential. 10 If this potential is inte­
grable then the integral will be at least seventh or probably 
eighth order in the velocities. 

The potential 

(9) 

has surface of section in Fig. 5(b), and is topologically simi­
lar to the one obtained for the previous potential V4 • The 
principle differences are that the separatrix is now much 
more open, and the periodic orbits are different. Here the 
stable periodic orbits are the x-axis orbit and a pair of 4: 1 
resonance linear or W-shaped orbits at ( ± 1.146,0). Again 
the z-axis orbit is unstable and is the hyperbolic point on the 
separatrix. There are a pair of unstable 5:1 resonance linear 
periodic orbits at (0, ± 30.944). There are no corresponding 
stable 5: 1 resonance orbits. This potential does not appear to 
possess any island chains. In fact, there are only two unstable 
two-cycles at (0, ± 12.822). No stable two- or three-cycles 
were found anywhere in the surface of section. This potential 
appears to be regular at E = 1000. 

The potential V9 , with surface of section in Fig. 5 (c), is 
nonintegrable since there is a small chaotic region centered 
on the origin. Its surface of section is topologically very simi­
lar to the surfaces of section for the potentials V4 and V7 , 

shown in Figs. 5 (a) and 5 (b). Its stable periodic orbits are 
the x-axis orbit and a pair of 4: 1 resonance linear orbits, as 
was the case for the potential V7 • The unstable periodic or­
bits are the z-axis orbit and a pair of 5: 1 resonance linear 
orbits at (0, ± 25.149) in the surface of section. 

The homogeneous potential Vs has surface of section 
shown in Fig. 6 (a). There are four stable periodic orbits. The 
first pair are the x- and z-axis orbits. The second pair are 8: 1 
resonance elliptic orbits at (0, ± 18.077). This potential is 
almost regular. There are no visible chaotic regions but is­
land chains do exist. The homogeneous potential V2 is, like 
Vg, almost regular. Its surface of section is shown in Fig. 
6 (b). The potential has four stable periodic orbits; the x- and 
z-axis orbits and a pair of2: 1 resonance linear orbits on the x 
axis. There are two unstable 3:1 resonance linear orbits at 
(0, ± 35.950). Additionally there are a number of small sta­
ble cycles around the central fixed points, which generate 
chains of islands precluding integrability. Consider the cor­
responding Verhulst potential with quadratic terms present. 
For wVwi >j this potential has surfaces of section that are 
topologically very similar to those in Fig. 5 (a), with the two 
nonaxial fixed points corresponding to a pair of 2: 1 reso­
nance linear stable periodic orbits. As w~ / wi -+ j from above, 
the two non axial fixed points approach each other until pre­
cisely at the potential with wi = 3w~ there is an orbit bifur­
cation point at the origin where the two 2:1 resonance peri­
odic orbits merge and disappear. Additionally, the central 
z-axis orbit becomes stable producing surfaces of section 
such as that for the homogeneous version of this potential 
shown in Fig. 6(b). It should be noted that for all values of 
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FIG. 6. (a) Surface of section for the homogeneous potential V •. (b) Sur­
face of section for the homogeneous potential V2• 

wi and w~ examined the potential is almost regular and may 
in fact be integrable for certain values of w~ / wi. 

The potentials Vs, V6, and VIO are characterized by hav­
ing surfaces of section, which are all topologically very simi­
lar; all the features of the surface of section for one of these 
potentials are reproduced by the others, even to the extent of 
having the same island chains around the stable z-axis orbit. 
Figures 7(a), 7(b), and 7(c) show the surfaces of section for 
the potentials Vs, V6 , and VIO, respectively. They all possess 
small chaotic bands centered on the separatrices and are al­
most regular. The homogeneous potential Vs has four stable 
periodic orbits; the x- and z-axis orbits and a pair of 4: 1 
resonance axial or Worbits at ( ± 2.478,0) in the surface of 
section. There are two unstable 4: 1 resonance elliptic orbits 
at (0, ± 17.388) corresponding to the hyperbolic points on 
the separatrix separating the four sets of quasiperiodic or­
bits. The potential V6 has precisely the same arrangement of 
stable 4: 1 resonance axial periodic orbits. It is remarkable 
that two completely different potentials should have phase 
spaces with all their features, especially periodic orbits and 
rings of unstable fixed points, identical. The potential VIO 
has a pair of stable 5:1 resonance elliptic orbits instead of the 
4: 1 resonance linear orbits found in Vs and V6• 

The resonances of the stable periodic orbits belonging to 
these potentials are given in Table III. There appears to be a 
reasonable correlation between the leading power q of the 
singularities and the resonance of the stable nonaxial period-
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ic orbits in the corresponding potentials. Here VI and V3 
should be neglected in this comparison because of their loga­
rithmic singularities. 

VI. ZIGLIN'S THEOREM 

There are a couple of different statements of Ziglin's 
theorem.8 The relevant one, for two dimensions, quoted 
from Yoshida 18 is as follows: Assume that there exists an 
additional complex analytic integral <t>(p,q) = const, which 
is holomorphic in a neighborhood of the solution. If there 
exists a nonresonant matrix g 1 in the monodromy group G of 
the normal variation equations. then either (i) gl commutes 
with any other matrixg2 in Gor (ii) the eigenvalues ofg2 are 
i and - i. This rather abstract theorem can be used to relate 
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integrability to the existence of exponentially unstable peri­
odic orbits. 

Yoshidal 7,18 determined conditions under which a ho­
mogeneous potential V satisfies this theorem for the special 
case where the periodic orbits are exponentially unstable 
straight line or 1:1 resonance linear periodic orbits. Such an 
orbit can be parametrized as 

x = cl<I>(t), z = c2<1>(t) , 

where <I>(t) is the solution of the differential equation 

d 2<1> + <l>2m - I = 0 
dt 2 ' 

and the constants C I and C2 are the solutions of 

av av 
- (C I,C2) = CI, - (C I,C2) = C2 • ax az 

Yoshidal7 defined an integrability coefficient, which for this 
type of potential is 

J.l = V2V(C I,C2) - (m - 1) , 

where V2 V is the Laplacian of Vand m is the degree of the 
homogeneous potential V. He showed that if J.l is in the re­
gion S then the system is nonintegrable and there is no addi­
tional integral of the motion. For our quartic potentials 
m = 4 and the region is 

S = 0, <0,1 <A < 3,6 <A < 10,15 <A < 21,28 <A < 36,45 <A < 55, 

66 <A < 78,91 <A < 105,120 <A < 136,153 <A < 171,190 <A < 210, 

231 <A < 253,276 <A < 300,325 <A < 351,378 <A < 406,435 <A < 465,496 <A < 528,561 <A < 595, ... } . 

There are three types of straight line orbits in our systems, 
for each of which we calculate a different integrability coeffi­
cient (1) cl = 0 for the z-axis orbit, which has J.l1 = 1/,,1,3; 
(2) c2 = o for the x-axis orbit, which hasJ.l2 = 1/,,1,1; and (3) 
C I #0,c2#0 for the inclined linear orbits, such as found in 
the potential U3, which have J.l3 = (1 - 2(,,1,1 + ,,1,3) 

+ 3,,1, 1,,1,3)1,,1,1,,1,3 - 1. 
The values of J.l1 and J.l2 are easily found for each poten­

tial. The J.l3 values are given in Table III. Here J.l1 lies in the 
region S only for the potentials V3 and V7. Note that J.l2 does 
not lie in S for any of the ten potentials and J.l3 only lies in S 
for the potential V6. We had already determined that V3 and 
V6 were nonintegrable. However, we have now eliminated 
V7, which looked numerically integrable. We expect that for 
some energies the z-axis orbit will generate a chaotic orbit 
giving a surface of section topologically similar to that of the 
potential V9• The potential V3 has a chaotic orbit centered on 
the origin in the surface of section [Fig. 3(b)], which is 
generated by the z-axis orbit. This is consistent with the cor­
responding value of J.l1 lying in the region S. This potential 
also has a movable logarithmic singularity at sixth order in 
its solution. 

All the nonaxial periodic orbits in all the potentials in 
Table III have resonances of type 2: 1 or greater. That is, 
none of these periodic orbits are straight line solutions. Con­
sequently the third of the cases used in this application of 
Ziglin's theorem is not relevant for the potentials in Table 
III. The x- and z-axis orbits are the only straight line solu­
tions whose results should be checked. Therefore we disre­
gard the result for V6 • Periodic orbit bifurcations can occur 
as the energy is varied. This may affect the stability of the x­
and z-axis orbits, but will not produce inclined straight line 
orbits. All new orbit families will also be higher resonance 
types. Therefore it is important to determine the resonances 
of all the periodic orbits belonging to a potential before ap­
plying Yoshida's formulation of Ziglin's theorem to ensure 
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that the results are meaningful. Ziglin's theorem should be 
applied in conjunction with an examination of the system's 
orbital structure. It is theoretically possible to numerically 
apply Ziglin's theorem to nonstraight line orbits. This is very 
difficult and will not be dealt with here. 

It is surprising that only two of the homogeneous poten­
tials in Table III are shown to be nonintegrable by this appli­
cation of Zig lin's theorem. Seven of the remaining eight po­
tentials are either integrable or close to integrable, satisfy 
Yoshida's formulation, and have only movable rational alge­
braic branch points in their solutions. It is also interesting to 
note that many of the potentials have one or more of their 
coefficients J.l1' J.l2' and J.l3lying precisely on the boundary of 
the forbidden region S. 

VII. CONCLUSION 

Weak Painleve analysis of the quartic polynomial Ver­
hulst potential allowed us to identify seven integrable cases. 
Second integrals were given for four of these families and for 
subclasses of the remaining three. The corresponding sur­
faces of section are all particularly simple in structure and 
possessed no island chains or chaotic regions. Surfaces of 
section belonging to perturbations of these integrable poten­
tials always exhibited nonregular behavior. All the nonaxial 
stable periodic orbits were 1: 1 or 2: 1 resonance. 

The expansion of the class of admissible singularities in 
Painleve analysis to include all rational algebraic branch 
points gave eight homogeneous potentials with negligible 
nonregular regions. Examination of the respective surfaces 
of section revealed that all these potentials, except for V4 and 
V7 , possessed very small chaotic regions. Ziglin's theorem 
was used to show that V7 is not integrable. Numerical 
searches reveal that there are no lower-order stable cycles or 
island chains anywhere in the surface of section of V4 • Sur­
faces of section were then calculated for this potential over a 
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range of energies 0.1-104
• They were all topologically identi­

cal and showed no orbit bifurcations, chaotic regions, or is­
land chains. This potential still remains a candidate for inte­
grability. 

We conclude that, in general, most movable algebraic 
branch points are inconsistent with integrability. However, 
there are some exceptions. These include those used in weak 
Painleve analysis, having expansions for the quartic poten­
tials in terms of f).t 112, and possibly the potential V4 , with an 
expansion in terms of f).t 1/13, which may be integrable. Con­
versely, if one is interested only in potentials that are regular 
or nearly regular, so that they look numerically integrable, 
then allowing any type of movable rational algebraic branch 
points provides a significant number of such potentials. 

Eight of the ten homogeneous potentials examined here 
are either regular or very close to regular for the energy ex­
amined. Only two have easily observable chaotic regions. 
They both possess movable logarithmic singularities at 
fourth and sixth order, respectively. Numerical calculations 
for a large number of nonhomogeneous as well as these two 
homogeneous quartic polynomial potentials suggest that for 
these types of systems movable logarithmic singularities are 
inconsistent with integrability. In fact, large-scale chaotic 
regions appear to be associated with the existence of movable 
logarithmic singularities and the point at which they occur 
in the series expansions of the solutions. Conversely, six of 
the remaining potentials possess very small chaotic orbits 
centered on hyperbolic points. These appear to be associated 
with movable rational algebraic branch points. Perhaps this 
is reasonable since logarithmic singularities are infinitely 
branched and the rational algebraic branch points examined 
have only a small finite number of branches. 

The regular and nearly regular homogeneous potentials 
have surfaces of section, which can be divided into a small 
number of topologically distinct classes represented princi­
pally by those shown in Figs. Sea) and 7(a). This suggests 
that their topology is very restricted and always very simple 
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for these two-dimensional potentials. Many complex regular 
surfaces of section can be invented, but none of these struc­
tures arise from any of the potentials examined here. 

As the order n of the singularities increases the corre­
sponding A 1 value of the potential increases and the ..1,3 value 
decreases. This produces potentials that are increasingly 
elongated in the z direction. The stable periodic orbits exhib­
it higher and higher resonances producing multilobed quasi­
periodic orbits. The existence of high-order resonance peri­
odic orbits means that Yoshida's formulation of Ziglin's 
theorem cannot be used in isolation but should be used in 
conjunction with an examination of the periodic orbit struc­
ture. Only one of the eight potentials possessing only mova­
ble rational algebraic branch points was eliminated by Zig­
lin's theorem. Most of the integrability coefficients of other 
potentials occurred on the boundary of the forbidden region. 
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The relation between complex line bundles and certain group cocycles is explored in general to 
obtain explicit formulae for the transition functions and curvature of the determinant line 
bundle DET of a family of Dirac operators coupled to Yang-Mills fields. A covariant 
derivative on sections of DET is constructed which realizes the curvature and "minimally 
couples" to the integrated anomaly which thus appears as a "functional magnetic field" on 
gauge orbit space. The transcription of group cohomological (cocycles) into geometrical (line 
bundles) information is refined in such a way that the relevant cohomology groups can be 
computed in many cases, giving insight into the classification of lifts of principal group actions. 

I. INTRODUCTION 

Geometrical and topological methods have played a 
prominent role in recent developments in theoretical phys­
ics, and physicists have acquired familiarity with the stan­
dard notions of differential geometry and algebraic topol­
ogy. 

However, recently objects (called generalized associat­
ed bundles hereafter) have appeared in the physics litera­
ture,l-6 about whose general structure little seems to be 
known. The purpose of this paper is to fill this gap and thus 
to perhaps pave the ground for further applications. 

The basic idea is to replace representations of a Lie 
group G on a vector space V (thus defining ordinary asso­
ciated vector bundles of a principal G-bundle P) by one­
cocycles of G with values in suitable G-modules. The bundles 
obtained in this way could, of course, be abstractly regarded 
as arising from a special kind of G-bundles. 3

•
7 The methods 

and results ofSecs. II-IV will, however, show that regarding 
them as associated in some way to a principal "parent" bun­
dle has a number of succinct computational and conception­
al advantages. The case we shall be interested in is the one of 
complex line bundles. The one-dimensional representations 
of G(Hom(G,GL( I,C))) are contained in the larger set of 
cocycles Z (G,C* (P») with values in the G-module 
Map(P,C*) = : C*(P). More precisely, the cocycle condi­
tion 

/(P,glg2) =/(P,gl)/(pgJ,g2)' 

satisfied by elements/of Z(G,C*(P»), reduces to 

/(glg2) =/(gl)/(g2) 

on those/which are independent of P. We shall show how to 
associate a line bundle Lf on the base manifold M of P with 
every such cocycle f The line bundles constructed in this 
way are thus true generalizations of ordinary associated line 
bundles. We explicitly construct the local data (sections, 
transition functions) which determines these bundles, and 
compute their first (real) Chern class (Secs. II and II). 
Then we show how the usual prescription for constructing 
covariant derivatives in ordinary associated bundles can be 
modified to accommodate the bundles considered here (Sec. 
IV). 

It turns out that the "ordinary" connection is modified 

by a connection one-form proportional to the infinitesimal 
variation of/ (i.e., a Lie-algebra cocycle) with transgresses 
to the first Chern class of Lf . 

All this is, of course, quite reminiscent of anomalies in 
theories of chiral fermions interacting with non-Abelian 
gauge fields,8 and indeed we shall show in Sec. VI that the 
determinant line bundle of a family of Dirac operators is of 
the form Lf for P =.21' (the space of vector potentials), 
G = f1 ( the gauge group) and/ = the Wess-Zumino term.9 

Our computation of the curvature then permits one to 
check6 explicitly, that the curvature of the determinant line 
bundle and the integrated anomaly are related by transgres­
sion. 

On the more mathematical side we use the relation 
between line bundles and cocycles to encode group cohomo­
logical into geometrical information to compute 
H J(G,C* (P») in a number of cases. 

In particular, in Sec. V we shall prove the following 
theorem. 

Theorem 1: If H 2 (P,Z) = 0, 

H I(G,C*(P») = H 2 (M,Z). 

This result was also derived in the particular case 
P = .21' mentioned in Ref. 5 and says that in this case all line 
bundles on M arise as Lf for some cocyclef Furthermore, 
the relation between H I( G,C* (P») and the problem of classi­
fying G-lifts to principal bundles 10 allows us to prove the 
next theorem. 

Theorem 2: Let P(M,G) be a principal G-bundle over a 
connected manifold M. Let 2' be a line bundle on P admit­
ting a lift of the principal G-action on P. Then this lift is 
unique if either P is trivial or H 2 (M,Z) = O. 

Finally, the Appendix contains a technical lemma on 
partitions of unity which allows for a simplification of the 
calculations in Sec. VI. 

II. COCYCLES AND LINE BUNDLES 

Let P = P(M,G,IT) be a principal G-bundle over a (par­
acompact, connected) manifold M, with projection IT: 
P--+M,G a connected Lie group. Since P carries a natural 
(right) G-action, this is inherited by functions on P. In par­
ticular, therefore the Abelian group C* (P) of complex val­
ued nowhere vanishing functions on Pis a G-module, and we 
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can define the cohomology of G with values in C* (P) in the 
standard manner. II Zero-cochains are basically just ele­
ments / of C* (P) and the coboundary operator (j acts on / 
by 

(j/(p,g): = /(pg)/(p) -I. (2.1 ) 

Thus /EC* (P) is a cocycle iff it is G-invariant. On one-co­
chains/(p,g), {j acts as 

(j/(P,gl,g2) =/(p,gl )/(pgl,g2)/(P,glg2) -I. (2.2) 

In a similar way the action of {j is extended to higher 
cocycles, but this is all we will need here. The space of k- ' 
cocycles (k-coboundaries) will be denoted by Z k(G,C* (P) I 
(Bk(G,C*(P)I) and the cohomology groups Hk(G,C*(P)1 
are defined as usual by H k = Z k / B k. We shall frequently 
abbreviateHI(G,C*(P)1 by H. 

Given an element / of Z k we can use it to define an 
equivalence relation on P XC, 

(p,e) -(pg,/(p,g)el, gEG. (2.3 ) 

This relation is indeed transitive, since / is a cocycle. The 
space of equivalence classes [(p,c) ]-thequotient (P XC)/ 
--has the structure of a complex line bundle over M, de­
noted by Lf . The local trivializability-which may perhaps 
not be obvious-will be explicitly proved in the next section. 

As mentioned in the Introduction, bundles of this kind 
have recently appeared in the physics literature (mainly in 
relation with anomalies). 1-6 Their geometrical structure, 
however, was not further investigated. 

If the one-cocycle/is independent of P, the cocycle con­
dition 8/= 1 implies that 

/(glg2) =/(gl)/(g2) 

and thus that/E Hom(G,C*). Since C* = GL( I.C) the bun­
dle Lf is in this case an ordinary associated complex line 
bundle to P via the representation! 

We shall now show that the assignment cocycles ..... line 
bundles descends to an assignment between cohomology 
classes and equivalence classes of line bundles in the sense 
that cohomologous cocycles lead to equivalent line bundles. 
This fact is implied by the following proposition. 

Proposition 1: Lf is trivial iff/is trivial. 
Before turning to its proof, let us note the following. In 

the particular case P = d, this was also shown in Ref. 4. 
Furthermore, we shall make use of this proposition later in 
Sec. V, where we compute H I( G,C* (P) I, since it allows us to 
transform group-cohomological into (more tractable) geo­
metrical information. 

Proof 0/ Proposition 1: If / is trivial, /(p,g) = F(pg) / 
F(p) for some FE(C* (P»). Then we can define a global no­
where vanishing section tP of Lf (equivalently: a global sec­
tion of the associated C*-bundle) by 

tP(m): = [(P,F(p)l]' 

where n(p) = m. This is indeed independent of the choice 
ofpEn-l(m), since 

[(P,F(p)l] = [(Pg,J(p,g)F(p)l] = [(Pg,F(pg)I]· 

Conversely, if L f is trivial, there exists a global nonvanishing 
section tP: M ..... Lf , which is always of the form 
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tP(m) = [(P,J",(p)l] 

for some/",: p ..... C*. Since tP is well-defined we conclude that 

/(p,g) = (f",(pg)//", (p)1 

and hence that/is trivial. 0 
Already implicit in the proof above was the fact that 

sections tP of L f are generally in one-one correspondence 
with functions/",: p ..... C satifying the equivariance condition 

/", (pg) = /(p,g )/", (p) (2.4) 

VIa 

tP(m) = [(p,J",(p)I] , (2.5) 

where the rhs is independent of p as a consequence of (2.4). 

III. THE LOCAL GEOMETRY OF Lf 

We shall now construct the local geometrical data that 
determine L f (transition functions, local sections) from 
those of P and use them to derive an explicit formula for the 
curvature Ff of Lf and hence for a representative of the first 
Chern class cI(Lf ) (in real cohomology). Let {Ua } be a 
locally finite, good l2 covering of Mby open sets Ua and let 
Sa: Ua ..... n-I(Ua)CPbe local trivializing sections of P, 
gaP: Ua n Up ..... G the corresponding transition functions. 
These define local sections tPa of Lf by 

tPa(m): = [(sa(m),l)] (3.1) 

and can be used to construct local trivializations, thus prov­
ing the local trivializability of Lf claimed in the previous 
chapter. 

Definingga:n-I(Ua) ..... G by 

Sa (m)ga(p) =p, pEn-l(m), 

we can express the tPa in the form (2.5 )-i.e., via local equi­
variant functions-as 

tPa(m) = [(p,Ja(P)I] (3.2) 

with 

/a (p): =/(sa (m),ga (p)l· (3.3 ) 

Indeed we have 

/a (pg) =/(p,g)/a (p), (3.4 ) 

where we have used 

ga (pg) = ga (p)g (3.5 ) 

and the cocycle condition on! 
The local sections t/Ja (3.1) define the corresponding 

transition functions tPap by 

t/Ja (m) = t/Jap (m)t/Jp (m). 

Using sa (m) = sp(m)gPa (m) one computes 

t/Ja (m) = [(sa (m),l)] 

= [(sp (m)gPa (m),l)] 

= [(sp (m),J(Sa (m),gap(m»))] 

=/(Sa (m),gaP(m)lt/Jp (m). 
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Thus the transition functions of Lf are 

¢a/3 (m): = f(sa (m) ,ga/3 (m)). (3.6) 

Using f(p,g)-I =f(pg,g-I) and g/3a (m)ga(P) =g/3(p) 
one easily proves 

¢a/3 = ¢ial 

and 

¢ a/3 ¢ /3y = ¢ ay , 

as behooves a set of transition functions. 
This then completes the description of Lf in terms of 

local data, but in order to determine the first Chern class 
cl(Lf ) from these (which must-in principle-be possible, 
since they contain the whole information on the bundle), we 
need as an additional input a partition of unity {Pa} subor­
dinate to the locally finite covering {Ua }: i.e., a set of smooth 
functions {p a} with the properties 

sUPPPaCUa, 

°<pa<l, 

Such coverings and subordinate partitions of unity exist, 
since we assumed M to be paracompact. Given this, C I (Lf ) 

-or rather a representative two-form ( l/21Ti)F(Lf ), where 
F(Lf ) is the "curvature" of Lr- can be expressed on Ua 
byl2 

F(Lf)a = Idpy Adlog ¢ya' (3.7) 
y 

where d is the exterior derivative on M. Note that F(Lf ) has 
a globally defined expression on P (where it is also exact), 
and to compute n*F(Lf ) and hence n*cl (Lf ), we first ob­
serve that 

¢ya = s!iy' (3.8) 

where fa was defined in (3.3) and Sa was the local trivializ­
ing section of P on Ua • Using the fact that moreover 

sa(n(p») = pga (p)-I, 

by the definition of ga we find 

n*¢ya = f;; Ify· (3.9) 

[Note that the functions n*tPya are the transition functions 
of the pullback bundle n*Lf on P. Equation (3.9) therefore 
shows that this bundle is trivial and we consequently expect 
cl(n*Lf ) = n*cl(Lf ) to be trivial and n*F(Lf ) to be glo­
bally exact.] 

Indeed we find 

n*F(Lt)a = (dp~ n*py dp log n*¢ya) 

= ( dp ~n*py dp 10gfy) 

(dp is the exterior derivative on P), which is independent of 
a, and globally exact, 

(3.10) 

with 
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r = I n*py dp logfy. (3.11) 
y 

In Sec. VI-where we shall consider the case P = oJ2¥' -we 
shall show in our discussion of the determinant line bundle, 
that the restriction of r to a fiber in P [the anti transgression 
of F(Lf )] gives the integrated anomalyl3 in accordance with 
the general expectation that the curvature of the determi­
nant line bundle and the anomaly should be related in this 
way. 14-16 

In the next section we shall see how r (3.11) enters the 
construction of a covariant derivative on Lf (in particular­
in the situation of Sec. VI-this will show how the connec­
tion on the determinant line bundle describes a "minimal 
coupling" to the anomaly). 

IV. COVARIANT DERIVATIVES ON GENERALIZED 
ASSOCIATED LINE BUNDLES 

Our aim will now be to define a connection in the gener­
alized associated complex line bundle Lt. To see where the 
difficulty lies, let us recall how a connection on the principal 
bundle P induces a covariant derivative on the space of sec­
tions of an ordinary associated bundle E with standard fiber 
F. Given a section ¢ of E and a vector field X on M, a new 
section V xtP is defined by the following steps: 

Use the principal connection on P to lift X to a horizon­
tal vector field X on P; 

Associate to tP the corresponding equivariant function 
f",: P ..... Fs~h that tP(m) = [(p,J",(p»)];_ 

FormXf", (the derivative off", along X). 
_ By the equivariance off", and the right-invariance of X, 
Xf", is again an equivariant F-valued function on P and thus 
defines a new section of E which we call V x¢, 

(Vx¢)(m): = [(P,Xf",(p»)], pEn-l(m). 

In our case, however, the equivariant function f", corre­
sponding to a section ¢ of L f will satisfy (3.7), 

f", (pg) = f(p,g )f", (p). 

Therefore Xf", will only be equivariant up to a term propor­
tional to Xf [this term is, of course, zero for ordinary asso­
ciated bundles, wherefis an element of Hom(G,C*) and 
therefore independent of P]. But lack of equivariance im­
plies that Xf", does not define a new section of Lf . We are 
thus led to look for a modification of the above prescription 
which preserves the equivariance (cf. also Ref. 2). 

Let IP = (IPa) be a section of Lt , with IPa = tPa/3IP/3' and 
let ha ( = f<pu) be the corresponding local equivariant func­
tions. Define new functions D 'fc h a on n - I ( U a ) by 17 

D'fcha: =Xha - ra(X)ha (no sum over a), (4.1) 

where 

ra = dp logfa' 
Then it is easy to see that indeed 

(D'fcha )(pg) =f(p,g)(D'fcha )(p) (4.2) 

(i.e., the lack of equivariance of Xha is precisely compensat­
ed by the lack of equivariance of r a ). Due to the equivar­
iance of ha and the invariance of X, Xha transforms as 
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(Xha )(pg) = (Xha (p»)/(p,g) + ha (p)XI(p,g) 

= I(p,g) [Xha (p) + (X log/(p,g) )ha (p) ]. 
(4.3) 

On the other hand, dp logla transforms as (lI(p) = m) 

dp logla (p,g) = dp log/(sa (m),ga (pg») 

=dp 10g(/(sa(m),ga(p)g) 

= dp log (f(p,g»)/(sa (m),ga (p») 

= dp log (f(p,g») + dp logla (p). (4.4) 

Putting (4.3) and (4.4) together we find (4.2). 
Thus the "local" covariant derivative V~ given by 

(4.5) 

is well defined. Furthermore, it is straightforward to check 
that 

V~tpa = .,pa{3 V~tp{3' (4.6) 

Hence V xtp = (V~tpa) is a well-defined new section of Lf , 

and the operator V x defined in this way satisfies all the axi­
oms of a covariant derivative. Equations (4.2) and (4.6) 
now show that we have arrived at our goal of defining a 
covariant derivative on the sections of Lf . 

Regarding the operator D a = d - r a instead as a co­
variant derivative on the sections of the trivial line bundle 
P X C on P, we see that (according to the general prescrip­
tion of extending connection potentials [Ref. 18, p. 68]) the 
r a piece together to the connection potential 

where r is precisely the one-form on Pobtained in Sec. III by 
pulling back C I (Lf ) to P. 

Thus the general recipe for finding a covariant deriva­
tive on Lf can also be expressed in the following way: Given 
the local expression (3.7) for the curvature of L f' pull it back 
to obtain r via (3.10), (3.11). This r defines a covariant 
derivative on sections of P X C which descends to a covariant 
derivative on (P XC)/ - = Lf . 

Looking at it this way, the fact that (the pullback of) the 
curvature of Lf---computed by means of V x-equals dr is 
quite obvious. 

V. CALCULATION OF H1(G,C*(P» 

As a by-product of our previous discussion we are now 
able to compute the cohomology group H I(G,C*(P») intro­
duced in Sec. II in a number of cases. More generally, the 
groups H I (G,Map(X, U( 1 »)) (where X is a manifold carry­
ing a G-action) were introduced in Ref. 10 to study the prob­
lem of lifting the G-action on X to automorphisms of torus­
bundles on X. Explicit calculation of this group is, however, 
quite difficult in general, since it involves an intricate rela­
tionship between the topologies of G and X. In our case the 
additional structure provided by the fact that P = Xis a prin­
cipal G-bundle allows us to compute it explicitly. The rela­
tion between HI(G,C*(P») and line bundles on Mwe have 
established so far will be refined in such a way that the com­
putation of H I( G,C* (P») becomes geometrically accessible. 
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We shall then also apply these results to the question of clas­
sifying G-lifts. 

The first bit of information we need-and which we 
have already established in Ref. II-is the fact (Proposition 
1) that Lf is trivial if I is trivial. Thus, if we can for some 
other (topological, geometrical) reason show that Lf has to 
be trivial, we can conclude the triviality of 
H: = HI(G,C*(P»). 

One such situation occurs if P is trivial because of the 
following proposition. 

Proposition 2: If P is trivial, Lf is trivial. 
Prool: Let S be a global trivializing section of P,s: M ..... P. 

Then .,p(m): = [(s(m),l)] is a nowhere vanishing section 
of Lf . Thus Lf is trivial. 

According to the above remarks we thus have the fol­
lowing. 

Corollary 1: If P is trivial, H I(G,C*(P») is trivial. 
Since line bundles on M are classified by H 2 (M,Z) we 

can also deduce the next proposition. 
Proposition 3: If H 2 (M,Z) = 0, H I(G,C*(P») is trivial. 
Notice how H "feels" the triviality of Pand the cohomo­

logy of M via the G-module C* (P). 
Another situation which is still tractable but in a some­

what less straightforward manner, finally giving rise to a 
nontrivial H, occurs if H 2 (P,Z) = 0. Indeed we shall show 
below that then H = H 2 (M,Z). Before proceeding to the 
proof let us make the following remarks. 

(i) In particular, this result implies that in the case 
H 2 (P,Z) = ° every complex line bundle on Mis of the form 
Lf for some cocyclef 

(ii) In the case P = d (the space of connections on a 
principle bundle P'), G = [§ (the group of pointed vertical 
automorphisms of P') this result has been established in a 
very nice way in Ref. 5, where it was used to relate the group­
cohomological and topological aspects of anomalies. This 
relation has been sharpened and made explicit in Ref. 6 (cf. 
also Sec. VI). 

(iii) The result H I(G,C*(P») = H 2 (M,Z) is consistent 
with the results for H derived above. Indeed this is trivial for 
Proposition 3. As for Corollary 1 note that H 2 (P,Z) = ° 
together with the triviality of Pimply-by the Kiinneth for­
mula applied to P = M X G-that H 2 (M,Z) = 0. 

Theorem 1: If H 2 (P,Z) = 0, then 

HI(G,C*(P») = H 2 (M,Z). 

Proof" We have already seen that for any Lf the pullback 
to P-II*Lf -is trivial (Sec. III). However, H 2 (P,Z) = ° 
implies that all line bundles on P-and in particular the pull­
backs of all line bundles on M-are trivial. This makes it 
plausible that we can recover all line bundles on Mby "quo­
tienting" P XC. 

We shall now show how to construct an element of 
z I(G,C*(P») from any line bundle L on M, and then prove 
the bijectivity (in cohomology) ofthis construction. 

Thus let L be any line bundle on M with projection ilL' 
Note that II*L is trivial, and via the choice of a global non­
vanishing section.,p: P ..... II*L we have II*L-P XC. 

Since II*L: = {(p,i)EP XL: lI(p) = IlL (l)} .,pis of the 
form 
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¢(p) = (P'/t/J(p») 

for some fiber-preserving bundle map ft/J: P -+ L. Since 
ft/J (pg) andft/J (p) sit in the same fiber of L, there is a smooth 
function a g : P-+C* such that 

f", (p) = a g (p )f", (pg) 

(the reason for putting a g on the rhs of the above equation 
will become apparent below). Consistency of this relation 
requires that a(p,g): = a g (p) is a group one-cocycle with 
values in C*(P); i.e., an element of Z I(G,C*(P»), since 

a(p,gh) = a(p,g)a(pg,h). 

In this way every line bundle on M determines a cocycle in 
Z I(G,C* (P») via a choice of trivialization. If a different tri­
vializing section ¢' is chosen, then ¢ is related to ¢' by 
¢ = <p¢' for some <p£* (P). Defining the new cocycle a' by 

fofl (p) = a' (p,g)ft/J' (pg) , 

one finds 

a'(p,g) = a (p,g)(<p(pg)I<p(p»), 

Thus a' and a are cohomologous, 

a' = a8<p 

[cf. (2.1) ] and every line bundle on M defines a cohomology 
class in H I(G,C*(P»). 

We shall show next that the cohomology class defined in 
this way is zero iff L is trivial, i.e., represents zero in 
H 2 (M,Z). 

Assume first that a is trivial, i.e., that for a given triviali­
zation ¢ of 11* L we have 

f,p(p) = (F(pg)IF(p»)f,p(pg) 

for some FEC* (P). Then 

f,p(p)F(p) =f", (pg)F(pg) 

= :u(m) 

is obviously independent of pEII-I(m) and thus yields a 
global section u: M -+L, which is nowhere vanishing. Thus L 
is trivial. 

Conversely, if L is trivial, let u: M -+ L be a global trivia­
lizing section. Then any trivializing section ¢ofII* Lis of the 
form (*) with 

f,p(p) = u(m)F(p), m = II(p), 

for some FEC*(P). Computingf,p (pg) we find 

ft/J(p) = a (p,g)ft/J (pg) = a(p,g)u(m)F(pg) 

and therefore 

a(p,g) = (F(p)IF(pg») = 8F- I (p,g). 

Thus if L is trivial, a is trivial. 
The same method as above can be used to prove that 

equivalent line bundles on M give rise to the same cohomo­
logy class in H. Thus the mapping h: L-+a gives rise to an 
injective group homomorphism, 

h*: H 2 (M,Z) -+HI(G,C*(P»). 

We shall now show finally that h. is surjective. This will 
be done by showing that h. [Lf ] = [f], where Lf is the 
generalized associated line bundle constructed from the co­
cycle f as in Sec. II. 
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The bundle map ft/J: P -+ L f corresponding to a trivializa­
tion of II * L f is of the form 

f,p (p) = [( P,/t/J (p»)] 

for some It/J EC* (P). 
Therefore,/,p (pg) and f,p (p) are related by 

ft/J (p) = [(PJ,p (p»)] = [(Pgj'(p,g )It/J (p) )] 

(by definition of the equivalence relation on P XC) 

= [( (pg)'(/t/J (p)llt/J (pg) )f(p,g)lt/J (pg»)] 

= f(p,g) 81;;; I (p,g )ft/J (pg). 

Thus h. [Lf ] = Lf]. This shows that 

h.: H 2 (M,Z) -HI(G,C*(P») o 
is an isomorphism. 

One final bit of information on H we can infer directly 
from Ref. 10. Namely, it is that H = H I (G,Z) if G is con­
nected and H' (P,Z) = o. 

Again we can show (at least when M is simply connect­
ed) that this is compatible with the results we have derived 
above on the structure of H. In particular if 
H 2 (M,Z) = 0 = HI (P,Z), the cohomology long exact se­
quence of the principal fibration G--P-.M implies 
HI (G,Z) = 0 and therefore Proposition 3 in this case. On 
the other hand, if P is trivial and H I (P,Z) = 0, this implies 
HI(G,Z) = 0 (Kiinneth formula) and hence Corollary 1. 
Finally, if HI (P,Z) = 0 = H 2(p,Z), we have 
H I ( G,Z) = H 2 (M,Z) (via transgression) and therefore we 
recover the result of Theorem I under the further assump­
tion H I (P,Z) = o. 

Collecting our results in Table I, we see that the only 
case in which we have not been able to determine H explicit­
ly is the one with P nontrivial and HI (P,Z), H 2 (P,Z) and 
H 2 (M,Z) all nonvanishing. 

From Ref. 10 we know thatH I (G,Map(X,U( 1 »)) classi­
fies equivalence classes of lifts of the G-action on X to a 
U( I)-bundle on X (provided one lift exists). Similarly 
H I(G,C*(X») classifies lifts to C*-bundles (and hence to line 
bundles) on X; thus in particular H I(G,C*(P») classifies lifts 
of the principal G-action on P to automorphisms of C*-bun­
dIes on P. In the light of this fact and the above results, we 
have shown the following. 

Theorem 2: Let P(M,G) be a principal G-bundle over a 
connected manifold M. Let 2" be a line bundle on P admit­
ting a lift of the principal G-action on P. Then this lift is 
unique if either P is trivial or H 2 (M,Z) = O. 

While this result could have undoubtedly been derived 
by other means as well, it illustrates nicely how group-coho­
mological can be transcribed into geometrical information. 

TABLE 1. Results of the computation ofH'(G,C*(P»). 

P(M,G) 

P trivial 
H'(P,Z) =0 
H 2 (P,Z) =0 
H 2 (M,Z) =0 

H'(G,C*(P») 

o 
H'(G,Z) 
H 2 (M,Z) 

o 
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VI. ANOMALIES, WESS-ZUMINO TERMS, AND THE 
DETERMINANT LINE BUNDLE 

We now finally come to the main application of the tech­
niques developed so far, namely to the construction and in­
vestigation of the determinant line bundlel4

,l9 of a family of 
Dirac operators coupled to non-Abelian gauge fields. Al­
though these bundles have been around for some time, the 
results of the previous sections will allow us to be on more 
intimate terms with them. 

Specializing Secs. II-IV to the case (mentioned several 
times already) P = d, G = Y, M = '1f (the gauge orbit 
space) we shall now be able to see the following6

: 

(a) Lr- where I is the cocycle determined by the 
Wess-Zumino term9, 13_is the determinant line bundle (cf. 
also Refs. 1,2) of the family of Dirac operators parametrized 
byAEd. 

(b) The curvature of Lf (anti-) transgresses to the inte­
grated anomaly obtained via the descent-equations 13 or per­
turbative calculations.20 This establishes explicitly the 
equivalence between the topological (determinant line bun­
dles, index theorem) and algebraic (BRS-cohomology) ap­
proaches to anomalies. This had already been done to some 
extent in Refs. 4 and 5, but our formalism allows us to be 
quite explicit about this. 

(c) The connection on Lf constructed in Sec. IV pro­
vides the nice interpretation of the anomaly as a kind of 
"functional magnetic field" on the gauge orbit space, whose 
"field strength" is the curvature of the determinant line bun­
dle. It would be interesting to see how this fact is related to 
the Fock-space picture, where the anomaly also shows up as 
a U(1) field21 (Berry's phase22

). 

Finally, since the connection on Lf is in some sense nat­
ural, it ought to coincide with Quillen's connection23 (or 
rather its generalization24

), but I have been unable to show 
this. 

Since all the computations have already been done in 
previous sections, we can be quite brief about these matters 
here. 

Non-Abelian anomalies show up at one loop as lack of 
gauge invariance of the effective action, 

W(A'g) # WeAl, 

where 

W(A) = f dtPdiiiexp [ - f iiit1AtP], 

t1A =j)+~A(1 +rs), 
A·g = g-IAg + g-l dg. 

However, the modulus of W can be shown to be gauge invar­
iant. Thus 

W(A g) = exp[217'iw(A,g)] WeAl, (6.1 ) 

where w is known as the Wess-Zumino term and exp 217'iw is 
a group cocycle in the sense of (2.2). Formally W(A) is the 
determinant of the Dirac operator IJ A' and comparing (6.1) 
with (2.4) and (2.5) shows that Wactuallydefinesasection 
of the line bundle 

(dXC)/- = :Lf , 

with 
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(A,c) - (A 'g,(exp 217'iw(A,g) }c). 

Note that Lf is the determinant line bundle, which is thus 
trivial iff the Wess-Zumino term defines a trivial one-cocy­
cleo 

Completing the transgression of F (3.7) by restricting r 
(3.11) to the fiber via the fiber injection iA:Y ..... d, g ..... A·g 
and interpreting the result as a one-form on Y gives 

I(A,g) = exp 217'iw(A,g) , (6.2) 

where [A] is the orbit {A' g, gEY} and d,'J is the exterior 
derivative on Y. 

To compare this with the integrated anomaly 
[f win (A,X), where XELie Y], we use the fact 13 that it can 
be obtained as the infinitesimal variation of the Wess-Zu­
mino term (i.e., as a Lie-algebra cocycle). 

To simplify the calculation, we choose a covering {Ua } 

in such a way that for a given [A], Pr ([A]) = 0rrn' Al­
though it may seem obvious that this is always possible, a 
proof of this is contained in the Appendix, since I was not 
aware of a reference in the literature and the proof is slightly 
technical. Then we find (using the equivariance of I and 
reinserting the factor 217'i we had omitted) 

J win (A,X) = :t w(A,exp tX) It = 0 

[by (6.2)] 

1 d = -. -log/(A,exp tX)lt=o 
2m dt 

1 d 
=--logf{sy (A exp tX)}!t-O 

217'i dt n -

1 
= -l~rce) (X) 

217'i (6.3 ) 

(where e is the identity-element of;g ). Thus we have expli­
citly verified that the curvature ofthe determinant line bun­
dle Lf antitransgresses to the integrated anomaly. 

Pulling back the connection (Sec. IV) to d X C, whose 
connection potential is r, one obtains a ;g -equivariant flat 
and necessarily trivial connection there, which however re­
stricts to a flat connection with nontrivial holonomy on the 
gauge orbits iff the anomaly is nontrivial [because of (6.3)], 
iff the cocycle is nontrivial (since HI ( ;g ) _ H 2 (d / 
Y ) - H)iff L f is nontrivial (Proposition 1). 

APPENDIX: A LEMMA ON PARTITIONS OF UNITY 

The purpose of this Appendix is to prove the following 
lemma, which we used in Sec. VI to simplify the calculation 
of the anti transgression. 

Lemma: Let M be a paracompact smooth Hausdorff 
manifold and let xEM be a point of M. Then there exists a 
covering of Mby open sets {Wa } aE/ and a partition to unity 
{Pal subordinate to {Wa} such that Pa (x) = 0 VaEl, 
a#ao, and Pan (x) = 1. 

Proof: Let {U a} aeJ be any locally finite covering of M 
(this exists, since Mis paracompact). Assume without loss 
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of generality that xEM is covered by just two open sets UI , U2 

(by local finiteness of {Ua} the procedure outlined below 
will just have to be repeated a finite number of times in the 
general case). 

The strategy will be not to modify directly a partition of 
unity subordinate to {Ua }, but rather to modify the covering 
itself in such a way that X will then be only covered by one 
open set W A partition of unity subordinate to this new 
covering (which exists) will then have the desired property, 
since 

The crucial property we shall need of paracompact 
spaces is that they are normal, i.e., every two closed disjoint 
sets A, B can be separated by open disjoint sets 0 A and 0 B' 

formally 

VA,BeM closed, AnB = 0, 
30A,OB open such that: AeOA, BeOB, 

OA nOB=0. 

Choose Vx e UI n U2 such that XE VX and Vx is open, and 
denote by Vx the closure of Vx' Assume now that W is an 
open set with the property Vx e we UI n U2 (the existence 
of such a W will be shown below, using the normality of M). 
Let V:bethecomplementofVx inM; then V:isopen. Then 
one can convince oneself (by drawing pictures or by formal 
reasoning) that the union of the following three open sets 

-c W, WI: = vxnul, W2: = v X nu2, 
is equal to the union of UI and U2 , and that x is only con­
tained in W A partition of unity subordinate to the new 
locally finite covering 

{Ua' aEl, ai= 1,2; W, WI' W2} 

will then do the job. 
Now we shall show that such a W can always be found. 

Since A = Vx and B = (UI n U2 ) C are disjoint closed sets, 
we can--due to normality of M-find open sets 0 A' OB with 

VxCOA , 

(U l nU2 )ceOB, 

OA nOB =0. 
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Since (Ul nU2 )ceOB, we have 

O~ e uln U2, (**) 

and since 0 A and 0 B are disjoint, 0 A is contained in the 
complement of 0 B, 

OA eo~. (***) 

Putting (*), (**), and (***) together, we find that 

VX COA e Ul nU2• 

Thus OA = : W is a possible choice. 
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The factorization theorems of Uhlenbeck and Wood are used to derive various finite action 
solutions to the classical equations of motion of the Euclidean U (N) chiral model in two 
dimensions. They are obtained by adding a general basic uniton to solutions of the 
Grassmannian models. A brief comment is made on the properties of these solutions. 

I. INTRODUCTION 

In this paper we derive and study various finite action 
classical solutions of the U(N) chiral models in two Euclid­
ean dimensions. These models have become increasingly 
popular in recent years as they possess nontrivial topological 
properties, which in tum are responsible for the existence of 
nontrivial solutions, and they appear to be two-dimensional 
analogs of physically relevant Yang-Mills theories. More­
over, they provide examples of harmonic maps and as such 
are also interesting from the mathematical point of view. 

The models we are going to discuss are also called "prin­
cipal chiral models," and are defined in terms of the Lagran­
gian density 

L = !Tr a"Qta"Q, (1.1) 

where QtQ = QQt = 1. 
The equations of motion (or strictly speaking the Euler­

Lagrange equations, as we work in the Euclidean space) are 
given by 

a" (Qt a"Q) = 0, (1.2) 

and to specify the problem completely we also have to state 
the boundary conditions satisfied by Q. The conditions we 
want to impose are those that come from the requirement of 
quantization in terms of part integrals-thus we require that 

s= Jd 2XL< 00. 

The condition of the finiteness of the action effectively com­
pactifies the two-dimensional Euclidean space, thus allow­
ing us to take over the results derived in the case when the 
basic space is given by S2. Moreover, this compactification 
introduces topology and is directly responsible for the dis­
crete values of the action. 

It has been known for some time that all solutions of 
Grassmannian models are also solutions of the chiral model 
[as the Grassmannian subspace is totally geodesic in 
U (N) ] 1; at the same time not much has been known about 
other solutions. Recently, however, Uhlenbeck proved a 
very interesting factorization theorem. 2 Namely, she 
showed that all classical solutions of the chiral model are of 
the form 

a) Chercheur IISN. Belgium. 

k 

Q=KII(1-2R;), (1.3 ) 
;=1 

where k is some number (called by her the uniton number), 
K is a constant matrix, and Ri are projectors that satisfy 
some first-order differential equations. The theorem pro­
vides a convenient method of generating new solutions from 
old ones, the procedure that she called the addition 0/ a uni­
ton. Given a solution Qo of the model, she defines a uniton 
factor for this solution by 1 - 2R, where R is a projector 
satisfying 

RA _ (1 - R) = 0, 

(l-R)[a_R +A_R] =0, 

where 

(1.4 ) 

( 1.5) 

and a ± denotes the derivative with respect to x ± iy, respec­
tively. We summarize her results by the following theorem. 

Uhlenbeck's theorem: If Qo is a solution of the equations 
of motion of the U (N) chiral model-( 1.2) and 1 - 2R is a 
uniton for this solution, then Q = Qo(1 - 2R) is another 
solution of this equation. Moreover, all solutions of the 
U (N) model can be constructed by adding less than N uni­
tons to a constant solution. 

If Qo = K, the equations reduce to a _RR = 0, i.e., the 
equations for the instantons of the Grassmannian models. 
For Qo=l=K we have more general solutions, which include 
noninstanton solutions of Grassmannian models and also 
non-Grassmannian solutions. It is important to note that the 
uniton number is, strictly speaking, not well defined. By this 
we mean that when we add a uniton to, say, a two-uniton 
solution, the resulting configuration may tum out to be 
equivalent to a one-uniton solution. For this reason, Uhlen­
beck also defined the minimal uniton number as the minimal 
number ofunitons that are needed to construct a given solu­
tion. 

The main aspect of the Uhlenbeck construction is that it 
reduces the problem to having to solve a first-order nonlin­
ear differential equation coupled with a nonlinear algebraic 
equation. This last equation admits two obvious solutions, 
namely, RA _ = ° or A _ (1 - R) = 0. Following Wood,3 we 
will call their solutions, respectively, basic and antibasic uni-
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tons. Moreover, in his paper3 Wood also managed to show 
that any uniton R can be decomposed into a product of basic 
unitons. Thus his theorem can be stated as follows. 

Wood's theorem: Any uniton 1 - 2R corresponding to 
a given solution Qo can be factorized as 

(1- 2R) = (1- 2R1)(1- 2R2 ) ••• (1- 2Rk ) 

for some k<,,N, where I - 2RI is a basic uniton for Qo and 
1 - 2Ri are basic unitons for the solutions Qi 
= Qo(1- 2R 1)··· (1- 2Ri_ I )· 

Therefore, we see that there are three types of unitons: 
the basic, the antibasic, and the remaining ones, which we 
shall call mixed. Moreover, each of the projectors appearing 
in these unitons can be of any rank. 

Let us observe that when we try to add a basic or an 
antibasic uniton to a given solution, the Uhlenbeck equa­
tions (1.4) simplify. Ifwe use! andH to describe, respective­
ly, the image of A_ and A+ and denote by P(l) and P(H) 
the corresponding projectors on these spaces, we can state 
the following proposition. 

Proposition 1.1: For 1 - 2R, a basic uniton correspond­
ing to the solution Qo, the Uhlenbeck equations (1.4) are 
equivalent to 

RA_ =0, 

(1 - R - p(l»)a_R = 0. 
( 1.6) 

Similarily, for the antibasic unitons R = 1 - Sand 
Uhlenbeck equations (1.4) reduce to 

the 

A_S=O, 

(1 - S - p(H»)a+S = 0. 
( 1.7) 

Proof· The first equation in ( 1.6) is just the definition of 
a basic uniton. Using this definition and multiplying the sec­
ond Uhlenbeck equation by P(l) from the left we find 

A_R = - p(l)a_R. (1.8) 

Substituting this result into the second Uhlenbeck equation 
we obtain the second equation ( 1.6). To prove the complete 
equivalence between Eqs. (1.6) and the Uhlenbeck equa­
tions (1.4) we have to show that ifEqs. (1.6) are satisfied, so 
are the Uhlenbeck equations. To prove this we consider the 
equation satisfied by A ± (Ref. 2) 

a_A+ + [A_,A+l =0, A_ = - (A+)t (1.9) 

and multiply it from the right by R. A simple algebraic ma­
nipulation then shows that if this equation is satisfied so is 
( 1. 8). Substituting this expression into the second equation 
( 1.6) shows that the second Uhlenbeck equation is satisfied, 
thus completing the proof. The equivalence between the 
Uhlenbeck equations ( 1.4) and ( 1.7) can be proved in a very 
similar way. As an immediate consequence ofEq. (1.6) we 
see that (1 - P(l») and P(H) are automatically projectors 
corresponding to, respectively, basic and antibasic unitons 
and that we can construct more general solutions of both 
types by considering projectors of smaller rank. 

As we have seen, in order to add a uniton to a given 
solution Qo, we have to compute the gauge field A _ corre­
sponding to this solution. As a matter of fact, as Qo can be 
factorized, as in (1. 3 ), it is quite easy to show that A _ is 
given by4 
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k 

A_ = La_Ri. ( 1.10) 
i=1 

In the sequel, we will use the following notation. For V, 
which is a matrix, we will denote by P( V) the projector on 
the space it spans. When V is of maximal rank, this projector 
is given by 

P(V) = V(VtV)-IVt. (1.11) 

II. ONE-UNITON SOLUTIONS 

As we have shown in Sec. I, the one-uniton solutions are 
of the form 

Q = K(1 - 2R 1 ), 

where R 1 satisfies 

(1- R1)a_R 1 = 0. 

(2.1 ) 

(2.2) 

These solutions are the so-called instanton solutions of 
Grassmannian models that have been known for some time.5 

The most general solutions for R 1 of this class are given by 

RI = P(P), (2.3) 

where F is a holomorphic matrix (i.e., whose entries are 
functions of only x + iy) of maximal rank. 

It is important to note that a given one-uniton solution is 
not characterized by only one holomorphic matrix F. In fact, 
one can always take holomorphic linear combinations of the 
columns of F, i.e., replace F by F' = FA, where A is any 
invertible holomorphic square matrix of appropriate size, 
without altering the solution. From now on we will say that a 
projector R is holomorphic or antiholomorphic if it satisfies 
a _RR = ° or a +RR = 0, respectively. As a consequence of 
the previous construction, holomorphic bases will play an 
important role in the sequel. For this reason, we will say that 
a set of rectangular matrices (of maximal rank) 

(2.4 ) 

is an orthogonal (anti)holomorphic basis sequence if all the 
Vi are orthogonal to each other, 

k 

Vr~=O, i#j; LP(Vi)=l, (2.5) 
i= 1 

and ifPj = l:{ = 1 P( Vi ) is (anti) holomorphic, and so it satis­
fies 

(2.6) 

Moreover, we will say that this is an orthogonal (anti)holo­
morphic basis sequence of DZ type6 if the v,. satisfy 

vi a± ~ = ° (2.7) 

for all i,j, such that Ii - JJ;;;.2. As a consequence of these 
properties, we can choose to normalize each Vi in such a way 
that 

(2.8) 

where Fi is some (anti)holomorphic matrix. This comes 
from the fact that all holomorphic projectors are of the type 
P(P), where F is a holomorphic matrix.7 Writing 
Pj = P( Wj) for some holomorphic Wj, we have by induc-
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tion that Vj = (1 - P j_ 1 ) Wj' With this normalization, we 
have 

Vra_ Vj = 0, (2.9) 

valid for all i. As this normalization will play an important 
role in what follows, we will call it the natural (anti)holo­
morphic normalization. When R is a holomorphic projector, 
then I - R is an antiholomorphic one, so that when read 
from the right to the left, the orthogonal holomorphic se­
quence becomes an antiholomorphic one. Moreover, when V 
is normalized in the natural holomorphic way, then 
V( vt V) -I has the natural antiholomorphic normalization. 
To add a uniton to the one-uniton solution, we will need the 
following proposition. 

Proposition 2.1: When F is a holomorphic matrix of 
maximal rank and R = P(F) corresponds to a one-uniton 
solution, then 

«(I - P(l»)F,I,H,GR ) (2.10) 

is an orthogonal holomorphic basis sequence of DZ type, 
where GR is the orthogonal complement of the vectors 
(F,H). 

Proof In general, the matrix (F,a +F) is not of maximal 
rank, but after some possible reordering of its columns we 
can always split F= (FI,F2 ) into two parts, such that 
(I - p(F))a +FI is of maximal rank. As a consequence we 
can write 

(2.11 ) 

for some holomorphic matrices A, B, and C. So rather than 
taking F to construct R we can use F = (FI,GL ) where GL 

= F2 - FIC, and so (I - p(F))a+GL = O. Now, using the 
v 

fact that P(F) = P(F) and 

A_ = a_p('i) = F(FtF)-I«(1 - p('i))a+FIlO)\ 
(2.12) 

we see that G1A_ = (a+GL )t(1 - P(F)) = J and that the 
rank of A_ is equal to the rank of (1 - p(F))a+FI. As a 
consequence, we see that I is spanned by (1 - P( G L ) )FI and 
we can write the sequence above as 
(GL , (1 - P( GL ) )FI' (1 - p('i))a +FIGR ). This sequence is 
obviously an orthogonal holomorphic basis sequence. More­
over, as (1 - p(F»)a+GL = 0 it is easy to check that this 
basis is of DZ type. 

III. ADDING A BASIC UNITON 

Wood's factorization theorem tells us that to construct 
all solutions of the U (N) model, all we have to do is to add 
successive basic unitons to the one-uniton solution. This ap­
pears to be a very difficult task. In our previous paper, 8 we 
reported the construction of all solutions of the U (3) and 
U ( 4) models. In the U ( 4) case we found that the construc­
tion of the general three-uniton configurations was rather 
difficult to perform. Nevertheless it is easy to observe that all 
solutions correspond to configurations that can be obtained 
by addition of one uniton to some Grassmannian solution. 
So rather than trying to construct two, three, and further 
general uniton solutions, we will restrict our construction to 
the addition of a general basic uniton to the already known 
general Grassmann solutions.5•

6 
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The construction of these Grassmannian solutions is 
quite simple. We start by constructing an orthogonal holo­
morphic basis sequence of DZ type, 

(3.1 ) 

where the sets Y I and Y2r + I may be empty. Defining R j 

== ~; = I P( Yj ), where P( Y) is a projector (onto Y) and so 
satisfies P 2 = P, we know5,6 that 

2r 

Q= II (1- 2R j ) = (1- 2R), (3.2) 
;= 1 

where 
r 

R = IP(Y2j ) (3.3 ) 
;=1 

is a Grassmannian solution of the U(N) model (we shall 
prove this by induction as a by-product of the construction 
of more general solutions). Observe that when r = 1 and Y I 

is empty, we recover the instanton solutions described be­
fore. 

We are now ready to add a basic uniton to these solu­
tions, and as a by-product, prove once again (by induction) 
that (3.2) is a solution of the U(N) model. To proceed we 
observe that before we can solve Eq. (1.6), we must compute 
theA_ matrix for the solution (3.2). We find 

2r 
A_ = I a_R,o (3.4 ) 

;=1 

Next we perform the "splitting," explained at the end of Sec. 
II and write, after an appropriate gauge transformation, Yj 
= (Gj'/j), thus obtaining an orthogonal holomorphic basis 
sequence 

(GI'/I,· .. ,G2r'/2r,G2r+ I ), 

which satisfies 

(3.5) 

GT a_Gj = 0, GT a+Gj = 0, for i#j, (3.6) 

and 

GT ajj = 0, Ii a+Gj = 0, for ii=j. (3.7) 

To add a basic uniton to the solution (3.2) we have to 
solve Eqs. (1.6), the first of which can be solved by choosing 
a projector R to be orthogonal to all I j • To solve the second 
equation (1.6) we observe that we can rewrite it as 
T a _R = 0 for some choice of T. Hence we split each non­
empty set G j into three parts, 

(3.8) 

such that the U;'s span the intersection of the two spaces 
onto which Rand Tproject and the V;'s (and, respectively, 
the W;'s) span the orthogonal complement of that intersec­
tion in the space on which R (and, respectively, n project. 
Thus we write, in full generality, 

2r+ 1 

R = I P( Vj ) + P( V M ), (3.9) 
j=1 

2r 2r + 1 

T = 1 - R - I P(lj) = I P( Wj ) + P( W M ), 

;=1 ;=1 

(3.10) 
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where 
2r+ 1 

VM = L U;a;, 
;=1 

2r+ I 
(3.11 ) 

WM = L Ui(UrU;)-lbi , 
;= 1 

and the a j and b; are some matrices that we can assume to be 
of maximal rank. In fact, had they not been of maximal rank, 
we would have found that one of the vectors spanned by the 
corresponding U; would have to lie in V; or Wi' We see that 
the second equation (1.6) reduces to 

Wra_~=o (3.12) 

for all i,j equal to 1,2, ... ,2r + 1 and M. Next we define 
;-1 

P(Vi ) = L POi) +P(Vi ), 
j~l 

P(Ui ) =P(Vi ) +PCU;), 

peW;) =P(Ui ) +P(Wi ), 

and observe that by construction 

(l-p(w;»)a_PCVi) =0, 

(1 - P( Wi»)a_(p( Vi) + P( U;») = O. 

(3.13 ) 

(3.14) 

However, we observe that (3.6) and (3.7) imply that 

Kr a±Kj =0, i#j, (3.15) 

where K and K stand for any V, W, or U. This means that 
(3.12) implies 

Ura_vi=Wra_V;=Wra_u;=o (3.16) 

and we see that P( v;), P( U;), and P( Wi) are holomor­
phic, and that 

C VI,UI,WI,II'V2,,,,, W2r ,I2r' V2r + pU2r + )JW2r+ I) (3.17) 

is an orthogonal holomorphic basis sequence. Thus we are 
left with having to solve 

WL a_ VM = O. (3.18) 

To proceed further we perform a gauge transformation, 
which brings the Ui to satisfy the condition of the natural 
holomorphic normalization, i.e., ur a _ U; = 0 and compute 

WL a_ VM = L b rC UrU;) -Iura_ (CJ.;aj ), 
iJ (3.19) 

L b r a_aj = L bra_a;. 
iJ ,. 

Since the a; have maximal rank, the above given expression 
vanishes if the a;'s are holomorphic. 

If we now consider the particular example when all the 
sets U; are empty, we find that our new solution takes the 
form 

Q= (l-lRo)(l- 2R) 

= (1 - 2Ct/( Yu ) + P( VI) )). (3.20) 

where Yu = (W2;,!2iJ V2; + I ). This solution is a Grassman­
nian solution computed from the orthogonal holomorphic 
basis sequence (OBS) Y; = (W;,I;,V;+ I)' where Wo 
= 10 = V2(r+ I) = O. Moreover, this new basis is easily 
shown to be of DZ type. Thus we see that the effect of our 
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construction corresponds to the addition of one YI in the 
sequence (3.1 ). We can now wonder whether all orthogonal 
holomorphic basis sequences (3.1) can be obtained by our 
construction. The answer to this question is positive as one 
can add successively all of the following basic unitons: 

2r- 1 

Q= II (1- 2R;), (3.21 ) 
;=0 

where 
2r- i 

R; = L POi)· (3.22) 
j~1 

Let us notice that when the set Y1 is empty, the last uniton in 
this sequence has to be dropped. 

To construct all these solutions we need, it is easy to see 
that thus we have shown that our construction gives us all 
the Grassmannian solutions previously constructed by Din 
et al.5 and by Sasaki.9 To construct all these solutions we 
need to consider all holomorphic matrices F from which we 
must construct all possible orthogonal holomorphic basis 
sequences. Every step in such a construction adds a Yi to the 
basis sequence, even though the space spanned by this se­
quence remains unchanged. The expressions (3.21) and 
(3.22) thus show how to construct all known Grassmannian 
solutions. We see that we have proved the following proposi­
tion. 

Proposition 3.1: The most general basic uniton corre­
sponding to the Grassmannian solution (3.2) is given by 
(3.9), where (3.17) is an orthogonal holomorphic basis se­
quence and V M is given by (3.11), with all a; being holomor­
phic. 

On the other hand, when the sets U; are not empty the 
new solution Q= (1- 2Ro)(1- 2R) is non-Grassman­
nian as the projector P( V M ), in general, does not commute 
with the projectors P( U; ). 

IV. AN EXPLICIT EXAMPLE 

When we try to construct solutions of the Grassman­
nian models, it is convenient to use holomorphic bases.5 

Some of them have particularly useful properties that make 
them easy to use. Let us choose a holomorphic matrix F of 
maximal rank. Then we can define 

P +F= a+F- F(FtF)-IFt a+F (4.1) 

and use induction to define further vectors P ~ F, 

Pk+F=P+CPk+-IF). (4.2) 

This construction of our basis is equivalent to the Gram­
Schmidt orthonormalization procedure of the sequence of 
analytic vectors F, a +F, a 2+ F, ... , thus showing that all P ~ F, 
which correspond to different k's, are orthogonal to each 
other. Moreover, in addition they satisfy the following prop­
erties, which are essential in our constructions: 

a_p~ F= _pk+- I Fak-_Ilak' 

a+(p k+ Fa;; I) = pk++ IFak-
1

, 

where 

(4.3) 

(4.4) 

As a consequence of the second equation, we see that the 
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P i+ F have the natural holomorphic normalization and that 

(F,P +F,p2+ F, ... ,p2~ F) (4.5) 

is an orthogonal holomorphic basis sequence. Defining pro­
jectors onto each of these vectors, 

Po = P(F)'''',Pk = P(P~ F), (4.6) 

we find that the sum of any of these projectors forms a solu­
tion of the type (3.2), in which the sum of consecutive pro­
jectors corresponds to a single projector P( Y;) of our pre­
vious construction. To make this clearer, let us consider, for 
example, 

(4.7) 

This solution corresponds to the choice YI = (F,P +F), 

Y2 = p2+ F, Y3 = (P 3+ F,P~ F,P 5+ F,P 6+ F), Y4 
= (P 7+ F, p 8+ F,P 9+ F), and Y5 = (P 12 F, ... ,P2~ F). Us­
ing the relations (4.3) it is now easy to show that II = P +F, 
12 = p2+ F, 13 = p 6+ F, and 14 = p 9+ F. An example of a 
basic uniton that we can add to this solution is given by 

R = P3 + P IO + P( VM ), 

where 

V M = Fa + U3b + P 7+ Fe, 

(4.8) 

(4.9) 

and where a, b, and care holomorphic matrices of maximal 
rank and U3 is given by U3 = (1 - Po - PI - P2 - P3 ) 

X (a ~ F,a 5+ F). It is interesting to note that when we take 
the limit in which two of the three coefficients a, b, and c tend 
to zero, our solution goes over to a Grassmannian solution of 
the type (3.2). Thus we see that the non-Grassmannian 
U (N) solutions we have computed have the surprising prop-
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erty that they interpolate between different Grassmannian 
solutions. 
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The conformally invariant differential geometry of null curves in conformally flat space-times 
is given, using the six-vector formalism, which has generalizations to higher dimensions. This 
is then paralleled by a twistor description, with a twofold merit: first, sometimes the 
description is easier in twistor terms and sometimes in six-vector terms, which leads to a 
mutual enlightenment of both; and, second, the case of null curves in timelike pseudospheres 
or 2 + 1 Minkowski space could only be treated twistorially, making use of an invariant 
differential found by Fubini and Cech [Geometria Proiettiua Dijferenziafe (Zanichelli, 
Bologna, 1926), Vol. 1; Introduction a fa Geometrie Projective Dijferentielle des Surfaces 
( Gauthier-Villars, Paris, 1931)]. The result is the expected one: apart from the stated 
exceptional cases there is a conformally invariant parameter and two conformally invariant 
curvatures that, when specified in terms of this parameter, serve to characterize the curve up to 
conformal transformations. 

I. INTRODUCTION 

The local, Poincare-invariant differential geometry of 
null curves in flat Minkowski space-time has been given by 
Bonnor l

; we shall summarize it below by giving a two-com­
ponent spinor version of it. According to it, nonstraight null 
curves are characterized by a Poincare-invariant parameter 
and two "curvatures," which, when specified in terms of that 
parameter, fix the curve up to Poincare transformations. 
Now the concept of a null curve is a conformally invariant 
one, so that it is natural to ask for a similar but conformally 
invariant treatment. The purpose of the present paper is to 
provide such a treatment. All necessary ingredients are in 
the literature; it is only necessary to put them together. 

The result is that, "in general," a null curve "locally" 
has a conformally invariant parameter and two "curva­
tures," which fix the curve up to conformal transformations 
when specified as functions of that parameter. Here "local" 
means that the parameter intervals to be considered must 
not include certain exceptional points, while "in general" 
means that curves consisting of exceptional points only must 
receive a separate treatment. 

The exceptional types of curves comprise (1) straight 
null curves ("null lines"), (2) conformal cubic null helices, 
and (3) curves on timelike hyperspheres. (In complexified 
space or for signature + + - -, one would have to add 
curves in totally isotropic two-planes; but we shall essential­
ly stick to the real domain and signature + - - -.) For 
the first two cases there are no invariants and no invariant 
parameter, because the conformal group acts transitively on 
the sets (1) and (2), while the subgroup keeping any indi­
vidual curve of these sets fixed acts multiply transitively lo­
cally. For curves of type (3) but other than (2), there is an 
invariant parameter and just one invariant to conformally 
characterize the curve. 

These were the methods we employed: In part we were 
able to generalize and adapt the "n + 2 vector formalism" of 
conformally Euclidean geometry2 to the "null case" ofpseu­
do-Euclidean geometry. On the other hand, the twistor cor­
respondence3 was also used and was of essential help to us in 
dealing with the exceptional cases; it enabled us to use results 

from textbooks (e.g., Ref. 4) on projective differential geom­
etry. (In order to be brief, we have avoided more detailed 
geometric interpretations, although some motivations then 
remain unclear-the interested reader is referred to these 
textbooks.) The only adaption that had to be made here was 
to take care of the reality structure peculiar to the signature 
+ - --. 

The plan of the paper is as follows. In Sec. II we summa­
rize the formalism required and fix the notation; we also 
include a spinor version of Bonnor's theory. In Sec. III, the 
theory of null curves is developed using the six-vector for­
malism. In Sec. IV, the twistor correspondence for null 
curves is described. In Sec. V, a few concluding remarks 
concerning the relation between the formalism of Sec. II A 
and the manifestly conformally invariant formalism of the 
later sections are made. Not all calculations are given in de­
tail, because they involve only elementary linear algebra and 
differential calculus in one variable. 

II. SUMMARY OF FORMALISM 

A. Bonnor's theory1 

Consider, in flat Minkowski space M4 (signature 
+ - - -; scalar product of four-vectors x, y, ... denoted 

by X'y; x 2 
: = x'x) a null curve X(A) parametrized by A. 

Then x' : = dx/ dA by definition satisfies X'2 = 0, and we will 
assume x' to be future directed. It follows that x'· x" = 0, so 
x" has to be spacelike or proportional to x'. Excluding the 
latter case, which has the direction of x' fixed, corresponding 
to a straight null line, we have, therefore, X,,2 < O. Now 
changing the parameter as A = A c.i) monotonically, one 
finds 

(~)2 = ( d 2X )2 (E-)4. 
dA2 dA2 dA' 

i.e., ( - ix,,2(A) )1/4 dA is an invariant differential, whose in­
tegral can be used as a new, "natural" parameter, intrinsical­
ly defined by the curve. We assume that A has already been 
chosen to be this parameter (whose "physical" interpreta­
tion was given by Synge l

); we therefore have X,,2 = - 2. 
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The pair X', x" spans a null flag,S and, identifying the Min­
kowski vector space with the set of Hermitian elements of 
S ® S, where S is complex-two-dimensional spin space and S 
is the complex-conjugate space, we can choose a spinor 
S(A)E S such that x' (A) = S(A) ® ~(A) and such that the 
flag plane is given by x' Ax". (See, e.g., Ref. 6 for the use of 
exterior algebra in describing the geometry of subspaces of a 
vector space.) Only a sign in S remains undetermined. Dif­
ferentiating, we obtain x" = S' ® ~ + S®~. We may then use 
S together with S I as a basis for S (otherwise S I a: S~ x" 
a: x', which was excluded before) and, in fact, as a spin frame 
in the sense that e(S,S') = 1, where E is the spin "metric": 
this is consistent with X"2 = - 2. Differentiating again, we 
find e(S,S ") = 0, so there is a complex-valued function I 
such that S " = IS. This corresponds to Frenet's formulas, 
and Re I and 1m I, considered as functions of the natural 
parameter A, will fix the curve up to Poincare transforma­
tions. They are the invariant curvatures of the curve and 
determine the infinitesimal null rotation that (S,S') under­
goes when one proceeds from a point on the curve to its 
infinitesimal neighbor. The significance of the invariant con­
dition 1m I = 0 is easy to state: defining m : = S ® ~ " we find 
(m - iii)' = (j - I)x' and i(m - iii) ·x' = 0; thus the con­
dition 1m 1=0 implies that i(m - iii) is a constant real 
vector and X(A) belongs to the fixed timelike hyperplane 
i(m - iii)'x = const. The subcaseI = 0 will also be of inter­
est later. Here we have S(A) = So + s bA and therefore 

X(A) = Xo + xbA + (x;/2)"i 2 + (x;'/6) A 3, 

which we shall refer to as the cubic null helix. It is the trajec­
tory of the Killing field 

(!x;" (x - xo) Ix" - (x;· (x - xo) Hx;' + xb 

passing through xo, and A is the canonical group parameter 
along the flow of this field which consists of simultaneous 
infinitesimal null rotations and null translations. We shall 
see later that this curve admits a larger group of conformal 
transformations. 

B. Six-vector formalism 

This formalism is used to describe conformally com pac­
tified Minkowski space. One considers a real six-dimension­
al vector space V 6 (which we propose to call "sixtor space") 
together with a nonsingular symmetric bilinear form X· Yof 
signature + - - - + - on it, or rather the correspond­
ing five-dimensional projective space P(V6 ) =: Ps whose 
points are the one-dimensional subspaces RX of V 6' together 
with the quadric Q4 given by X 2 : = X·X = o. Singling out 
two points on Q4 as representing infinity and the origin, 
Minkowski space can be imbedded into Q4 (conformally 
compactified Minkowski space) according to 

x-RX = R(x,(1- xZ)/2, (1 + x2 )/2), 

the scalar square being 

X2: = x 2 + ((1 - x2)/2)2 - ((1 + x 2 )/2f 

From this, an interpretation of the points in P s not on Q4 can 
also be given: for HE V 6' consider all XEV 6 satisfying 
H· X = 0; those points of this hyperplane that belong to the 
imbedded Minkowski space form a (pseudo) hypersphere 
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there if H 2 =1=O. A conformally invariant concept of central 
importance in the sequel are the null lines (light rays) in M 4 • 

Their description in the V 6 formalism is given by two-dimen­
sional subspaces of V 6 that are totally isotropic, i.e., all its 
vectors X have X 2 = 0; projectively this means that null lines 
are given by lines of P s that are entirely contained in Q4' 
(There are no higher-dimensional totally isotropic sub­
spaces in the real V 6.) For more geometrical details see Ref. 
3. 

We shall also employ a normalized determinant func­
tion jj; on V 6' i.e., one whose value is ± 1 on any orthonor­
mal basis. It can be used in the standard manner to define the 
Hodge * operator in the exterior algebra A V 6 over V 6. 

c. Twistor formalism 

While the six-vector formalism can be immediately gen­
eralized to arbitrary dimensions and signatures, the twistor 
formalism is specifically tied to conformally flat four-spaces, 
the various signatures being related to rather different ob­
jects in twistor space. In addition to Ref. 3, we will rely here 
on Ref. 7. The basic ingredient is a complex four-dimension­
al vector space T (twistor space) together with a determi­
nant function e EA 41' (where l' is the dual space ofT). Nowe 
and its dual eEA4T (called ltJ in Ref. 7) serve to define the 
dualization maps APT _A4 -pT, APt _A4 -PT in the usual 
manner; they will be indicated by. (resp. *). The slight 
differences among various conventions involved in these 
definitions will be rather unimportant here since we are in­
terested in most quantities only up to a non vanishing factor. 
Namely, what matters here is the complex projective space 
P(T) and its relation to conformal geometry. The basic step 
is to form A 2T, a complex six-dimensional vector space 
which already comes with a nondegenerate symmetric bilin­
ear form given by F·G: = (.FIG), where F, G E AZT and 
( ·1· ) means the scalar product between the dual spaces A 2T 
and A zt. The Plucker condition F2 : = F· F = 0 is known to 
be necessary and sufficient for the bivector F to be simple (or 
decomposable), i.e., of the form t 1 1\ t2, where t), t2 E Tare 
not unique-rather, the subspace (t» tz) spanned by them 
determines and is determined by the set of scalar multiples of 
F. Geometrically, the point CFEP( A 2T) then represents the 
straight line in peT) joining Ct) and Ct2• If G is simple as 
well, F· G = 0 means that the corresponding lines meet at a 
point. The idea is now to identify the real vector space V 6 

from Sec. II B with a suitable "real part" of A 2T such that the 
restriction of F· G to it yields a real-valued, nondegenerate 
form of the signature required. We now sketch the procedure 
for all signatures. 

As one way to proceed, one could think of actually tak­
ing T as a real vector space and e as real-valued; then A 2T is 
real. However, F-F·F= :Fz turns out to have signature 
+ + + - - -. So the idea to identify "reality" already 

on the level of T itselffails for the other signatures. 
A slight modification of this approach comes to mind 

next. The same thing as taking T to be real is to single out a 
real part of a complex T by taking its elements that are invar­
iant under an "anti-involution ofthejirst kind," i.e., an anti­
linear map C(j' : T - T satisfying C(j' 2 = idT • Then the exterior 
square C(j' A C(j' is an antiinvolution of the first kind on A 2T 
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that can be used to define a real part there. The modification 
now consists of taking instead of CIf an anti-involution Yof 
the second kind: y-z = - idT (a "quaternionic structure" 
on T -see Ref 8). Then again Y /\ Y is an anti-involution 
ofthejirst kind on A zT, whose invariant elements form a real 
six-dimensional vector space. By choosing e suitably in rela­
tion to Y, po G is real on these real elements; however, this 
time the signature of F --> F Z turns out to be 
± ( + + + + + - ), as would be appropriate for the 

conformal geometry of Euclidean four-space. (This is why 
quaternions occur in the solution of the Euclidean instanton 
problem.9 

The remaining signatures are obtained by considering 
an antilinear map h: T --> T; coupling its exterior square with 
the dualization * again leads to an antilinear map 
A zT --> A zT. This will be involutive (i.e., have square = mul­
tiple of identity) if h is Hermitian, i.e., if the corresponding 
sesquilinearform (tdtz): = (h(tI)ltz) is Hermitian; and it 
is of the first (second) kind only if ( '1') contains an even 
(odd) number of minuses in its signature. Now already for 
reasons of compactness of the in variance groups involved, 
the definite Hermitian case corresponds to signature 
± ( + + + + + + ) on the corresponding real part of 
A zT; but this signature does not occur in the six-vector for­
malism, where there is at least one minus sign. 

The remaining possibility, a Hermitian form of signa­
ture + + - -, is at the basis of the twistor formalism for 
real conformally flat space-time. As described in detail in 
Ref. 7, the anti-involution squares to identity iff the Hermi­
tian form and the determinant function on T are suitably 
normalized relative to each other. Elements invariant under 
the anti-involution are called "self-adjoint" in Ref. 7, but we 
will call the corresponding points in projective space "real 
points." [Strictly speaking, if we now identify V 6 of Sec. II B 
with this real part of A zT, then the real projective space 
P(V6 ) = {RvIVE V 6} can be injected into the complex pro­
jective space P(AzT) by assigning Rv-->Cv. 

We have already noted that points CFEP(AzT) with 
F Z = ° correspond to lines in peT). We now add that to real 
points RFE Q4 there correspond lines of peT) that are com­
pletely contained in the "twistor null surface" P N given by 
(t 1 t) = 0; i.e., if F is simple and real, then F = tl /\ tz where 
(tllt l ) = (ttltz ) = (tzltz ) = ° and hence (t It) = ° for all t 
from the subspace (tl>tz)c, which is then said to be totally 
isotropic. This follows by contracting the reality condition 
h/\ zF=.For h(tl)/\ h(tz) =.(tI/\tZ ) with tl and tz, 
which are linearly independent. Conversely, if tl and tz span 
a totally isotropic two-space of T, then a suitable complex 
multiple of t I /\ t2 will satisfy the reality condition.7 

This concludes our preparations. 

III. NULL CURVES IN THE SIX-VECTOR FORMALISM 

A. The conformal arc 

A null curve in M4 has, be definition, null lines as its 
tangents. In the Ps picture, we have a curve on Q4 whose 
tangents, in the P s sense, are contained in Q4' Thus if X(A) is 
a parametric description of the curve, the tangent is spanned 
byX(A)andX'(A) andwemusthaveX z = X·X' =X'z = 0; 
in the real domain we must have X"Z < 0, however, if we 
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exclude null straight lines from the class of curves to be con­
sidered. 

It would now be tempting to fix the parameter just as in 
Sec. II A, but one has to remember that, in the six-formal­
ism, there is the additional freedom of a A-dependent scale 
factor X(A) --> f(A )X(A) that could spoil the parameter 
choice. Rather, we fix the scale by considering the quantity % 
: = ( - !X") - I/Z X, which is independent of the original 
scale and has % "z = - 2, and look for another possibili ty to 
fix the parameter invariantiy. We assume that the scale has 
been chosen relative to the parameter A in the manner just 
described, but we omit the hat on X. If we go over to another 
parameter 1, we must rescale X (A (1) ) as 

%(1) : = x(A(l){~) - 2 

in order that 

(~)2 = -2; 
dA 2 

we say that X has parameter weight - 2. From this it fol­
lows that X I\.X', X I\. X' I\.x", ... have definite weights 
[namely, - 2 + ( - 1) = - 3, - 2 + ( - 1) + ° 
= - 3, ... ]; in particular, the Wronskian E(X,x',X",X"', 

XIV ,Xv) has weight 3, so that 

IE(X, ... ,X v) 11/3 dA = :du 

is an invariant differential, while sign E(X, ... , XV ) is invar­
iant under parameter changes where dA /d1 > 0. (We are 
restricting here to the connected component of the confor­
mal group.) 

There are now two cases: (1) If duofO, we can use its 
integral u as a new, conformally invariant parameter, de­
fined up to an additive constant. It is called the conformal arc 
and can be used on open segments of the curve without zeros 
of duo (2) If du = 0, X, X', ... , XV are linearly dependent, 
and we have to turn to the products mentioned above whose 
vanishing or non vanishing has invariant meaning. Now gen­
erally (X I\.x' 1\. .. ·I\.X(P) = ° but X 1\. .. ·I\.X(p-l) :;;60 

on some open segment) ¢::?(X I\. X' I\. ... I\. X(p - 1) )' IX 

X I\. ... I\.X(p-l) , i.e., the (p - I)-plane spanned byRX, ... , 
RX(p- I) in Ps does not change with A and contains the 
segment. Then p = 1 means degeneration of the curve to a 
point, p = 2 corresponds to a null line, which we have al­
ready excluded; p = 3 does not allow anything new in the 
real case: this two-plane in P s intersects Q4 at a quadric 
curve that degenerates into a null line (from X z = X'z = ° it 
follows that XX'=X"X"=X'X"=O, so for any 
Y = aXo + bXh + cX; we get y2 = - 2c2

, so that c = ° 
for YEQ4)' A similar thing happens for p = 4: the three­
plane in P s intersects Q4 at a quadric two-surface that is 
(since X,,2:;;60 but x·x'" = ° in addition to the vanishing 
scalar products above) a two-dimensional null cone; there 
are obviously no null curves on it other than its generating 
null lines. Thus we see that in the real case of signature 
± ( + - - - + -) only p = 5 remains, where the 

curve is contained in a hyperplane ofPs; its intersection with 
Q4 represents a (pseudo) hypersphere in M4 as we have al­
ready mentioned. [One has only to note that its normal 
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H: = * (X 1\ X' 1\ ... 1\ XIV) has H 2 = the Gram determi­
nant of X, ... , XIV = (X"2)5#0 (see Table I).] 

Now a hypersphere in M4 containing real nonstraight 
null curves is conformally the same thing as a timelike hy­
perplane or Minkowskian three-space M 3• What the V 6 for­
malism is to M 4 , a V5 formalism is to M3 (the projective 
version of V 5 C V 6 is the hyperplane in P 5 just mentioned). 
Hence we can generalize the considerations above to M n , 

using a V N = V n + 2 formalism, and then specialize to n = 
3, N = 5. The trouble, however, is that, in V N' 

E(X,X', ... ,x(N-1) has weight 3 + 4 + .. , + N - 3 = 
(N 12)(N - 5), so that the construction of the invariant 
parameter CT does not work in the case N = 5 (n = 3) only! 
Thus the analysis of null curves in Mn [n;> 4, signature 
± ( + - ... - )] can be carried out in complete analogy 

to n = 4, and we still need to know how to continue with n 
= 3. 

It is at this point where the twistor formalism can carry 
us further. Of course, it would have been possible to take the 
result from there, translate it back into the V 6 formalism, 
and present it as a direct insight; but that would not be fair. 
So we admit the lack of direct insight and present the twistor 
approach in Sec. IV. It will provide us with an invariant 
parameter even in the n = 3 case, except for the conformal 
cubic null helices that are, by definition, all conform ally 
equivalent to the one described in Sec. II A. One can there­
fore proceed essentially as with the parameter CT. 

B. The conformal curvatures 

Assume we can use CT. Then X, ... ,Xv are linearly inde­
pendent and can be used as a basis in V 6' Hence we may 
expand XVI in terms of them. The expansion coefficients, 
expressible in terms of scalar products, are conformal invar­
iants, if CT is used as a parameter. By differentiation, we get 
similar expansions for X(p) ,p ;> 6. To find a list of indepen­
dent invariants, we first complete a table of scalar products 
X(P) 'X(q) , puttingXm2 = : 2K, (XIV)2 = : 2J, (X 1')2 = :L. 
Differentiating these equations of definition and also the re­
lationsX 2 = X'2 = 0, X ,,2 = - 2, we find the results in Ta­
ble 1. As the fundamental invariants we can take K, J; all 
others are expressible in terms of them. For L this is so be­
cause we not only have X" = - 2 by our choice of scaling 
but also E(X, ... ,Xv ) = 1 by choosing A = ± CT as a param­
eter. This entails I = [E(X, ... ,Xv ) f = det (TableI), but 
we have 

-hdet (Table I) = - 2L - 9K,2 + 4K 

X(K"-K2-2J), 

and thus we find L in terms of K and J and their derivatives. 

TABLE I. The scalar products X<P) • X<q) • 

qlp 0 2 3 4 5 

0 0 0 0 0 -2 0 
1 0 0 0 2 0 2K 
2 0 0 -2 0 -2K -3K' 
3 0 2 0 2K K' K"-U 
4 -2 0 -2K K' U J' 
5 0 2K -3K' KH -U J' L 

2241 J. Math. Phys., Vol. 30, No. 10, October 1989 

(Also in the case dCT = ° [where det (Table I) = 0], L is 
expressible in terms of K and J, but the choice of fundamen­
tal invariants runs differently, as we shall see in Sec. IV.) 

On differentiating the last column of Table I, we obtain 
the scalar products X(p) . XVI and from them the coefficients 
in the expansion of XVI in terms of X, ... ,Xv . [Actually, 
from E(X, ... ,Xv ) = 1 or 0, it follows that E(X, ... , XIV, 
XVI) = ° so that the expansion coefficient in front of XV 
vanishes.] If K(CT) and J(CT) are given functions of CT, the 
expansion of XVI gives a system of differential equations for 
X that can be solved and determines the curve uniquely up to 
conformal transformations. 

From this it follows, for example, that a dCT # ° curve 
that admits a one-parameter group of conformal transfor­
mations has K = const, J = const, and conversely. 

For geometrical purposes it would be more appropriate 
to use other bases than the ones given by X, X' , ... ,Xv , but we 
do not go into this here. 

IV. NULL CURVES IN THE TWISTOR FORMALISM 

A. Generalities 

A curve in M4 or Q4 corresponds, in the twistor picture, 
to a family of straight lines in PN C peT) parametrized by 
one real parameter A. If the curve is null, (infinitesimally) 
consecutive points have null separation; hence consecutive 
lines of the family intersect. These points Ct(A) [where 
t(A)ET] of intersection will, in general, form a curve in 
peT). By this term we mean a one real parameter set in 
peT), formerly sometimes called a "thread", 10 in contradic­
tion to a (locally) holomorphic curve which is a one-com­
plex parameter = two-real parameter submanifold of 
P( T). Of course, if there exists a real analytic parametriza­
tion of the thread, we can imagine a local complex thicken­
ing by analytic continuation to complex values of the param­
eter. We shall apply the latter point of view in one case only, 
however: to the straight lines of peT) that appear, in particu­
lar, as tangents of our "threads." As a result of the lack of a 
concept of real points in peT), the only meaningful concept 
ofa line tangent to the curve {Ct(A)} inP(T) is the complex 
line joining Ct(A) and C dt(A)/dA, formally described by 
Ct 1\ t'. 

It is intuitively clear that the tangents of the curve ob­
tained in P( T) are just the lines of the family we started with, 
and since they are to be contained in P N, our curve must also 
be contained in PN; i.e., we must have (t It) = 0, (t It') = 0, 
(t'lt') = O. 

More formally, if we start from a curve Ct(A) in peT), 
we can form its tangents CX, X: = t 1\ t " which form a curve 
on Q~ C P( A 2T), where Q~ is the complexification ofthe Q 4 

introduced earlier. We then have X' = t 1\ t " , so 
X 2 = X'X' = X 2 = 0, showing that CX(A) is a null curve. 
This description of null curves has been known for some 
time. The author has encountered it on a very different occa­
sion,l1 and it was studied more directly by ShawY If, in 
addition, (t It) = (t It') = (t' It') = 0, the null curve will be 
real in our sense. Conversely, starting from a null curve 
CX(A), fromX 2 = X-X' = %,2 = Owe conclude that X, X' 
are representable as X = t 1\ U, X' = t 1\ v, where t corre­
sponds to the point of intersection of the lines corresponding 
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to X and X' and which do intersect. Thus 0= t I\X' 
= t 1\ (t' 1\ U + t 1\ u') = t 1\ t' 1\ u. If t and t ' are linearly in­
dependent in the parameter interval considered, {Ct(A)} 
will be a curve, and since now UE(t,t '), we have X ex t 1\ t' 
(u a: t is excluded by X ¥-O), showing that CX(A) are the 
tangents of that curve. The remaining case t' ex t, where 
Ct(A) is one single point and the lines CX(A) form a cone 
through it, can be excluded if we are to describe a real null 
curve other than a straight line on Q4' This is because then 
CtEPN, where t can be assumed constant, X(A) ex t 1\ u(A), 
(t Iu) = (ulu) = 0, but the lines on PN through a fixed 
point Ct, contained in the plane (t I u) = 0, correspond to 
the points of a real null line on Q4 only (see Ref. 3). (If we 
were to consider M4 with signature + + - - or com­
plexified M4 , these cones would be relevant and would corre­
spond to curves in totally null two-planes of M4 or Q4') 

Similarly, we may exclude planar curves in P(T): since 
their tangents would have to belong to PN, the whole plane 
containing the curve would have to belong to PN, which is 
impossible on dimensional grounds. (Again, for signature 
+ + - - or complexified M 4 , planar curves would be 

relevant, representing curves in totally null two-planes of the 
second type in M4 or Q4') 

The net result of the preceding discussion now is that, 
from the twistor point of view, the geometry of real, non­
straight null curves has been translated to the geometry of 
twisted (i.e., nonplanar) curves in PNCP(T). Here we are 
in the lucky position of being able to copy the theory to a 
large extent from existing work on projective differential ge­
ometry4; we only have to add the restriction that the curve 
and its tangents belong to PN. The essence of this theory, 
perhaps not in its most elegant form (which would be useful 
to read off more geometrical details), is as follows. 

B. Invariant parameters and differential invariants 

Let {Ct(A)}CP(T) be a twisted curve. The condition 
for this is, in analogy to what has been said in Sec. III A, that 
t 1\ t' 1\ t " 1\ t ", # 0 or 

e(t,t ',t ",t''') =. (t 1\ t' 1\ t" 1\ t"') #0. 
[Note, however, that here we are working in the algebra AT 
whereas there the relevant algebra was A V 6' Some confusion 
might arise now because here we consider V 6 as a subset of 
A2TCAT, and we have tried to avoid confusion between 

A(A2T) and AT by using the symbols A and 1\ for multi­
plication in the former and the latter, respectively. Thus, for 

F, G E A 2 T, we have FAG = - G A F while F 1\ G = 
G 1\ Fl] This enables us to use t, t', t', t'" as a basis in T, and 
also to fix the freedom of complex scale factors, 
teA) -+/(A)t(A), by requiring 

e(t,t',t",t"') = -1. 

(The minus sign is introduced to cope with the reality condi­
tion and signature employed.) This can be achieved by tak­
ing 

teA) : = (- e(t, ... ,t",»)-1/4t (A) 

instead of t(A); the result is independent of the original scal­
ing, and we will omit the hat from now on, understanding 
that this step has been done. (Geometrically, this gives no 
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restriction if we consider the connected component of the 
conformal and projective group only.) Similarly to Sec. 
III A, we must take care of this normalization when a 
change in parametrization is made: we must rescale t (A (A») 
as 

teA) : = t(A(A)>(~ f3!2 
in order that 

i.e., t has parameter weight -~. From this it follows that 
t 1\ t' and t 1\ t' 1\ t " have definite weights [namely, 
- ~ + ( -!) = - 2, ( - ~) + ( - i) +! = -~], corre­

sponding to the fact that they have geometrical meaning: 
Ct 1\ t' describes the tangent, while Ct 1\ t' 1\ t" describes the 
osculating plane at Ct. However, t 1\ t' 1\ t " 1\ t'" will have 
weight 0 due to our normalization; its dual cannot be used to 
find an invariant parameter as in Sec. IlIA. 

We now proceed as in Sec. III B: we expand t IV in terms 
of the basis t, t', t', t'" as 

t lV 
= at + (3t' + rt" + & '''. 

Differentiatinge(t,oo.,t"') = - 1, it follows thate(t,t ',t "IV) 

= 0 so that 8 = O. Similarly, the reparametrized t(A) will 
give an expansion of d 4t IdA 4 with coefficients a, jJ, and y, 
whose relation to a, (3, and r can be calculated in a straight­
forward manner. After some computation one obtains 

y = r( * r -5Y(AIA), 

jJ = (3 (---"-d~~ )3 + 2 ~.!0- - 5 -!!.- Y 
/L r dA dA 2 dA' 

a = a(~)4 ~ (~)2!0:-
dA + 2(3 dA dA2 

+ ~ r( ~ ~ - 2( !0-)2) 
4 dA dA 3 dA 2 

3 d 2 9 2 ------..-Y - -Y 
2 dA2 4' 

where 

YeA IA) : = d3Ald13 _ ~( d
2
A Id12)2 

dA IdA 2 dA IdA 

is the well-known Schwarzian derivative. 
It is convenient to rewrite the results for jJ and a in the 

following manner: 

This gives us two quantities of definite parameter weights (3 
and 4). More accurately, if we consider a curve in the sense 
we are using it (a "thread"), then it follows that 1m r 
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= 1m y(dA /dA) 2, so that 1m y is a further quantity of defi­
nite weight ( = 2). This further weighted quantity is absent 
if we consider real P( T) or local holomorphic curves in com­
plex peT), since then in the first case y is real and in the 
second A,(A) is complex-valued. However, it will turn out 
that for curves with all tangents on PN, 1m y = ° again. 
Similarly, for general "threads" the two complex, weighted 
quantities above actually give four real, weighted quantities 
after taking real and imaginary parts; but again, for curves 
with all tangents on PN it will turn out that the weight 4 
quantity is real and the weight 3 quantity is pure imaginary. 

We will now show that the weight 3 quantity corre­
sponds exactly to the one constructed in Sec. III A. One way 
of seeing this is to form X = tAt', X' = tAt", X" = 
tAt'" + t' At", and, using the expansion of t IV repeatedly, 

X'" = 2t' At'" +f3X + yX', 

XIV = 2t" At"'+2yt' At" + (f3'-2a)X 

+ (13 + y')X' + yX", 

XV = 2(y'-f3)t' At" + (13" - 2a' - f3y)X 

+ (213' - 4a + y" - r)X' 

+ (13 + 2y')X" + yX"'. 

Note that all these bivectors have definite parameter weight 
and, in particular, X" has weight 0. Insertion into 
E(X, ... ,Xv ) gives 

E(X, ... ,xv) 
=8(y'-f3) 

XE(tAt',tAt",tAt"',t' At"',t" At"',t' At"). 

This already shows that the vanishing of 13 - y' is equiva­
lent to the vanishing of E(X, ... ,xv ), since the six products 
tAt' , ... are linearly independent in A 2T. [In fact, from the 
Hilbert Nullstellensatz one can deduce that E(t At' , ... ) is a 
numerical multiple of [e(t, ... , t"')] 3, and this is consistent 
with the weights of E(X, ... ) and 13 - y'.] Another way is to 
consider 

H: = i(t At'" - t' At" - yt At') 

satisfying 

H' = i(f3 - y')t At', 

HAX = ° (i.e.,H·X=O), 

HAH = 2tAt'At" At'" (i.e.,H 2 = -2). 

(The factor i is for later purposes and is irrelevant for the 
moment.) The differential equation for H implies that H has 
parameter weight 0. Now if 13 - y' = 0, then H is constant; 
hence X remains in the fixed hyperplane of P( A 2T) given by 
H·X = 0. The M4 interpretation of this has already been 
given. The gain in using the twistor formalism lies in the fact 
that it has provided us with the second, weight 4, quantity 
(which seems to go back to Fubini and Cech). If it does not 
vanish while 13 = y', the differential 

la-foY" + -r&rII/4dA=dr 

will supply another invariant parameter for the curve. We 
shall refer to it as the FUbini-Cech parameter. If the curve is 
referred to it, dA = dr, both a and 13 are expressible in terms 
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of y, which remains the only independent invariant of the 
curve in this case. 

If the FUbini-Cech differential also vanishes, it is con­
venient to fix the parametrization partially by requiring y = 
0, which leaves open fractional linear transformations, for 
which Y (A IA) = 0. Relative to this class of ("projective") 
parameters, a = 13 = y = 0, so that t IV = 0 and 

teA) = to + t ~A + ~t [{A 2 + it ;'A 3 

is what is known as a "twisted cubic." When X(A) 
t(A) At' (A) is formed and translated back to the M4 lan­
guage, one obtains (a complex version, in general, of) a con­
formally transformed cubic null helix. (We will see this in 
terms of the invariants of Sec. II A in Sec. V.) We shall come 
back to it after discussing the reality constraints in general. 

If, however, 13 - y' # 0, we can use 113 - y' 1 1/3 dA = du 
to define an invariant parameter: in the context of curves in 
projective space it is called the "projective arc," and it is 
obvious that for curves in PN it will correspond to the con­
formal arc introduced in Sec. III A. What is lacking again is 
a discussion of the reality constraints. If the curve is referred 
to the projective arc, dA = du, 13 becomes expressible in 
terms of y, which, therefore, together with a forms the sys­
tem offundamental invariants of the curve ("projective cur­
vatures") . 

Let us end this subsection by remarking that a similar 
development is possible for planar curves (and, dually, for 
cones): one obtains, in general, a projective arc and one sin­
gle projective curvature, an exception being formed by con­
ics (no projective are, no invariants).4 As we have seen, 
however, consideration of these objects would be necessary 
only for signature + + - - in M4 or for complexified 
M4 • In this paper we generally skip this topic and now turn to 
the reality constraints. 

C. Reality constraints 

For a twisted curve {et(A)} in peT), which together 
with its tangents is contained in PN, we have already de­
duced from the reality condition on its tangents X = tAt' 
that (tIt) = (tit') = (t'lt') = 0. Since A isreal andXis 
real, X' is real, and from X' = tAt" it also follows that 
(t It") = (t" It") = 0. [Note that the Hermitian property 
of ('1') allows us to deduce only (t'lt) + (tIt') == 
2 Re(t It') = Ofrom (t It) = 0, etc., by differentiation!] We 
now complete a table (t (q) It (p» of ( '1' ) scalar products for 
O<p <4,0 <q<3,putting (t"lt"') =:iR,(t"'lt"') =:S, 
(t"'lt lv

) = : iT(whereR,S, and Tarereal),exploitingall 
known (vanishing) scalar products as well as the normaliza­
tione(t,t ',t" ,t"') = - 1 which implies det (Table II without 
last column) = 1 (see Table II). [A sign convention on 
( '1' ) has also been made that is not yet fixed by the relative 
normalization between e and ('1' ).] To establish the rela­
tion of R, S, and T to a, 13, and y introduced earlier, we 
compare the last column of Table II with the values of 

(t (p) It IV) = (t (p) lat + f3t' + yt"), for p = 1,2,3. 

We obtain 

y=R = real, 
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TABLE II. The scalar products (t(q) It(P) ). 

q/p 0 2 3 4 

0 0 0 0 i 0 
1 0 0 -i 0 -iR 
2 0 0 iR -S+iR 
3 -i 0 -iR S W+iT 

/3 - y' = is = pure imaginary, 

a - ! (/3 - y')' = - T - R 2 = real, 

verifying our earlier statement that the weight 3 (resp. 4) 
quantity is pure imaginary (resp. real). At the same time we 
see that we have two real fundamental invariants in the gen­
eral case S =1= 0 and one in the special case S = 0, except for 
the conformal cubic null helix, which has no invariant pa­
rameter and no invariants. 

The explanation for this latter fact lies in the large invar­
iance group the twisted cubic possesses, and the fact that all 
twisted cubics are projectively equivalent. This is conve­
niently described in twistor terms as follows. In the paramet­
ric representation given earlier, where to, to, t;;, t;;' satisfy 
the values of the ( '1') scalar products given in Table II with 
R = S = 0 together with eCto,"') = - 1, we go over to a 
pair of "homogeneous parameters" Sl, ? by A-+?/sl, 
t(A) -+ (Sl) 3t (A). Now think of the s4 as components of a 
vector s in a real two-dimensional vector space S, referred to 
a basis {b l ,b2}: s = s4 b A' Form the symmetrized tensorial 
power V 3S C of its complexification SC and choose an isomor­
phismj: V 3S C 

-+ T (which are both complex four-dimension­
al) mapping the product basis vectors b ~ 3, 

b ~ 2 V b2, b l Vb i 2, and b i 3 ( V indicates symmetric multi­
plication) to to, t 0/3, t;; /6, t;;' /6, respectively. Then our 
curve and its complexification arises from composing withj 
the "Veronese imbedding" S-+S v 3 ofS into V 3S and SC into 
V 3sc, as the image of peS) and P(SC), respectively. The 
scalar product restrictions on to, ... guarantee that peS) is 
mapped into P N. The pullback of the Hermitian form (t It) 
by (jo Veronese) is the cube of an indefinite Hermitian form 
on SC whose zero set on P(SC) is the "Staudt chain" 
peS) CP(SC), 10 or, in simpler terms, real A lead to a curve 
on PN. Consider now an arbitrary (real) unimodular linear 
transformation A of S, then jo A v 30r I will not lead out of 
the image of S. Therefore the cubic null helix has a three­
parameter conformal invariance group (locally) isomorphic 
to SL( 2,R), acting triply transitively; thus explaining the 
absence of any conformally invariant parameter. [We have 
already written down a Killing field of M4 admitted by the 
example of a cubic null helix given in Sec. II A; two other 
independent conformal Killing fields admitted by it are giv­
en by 

x -Xo + ![(xo ' (x - xo»)x;;' - (x;;" (x - xo)}xo] 

and 

(xo' (x - xo) Ix;; - (x;;· (x - xo) }xo 

+ j [(x - XO)2X;;' - 2(x;;" (x - xo) }(x - xo)]. 
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One can check that the Lie brackets of these three conformal 
Killing fields, suitably scaled, correspond to the Lie algebra 
of SL( 2,R).] The conformal equivalence of all twisted cu­
bics on PN follows from the fact that all quadruples t t' 0' 0, 

t;;, t;;' satisfying e(to,"') = -1 and the "antidiagonal" 
form of the ( '1' ) scalar product table with R = S = 0 can be 
transformed into each other by the group of complex linear 
transformations that preserve e and ('1'), i.e., the twistor 
group [:::::SU(2,2)]. 

D. Relation to the invariants of the six-vector formalism 

We still have to relate the invariants obtained in this 
section to the ones of the V6 formalism. First note thatX(A,) 
is real in the sense of reality that we have introduced in A 2T. 
[So far we have used only the consequences 
Ctlt) = (tIt') = (t'lt') =0 of the reality condition 
hA 2X =.X on X = tAt'; however, taking the only nontri­
vial contraction (viz. with t" At"') of this condition, we ver­
ify that tAt' itself, and not just a suitable complex multiple of 
it, satisfies the condition, due to our normalization 
e(t, ... ,t"') = - 1.] ThereforeallderivativesX(p) arerealbi­
vectors as well. From the differential equation it satisfies, we 
now also conclude that the bivector H introduced above is 
real, HEV 6' but not simple. From the definition po G: = 
(.FIG) =. (FAG) of the scalar product in A2T, we can 
express theX(P) 'X(q) in terms of a, /3, and ror R, S, and T, 
using the list of the X(p) in terms of the t(P) given earlier. In 
this way we indeed reproduce Table I with the following 
identifications: 

!K=r=R, 
!J = a - Vl' - aY = a - !(P - y')' - !r" - aY 

= -T-IR2-!R". 
Instead of identifying L in terms of a, /3, and r, we identify 
the numerical factor 

- 8ECtAt', tAt",tAt"',t' At",t' At"',t" At"') 

between E(X, ... ,Xv ) and (/3 - y'). If e l , e2, e3, and e4 are 
from T and ejk : = ej A ek , we already remarked that 
e(e l ,e2,e3,e4) and E(eWel3,eWe23,e24,e34) vanish simulta­
neously, so 

E(e I 2, ... ,e34 ) = c(e(e l ,e2,e3,e4 »)\ 
for some OtcEe, and we can determine C from the require­
ments that E give ± I upon evaluation on a'-orthonormal 
basis in V 6 and that the e have absolute value 1 when evaluat­
ed on a ( '1' ) -orthonormal basis in T. Let e l e2, e3 , and e4 now 
be the unimodular orthonormal basis in T used in Ref. 7 and 
17I/Y'1, ... ,7]~Y'1 be the orthonormal basis ofV6 constructed 
from it in that paper. Let the orientation of V 6be given by 
7]1,.··,7]6 in that order. Then from the expressions of 7]1"" in 
terms of e l , ••. given in Ref. 7 we deduce 

1 = E(7]I/Y'1, ... ) = iE(e12, ••• ,e34 ) = iC'1 3
; 

hence C = - i and therefore 

E(X, ... ,Xv) = - 8(/3 - y')( - i)( - 1)3 = 8S. 

This completes the relationships between the twistor and six­
vector formalism. 
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At the same time we have verified all the results claimed 
in the Introduction. 

V. CONCLUDING REMARKS 

In the preceding sections we have found conformally 
invariant parameters and a fundamental system of differen­
tial invariants for null curves in conformally flat space-time. 
The technique was to use a formalism that makes conformal 
invariance manifest. Now conformal invariance a fortiori 
means Poincare invariance, and in Sec. II A we have recapi­
tulated a formalism that gives a fundamental system of in­
variants for null curves under the Poincare group. There­
fore, an alternative approach to the problem of conformal 
invariants would be to make an ansatz for the conformal 
invariants in terms of Poincare invariants and to work out 
the consequences of additional invariance under infinitesi­
mal scale transformations and "conformal boosts." We do 
not carry this out here but only indicate how the result is 
derived in our formalism. We take the invariants from the 
manifestly conformally covariant formalism and insert, in­
stead of X(A), the expression (x,(1-x2)/2,(l +x2)/2), 
the invariant parameter of Sec II A, so that X,,2 = - 2; then 
automatically 

X,,2 =X"2 + (1 - X2)/2)"2 - (1 +x2)/2)"2 = - 2 

is normalized properly. The equations x' = S ® t, 
e(S,S') = 1,S" = IS of Sec. II A allow us to express all prod­
ucts x(P) • x(q) in terms of I and its derivatives and thus all 
conformal invariants in terns of I and is derivatives. 

Let us illustrate this first for the weight 3 quantity 
E(X, ... ,Xv ). Adjusting the orientation ofM4 , given by its e­
tensor, properly relative to E, we obtain 

E(X, ... ,X v ) = - 2e(x',x",x"',xv ) 

- 2(e(x',x" ,x''',xIV )', 

and, observing that (s®t ± S' ®t')lv'2, (s®t' + S' ®t)/ 
V1, and (S ® t' - S' ® t) / iV1 form an orthonormal tetrad for 
M4 , the determinant finally becomes 8 1m I' Thus we see 
that while 1m I = 0 has the only Poincare-invariant signifi­
cance, mentioned in Sec. II A, that the curve stays in a fixed 
timelike hyperplane, 1m I = const, has the conformally in­
variant meaning that the curve stays in a fixed timelike 
pseudosphere (x - a)2 = - ~ or a timelike hyperplane 
(the value of the constant 1m I, related to the radius r, is not 
conformally invariant). (It is, of course, possible to verify 
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these statements directly in the formalism of Sec. II A.) 
Similarly, we find 

4y= 4R = 2K=X",2 =X",2 = 8 ReI, 

8[a - ~(P - y')' - ~y" - ~r] 

=2J=X IV2 =XIV2 = -32(ReI)2-8(1mI)2, 

which show that the conditions I = 0 and a = P = r = 0 are 
equivalent. Here we see without carrying out the twistor 
transformation explicitly that the cubic null helix, referred 
to the Bonnor parameter, corresponds to a twisted cubic in 
PNCP(T), referred to a projective parameter. More gener­
ally, these formulas allow us to go over fro81 Bonnor's pa­
rameter to the conformal arc or the Fubini-Cech parameter 
and, using the transformation formulas y-+Y, a-+a, to find 
the conformal invariants in terms of I. We do not write down 
the expressions explicitly, however. 
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The geometry of twistors for (2 + 1) -dimensional flat space-time is described. Functions on 
twistor space generate solutions of various field equations in space-time. As an illustrative 
example, it is shown what a sine-Gordon soliton looks like in this twistor description. 

I. INTRODUCTION 

Twenty-two years ago, a paper entitled "Twistor alge­
bra," by Penrose, appeared in this journal. I It introduced 
twistors in (3 + 1) -dimensional Minkowski space-time. 
The analogous structure for (2 + 1) -dimensional flat space­
time is in some ways simpler, but has not received much 
attention. It does, however, have many potential applica­
tions, some of which are mentioned below. This paper will 
explore some of the features of (2 + 1) -dimensional twistor 
theory. 

The starting point is a two-dimensional real twist or 
space N (the points of which correspond to null planes in 
R2+ I ); functions on N correspond to solutions of various 
massless field equations on R2 + I. A more geometrical de­
scription is obtained by complexifying N, to yield a two­
complex-dimensional twistor space T. Roughtly speaking, 
points in T correspond to directed timelike lines in R2+ I. 

Holomorphic vector bundles over T correspond to 
Yang-Mills-Higgs fields in R2+ I satisfying a set of nonlin­
ear first-order equations (the hyperbolic analog of the Bogo­
molny equations for monopoles in· R3). There are many re­
ductions (i.e., special cases) of these equations which are of 
interest; examples include the Einstein vacuum equations 
with cylindrical symmetry, and (1 + 1 )-dimensional soliton 
equations such as Korteweg-de Vries, nonlinear Schro­
dinger, and sine-Gordon. By way of example, the one-soli­
ton solution of the sine-Gordon equation is described from 
this point of view. Of course, the equations just mentioned 
are already well understood. But the twistor picture may be 
useful in providing a unified geometrical description of all of 
them. 

II. TWISTORS IN 2+1 DIMENSIONS 

Let us begin by recalling one of the approaches to twis­
tors in (3 + 1) -dimensional flat space-time R3 + I. More de­
tails may be found in Refs. 2-4. One starts with the space Ns 
of null geodesics in R3+ I, which is five-dimensional; in fact, 
Ns is S 2 X R3 as a real manifold. But it has some additional 
structure (arising from the conformal structure of space­
time), namely a CR structure. s This is the structure inherit­
ed by a real hypersurface in complex manifold. So Ns sits 
naturally inside a three-dimensional complex manifold T3• 

Now T3 is not uniquely determined by N s; roughly speaking, 
that part of T3 which lies close to Ns is determined, but one 
can analytically continue away from this in many different 
ways. The simplest choice is to take T3 to be the complex 
projective space P3, and this is the standard flat (projective) 

twistor space. This choice also effectively compactifies Ns to 
Ns, the space of null geodesics in compactified Minkowski 
space-time. The spaces Ns and T3 = P 3 are homogeneous, 
being acted on transitively by the conformal group in 3 + 1 
dimensions, and its complexification, respectively. 

A point of Ns corresponds, of course, to a null geodesic 
in space-time. Points of P-Ns can also be pictured in space­
time: they correspond to twisting congruences of null lines 
(Robinson congruences); hence the name "twistor." 

Let us turn now to (2 + 1 )-dimensional flat space-time 
RZ + I, and see how the situation differs. In this case, the 
space N3 of null lines is three dimensional, but it does not 
have a natural CR structure. So one's first guess, that there 
should be a two-complex-dimensional twistor space in 
which N3 sits as a real hypersurface, is wrong. Instead of N 3, 

the correct space to use is the space N of null planes in R2 + I, 

which is two dimensional. In fact, N is S I X R as a manifold: 
if (t,x,y) are the usual space-time coordinates, then a null 
plane is given by an equation of the form 

t + Y cos e + x sin e = aJ, ( 1 ) 

where (e,aJ)E S I X R are constant real numbers. This gives a 
one-to-one correspondence between null planes in R2+ I and 
points of S I X R. 

A more invariant description can be arrived at by mak­
ing use of the fact that the identity-connected component of 
the (2 + 1) -Lorentz group 0 (2,1) is double-covered by 
SL (2,R); so spinors are two-component real objects 1T A' 

A = 0,1. The space-time coordinates may be rearranged as a 
symmetric two-spinor, 

XAB = [t + y x ] . ( 2 ) 
x t-y 

The space-time metric is 

ds2 = 'l'l dxP dx v 
'/pv 

_ dt 2 + dx2 + dy2 

- !dXAB dXAB • (3) 

(Spinor indices are lowered with the alternating spinor £ AB' 

as usual.) 
An SL(2,R)-invariant description of null planes is as 

follows. Let 1TA be a nonzero real spinor (i.e., 1To and 1T1 not 
both zero) and aJ a real number. These parameters deter­
mine a null plane by 

(4) 

Clearly (aJ, 1TA ) are homogeneous coordinates for N, in the 
sense that (A. zaJ, A.1T A ), where A. is any nonzero real number, 
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determines the same null plane as (w, 1T A ). If we put 
1TO = cos!O and 1T1 = sin !O, then (4) reduces to (1). 

Solutions of the wave equation in R2 + I can be generated 
from functions on N: iff = f(w,O) is a smooth function on N, 
then 

(21T 
q;(t,x,y) = Jo f(t + Y cos 0 + x sin O,O)dO (5) 

is a solution of the wave equation Dq; = O. This is the Lorent­
zian version ofWhittaker's6 famous formula for solutions of 
the Laplace equation in R3. The discussion in Ref. 6, which 
uses a power-series argument, demonstrates that all real­
analytic solutions of Dq; = 0 can be obtained (locally) as in 
(5). To deal with nonanalytic solutions, one could adopt a 
purely "real" approach, and study the integral transform 
(5) from the point of view of real analysis. For example, 
such an approach is employed in Ref. 7, which deals with the 
closely related problem of the self-dual Maxwell equations in 
R2+2. Also, (5) is related to the Radon transforms between 
functions on N and functions on R2 (this R2 being thought of 
as an initial-data surface, such as t = 0, in R2 + I ). An alter­
native way involves working with the complex twistor space 
T (introduced below), and using cohomology and hyper­
functions, along the lines of Ref. 9. This subject will not be 
pursued further here; some remarks on cohomology are 
made in the next section. 

Whether one stays with the real space N, or works with 
its complexification T, is partly a matter of taste. As far as 
nonlinear problems are concerned, the complex approach is 
more geometrical, and in some cases reduces to algebraic 
geometry; from now on, we shall use the complex frame­
work. 

The complex twist or space T is a two-dimensional com­
plex manifold, a complexification of the two-dimensional 
real manifold N. The most natural complexification is ob­
tained by simply allowing the homogeneous coordinates 
(W,1TA ) to become complex. So T is eX (e2 

- {a}), fac­
tored out by the equivalence relation 

(A 2w,A1TA ) - (W,1T,4), (6) 

where A runs over the nonzero complex numbers. Now 
e2 

- {O} factored in this way is just the complex projective 
line lP'1' So T is a holomorphic line bundle over PI; from (6) 
it follows that T is in fact the holomorphic tangent bundle of 

PI' 
This space T (sometimes known as "minitwistor" 

space) was used 10.11 in discussing monopole solutions on 
Euclidean three-space R3. In fact, one could begin with a 
purely complex description, defining T to be the space of all 
complex null planes in e3 (with respect to the complexified 
Euclidean metric); then different "reality structures" on T 
correspond to different signatures for the underlying real 
metric. The one used in Ref. 10 is relevant to the signature 
+ + +, whereas the one used here is relevant to - + +, 

and consists of the complex conjugation operation 

(W,1To,1T1 )f---+«(ij',1To,1TI ). (7) 

Since T is a bundle over PI' there are a natural family of 
curves in T, namely the holomorphic sections of the bundle. 
These form a three-complex-parameter family (in fact, they 
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T 
1. 

FIG. I. The correspondence between R2+ I and T. 

are parametrized by the space e3 referred to in the previous 
paragraph). The real sections, i.e., those preserved under the 
conjugation (7), are parametrized by R2+ 1. Let us denote by 
[p' the real section corresponding to a point pin R2+ I. See 
Fig.!. 

If p and q are two points in R2 + 1, then the two curves [ 
and lq in T will intersect either at one point (in which case; 
and q are null-separated) or at two points. In the latter case, 
the two points of intersection could either be real, i.e., each 
preserved by (7) (in which case p and q are spacelike sepa­
rated), or complex, and conjugates of each other (in which 
case p and q are timelike separated). All this is easily de­
duced from Eq. (4). So we see that the causal structure of the 
space-time R2+ I is encoded into the geometry ofT. 

What do the points of T correspond to in space-time? 
Again, Eq. (4) provides the answer: if wand 1T A are fixed, 
then (4) defines an affine subspace of R2+ I. Three different 
cases must be distinguished. Let us assume that 1T I is nonzero 
(if not, interchange 1To and 1T1 in what follows), and write 
b = 1ToI1TI' V = W/1T12. SO (4) becomes 

(8) 

If v and b are both real, then (8) defines a null plane (as we 
already knew). If b is real but v is complex, then (8) has no 
solution at all. Finally, if both v and b are complex, then the 
solution of (8) is a timelike line in R2+ I. The direction vec­
tor of this line is vAB = 1T(A~), where parentheses denote 
symmetrization; in (t,x,y) coordinates, this direction vector 
IS 

(9) 

Clearly (v,b) and (11,;) determine the same line. To elimi-

T 

past 

r...t < 0 
• r 

FIG. 2. The "causal structure" ofT. 
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nate this redundancy, we may regard the line as being orient­
ed: to the future if 1m ; > 0, and to the past if 1m ; < O. 

To sum up: the minitwistor space T is divided into two 
hemispheres 1m;> 0 and 1m ; < 0, separated by an equator 
1m ; = 0 (see Fig. 2). A point Z in the region 1m ; > 0 corre­
sponds to a future-directed timelike line L z in R 2+ I (each 
point on L z corresponds to a real section of T passing 
through both Z and Z: see Fig. 1). Similarly, points in 
1m ; < 0 correspond to past-directed timelike lines in R2 + I. 

Most points on 1m ; = 0 do not correspond to anything in 
space-time, but some (namely those with v real) correspond 
to real null planes. 

III. MASSLESS FIELDS, COHOMOLOGY, AND 
COMPACTIFICATION 

The integral formula (5) for solutions ofO(j? = 0 can be 
recast in terms of sheaf cohomology and complex contour 
integrals on T. The ideas are the same as for four-dimension­
al space-time2-4,12; the following is a brief description. 

Let Mbe a neighborhood of some section Ip in T. Cover 
M with the two sets 

u= {lm;>O}nM, U= {lm;.;;;O}nM. (10) 

(Strictly speaking, we should take U = {1m;> - dnM, 
where e is some positive number; and 1m ; < e in the defini-

A "'-

tion of U. In other words, U and U are "hemispheric" open 
sets whose intersection contains the equator 1m Ii = 0.) Let 
/ = /( w, 1T A ) be a holomorphic function on un U, homoge­
neous of degree - 2. [We say that/is homogeneous of de­
gree n, and is a section of the sheaf & T (n), if 

(11) 

for all nonzero complex numbers ;/..] This J, defined on the 
"'-

overlap region un U, represents an element of the sheaf co-
homology group H I(M, & T ( - 2»). And it can be evaluated 
by a contour integral 

(j?(xtB) = 2f/(XAB1TA1TB,1Tc)1TD d~ (12) 

to give a solution of O(j? = O. The contour in (12) is the 
equator 1m; = O. If we parametrize this curve by 
~ = cot ie, then (12) is identical to (5). 

All this is easiest to handle rigorously if one deals with 
holomorphic fields (j? on the complexified space-time (;3: see, 
for example, Ref. 13. On real space-time, as mentioned pre­
viously, the situation is more complicated, since solutions 
may not be real-analytic. 

If / is homogeneous of degree - n - 2, where n is a 
positive integer, then (12) should be replaced by 

(j?AB"'D(X) = 2f 1TA1TB " '1TJ(X
PQ

1Tp 1TQ,1TR )1Ts dr 
(13 ) 

with n factors of 1T in the integrand. So (j? AB· .. D (which is 
totally symmetric) is a field of spin in, and ( 13) is a solution 
formula for the massless free-field equation 

aAE(j?AB"'D = o. (14) 

Here a AB is the spinor version of the partial derivative 
ap' = a laxp. (p = 0,1,2). For functions homogeneous of de-
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gree greater than - 2, one differentiates with respect to w in 
order to reduce the degree. For example, if/has degree 0, 
then a/law has degree - 2, and so yields a scalar field. In 
fact, this case may be viewed differently: exp(() is the patch­
ing function for a line bundle over M, and this bundle corre­
sponds to a U ( 1) gauge field, plus a scalar field, satisfying a 
set of coupled equations (see the next section). This scalar 
field is (up to a multiplicative constant) the one generated 
by a/law. 

As was remarked at the beginning of Sec. II, the stan­
dard twistor space compactifies naturally to a homogeneous 
space lP'3' and cohomology groups on lP'3 provide a descrip­
tion of massless fields on compactified Minkowski space­
time; the whole setup is conformally invariant.9

.
12 This is not 

the case for 2 + 1 dimensions and minitwistor space. Never­
theless, one can compactify T, and try to extend the solution 
formula for O(j? = 0 to this compactification. What happens 
is as follows. 

Recall that T is fibered over lP'1' with each fiber being a 
copy of C. To compactify, we add an extra section 100 : the 
resulting compact space 'if is still fibered over lP'1' but each 
fiber is now itself a copy of lP'1 (see Fig. 3). The space 'if is a 
rational ruled surface that in algebraic geometry is denoted 

S2' 
We want to consider a region Min 'if which is a neigh-

borhood of a ,!ection Ip and which also contains 100 . Let us 
take M to be T - V, where Vis some small closed neighbor­
hood of the set {;real, w = O} (see Fig. 3). The real sections 
in M (i.e., those which avoid V) are partitioned into two sets, 
corresponding to points inside the future and the past null 
cones of the origin Oin R2+ I. See Fig. 3, wherep is inside the 
future null cone. 

Now if! (w, 1TA ) is hoi om orphic on un U and homoge­
neous of degree - 2 as before, then it yields a field (j? which is 
real analytic inside the null cones, and which furthermore 
extends across t = 00. By way of example, take / (w, 1T A ) 

= w- I
• Then doing the integral (5) or (12) gives 

(15 ) 

(where r 2 = X2 + .I), the fundamental solution ofO(j? = O. 
Notice that (5) is indeed real-analytic inside the future and 
past null cones, and across t = 00 (where t = + 00 and 
t = - 00 are identified). 

The solution (15) is singular on the null cone of the 
origin. But it is easy to modify it slightly, so as to obtain a 

1. 

t--...l~ {- 0 

FIG. 3. Compactified minitwistor space 1'. 
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solution which is smooth on all of R2 + 1 and across t = 00. 

For example, 

f(OJ,1TA ) = (OJ+i~ +i~)-l 

leads to 

qJ = 21T(t2 - r2 - 1 + 2it)-1/2, 

which is smooth and single valued on R2+ I. Note that f is 
smooth on N (where OJ and 1TA are real); this is why the 
resulting field qJ is smooth [cf. (5)]. 

So it appears that extending to the compactified min­
itwistor space T corresponds to extending across infinity in 
space-time R2+ I. However, unlike the standard twistor the­
ory, the points at infinity (t = ± 00 ) do not correspond to 
hoi om orphic curves in the twistor space, at least not in any 
obvious geometrical way. This aspect should be investigated 
further. 

IV. VECTOR BUNDLES AND YANG-MILLS-HIGGS 
FIELDS 

Holomorphic vector bundles over the standard three­
dimensional twistor space correspond to self-dual gauge 
fields in four-dimensional space-time (real or complexi­
fied). 3.4.14 The "mini" or reduced version of this is that bun­
dles over T correspond to gauge fields in three-space, satisfy­
ing the Bogomolny equations. The form in which this 
correspondence is best known is the positive-definite one, 
relating to monopoles on Euclidean three-space. lD

•
11 In this 

section, we study the correspondence for gauge fields on 
R2+1. 

The construction works for any gauge group, but for 
simplicity let us take the group to be SU (2). So a gauge 
potential AI' is a one-form on R2+ I taking values in the Lie 
algebra su(2), i.e., each of Ao, AI' and A2 is an anti-Hermi­
tian trace-free 2 X 2 matrix. The gauge field is 

Fl'l' = al'Av - avAI' + [AI'.Av ]· 

In addition to the gauge field, one has an su(2)-valued scalar 
field cf> (the Higgs field). The Bogomolny equations are 

Df'Q> = !El'u{3F a fJ, (16) 

where El'ufJ is the alternating tensor. [We adopt the sign con­
vention EOl2 = - 1, with metric having signature - + +, 
cf. (3).] 

Equations ( 16) are hyperbolic, and so describe the time­
evolution of the Yang-Mills-Higgs system in R2+ I. Note 
that (16) implies the covariant wave equation 

DI'DI'Q> = 0, (17) 

by virtue of the Bianchi identity on Fl'l" In addition, (16) 
implies that 

DI'Fl'v = !EufJ,' [F u!3,Q>]. (18) 

Equations (17) and (18) are the Euler-Lagrange equations 
obtained from the Lagrangian 

L =! tr Fl'vFf'l' - tr(DI'Q>)(DI'Q>), (19) 

where tr denotes trace. In other words, the solutions of ( 16) 
are also solutions of the equations of motion obtained from 
(19). However, (19) is not exactly the usual Yang-Mills­
Higgs Lagrangian, because in the latter the relative sign be-
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tween the two terms is + rather than -. One consequence 
of this change is that the conserved energy functional ob­
tained from (19) is not positive-definite. Indeed, this energy 
density vanishes identically for solutions of ( 16). This mat­
ter will be returned to later, after the following description of 
how to construct solutions of (16). 

Solutions of (16) on R2+ I may be generated from holo­
morphic rank-two vector bundles E over T, satisfying 

(A) for every real section of a of T, E 1 a is trivial; 

(B) det E = I and E has a "real structure." (20) 

Condition (A) guarantees that the gauge field that will be 
constructed, is smooth (in fact real-analytic) on R2 + I. Con­
dition (B) guarantees that the gauge field will be su(2) val­
ued, as opposed to merely g1(2,(;) valued; the explanation of 
exactly what (B) means will be given below. 

Let us use ~n explicit construction, covering T with two 
patches U and U, assuming E is trivial on each of these, and 
patching E together by 

¢=Ft/J, (21) 

where F is a 2 X 2 ~atrix of holomorphic functions on the 
overlap region un u. It is convenient to transform the coor­
dinate ; by a fractional linear transformation 

A = (; - i)/(; + i), (22) 

and to ~e A instead of; as the coordinate on P I' The patches 
U and U used before [cf. (10)] become 

U = {IA I<t}, 

u= {IA 1>1, including A = oo}. 
(23) 

The conjugation operation ;~; is replaced by A~A -I. The 
fiber-coordinate v [cf. (8)] is replaced by 

r=iZA+2t-izA -I, (24) 

where Z = x + iy = Xl + ix2
, and t = xO. So rA and r A -I 

serve as fiber-coordinates on T, for IA 1<1 and IA I> 1, respec­
tively. Note that (24) is preserved by complex conjugation, 
in the sense that 

r(XI',A) = r(xl') -I). 

We can now define what the conditions (B) in (20) mean: as 
conditions on the patching matrix F, they are 

detF=I, Ft=F, (25) 

where Ft is defined by 

Ft(r,A) = FCy,A -1)* (26) 

(here * denotes complex conjugate transpose). 
The procedure for constructing AI' and cf> is standard. 14 

If one restricts F( r,A) to a real section by imposing (24), 
then it is the patching matrix for a trivial bundle (by condi­
tion A), which means that it can be split: 

FCizA + 2t - iZA -t,A) = H(xl',A)H(xl' ,A)-I, (27) 

where the matrix His holomorphic for IA 1 < 1, and H for 
IA I> 1. Further, condition (B) enables us to impose H t 

=H- I and detH= 1. [Here Ht(xl',A): =H(xl',A -1)*, 

cf. (26).] The two operators 

ot = a- -liAa z 2 t (28) 
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each annihilate the expression (24), and hence annihilate 
the left-hand side of (27). Acting on (27) with c'l therefore 
gives 

H-Ic'lH=H-Ic'lH, (29) 

and each side of (29) must be linear inA -I. SoH -1c'lH has 
the form 

H-Ic'lH=!(Ax -iAy) +~ -1(<I>+iAt ), (30) 

for some anti-Hermitian trace-free matrices AI" <I> which 
depend only on xl' (and nO!,..onA). From (29), (30), and the 
unitarity condition H t = H - I we get 

H-Ic'ltH=!(Ax +iAy ) +~(<I>-iAt), (31) 

and the consistency condition for (30) and (31) is exactly 
the Bogomolny equation (16). 

So holomorphic vector bundles over T, satisfying (20), 
generate solutions of ( 16). Not all solutions arise in this way, 
however: in particular, holomorphic bundles lead to solu­
tions that are real-analytic, whereas Eqs. (16), being hyper­
bolic, admit nonanalytic solutions. But it is certainly the case 
that one may obtain all real-analytic solutions in this way, at 
least locally (by considering holomorphic bundles over the 
neighborhood of a real line in T). And the splitting proce­
dure above works even if F is not analytic, so one can con­
struct some nonanalytic solutions as well (although in this 
case they are not related to holomorphic bundles). This 
splitting, also known as the Birkhoff decompositionl 5 or 
Riemann-Hilbert factorization, has wide applicability. 

As was remarked previously, the Bogomolny equations 
(16), or the Yang-Mills-Higgs equations (17), (18), ap­
pear not to admit a local, positive definite, conserved energy 
density. One can rewrite ( 16) in a form which does admit an 
energy functional, but the price one pays for this is the loss of 
Lorentz invariance. Roughly speaking, one expresses AI' 
and <I> in terms of first derivatives of an SU (2 )-valued field J, 
and the first-order equations (16) then become second-or­
der equations for J. The details are as follows. 

Choose a gauge such that A t = Ay and A x = - <1>. Such 
a gauge exists for solutions of ( 16); in terms of the construc­
tion described above, it corresponds to choosing H such that 
H I", ~ 1 = I [cf. (30) and (31)]. Then J: R2+ I--+SU(2) is 
taken to be a solution of 

At =Ay =1J-1(Jt +Jy ), 

Ax = - <I> =!J -IJx' 
(32) 

The integrability condition for (32) follows from ( 16), and 
in addition (16) implies an equation on J, namely 

rral' (J-1aJ) + VaE"I'Val' (J-IaJ) =0, (33) 

where va is the unit vector in the x-direction, i.e., 
Va = (0,1,0). Conversely, given a solutionJ of (33), we can 
use (32) to get a solution of (16); so( 16) and (33) are, in 
this sense, equivalent forms of the same thing. Equation 
(33) is a "chiral equation with torsion term" which admits a 
positive-definite conserved energy functional 16, 17 (rewritten 
in terms of AI' and <1>, this energy density would be nonlo­
cal). The equation has soliton solutions, both lump like and 
wavelike. 16-19 
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v. REDUCTIONS AND THE SINE-GORDON EQUATION 

One may reduce the Bogomolny equation ( 16) to 1 + 1 
dimensions, by (roughly speaking) requiring the fields to be 
independent of one of the space-time coordinates. In fact, 
this can be done in several different ways. In this section, we 
shall concentrate on one example which serves to illustrate 
the general situation: the soliton solution of the sine-Gordon 
equation. But first, it is worthwhile to mention a few other 
examples. 

In order to reduce from 2 + 1 to 1 + 1 dimensions, one 
assumes that the fields are constant along some Killing vec­
tor field in R2+ I. There are several possibilities, depending 
on which Killing vector we choose. One choice is a null vec­
tor, say V = at - ay • So in this case, the fields AI' and <I> are 
assumed to be annihilated by V, and depend only on x and 
t + y. The reduced equations are then parabolic (with t + y 
interpreted as "time"), and essentially reduce to either the 
nonlinear Schrodinger or the Korteweg-de Vries equation. 20 

In other words, these well-known soliton equations are in 
effect special cases of ( 16) . 

Another possibility is obtained by using the Killing vec­
tor field V = ya t + tay. Adopting theJ description (33), we 
require that J be annihilated by V, i.e., that J be a function 
only of x and p = (t 2 - y2) 1/2 (restricted to the region 
t 2 _ y2 > 0). Then (33) reduces to 

ax (J-laJ) -p-lap(pJ-lapJ) =0. (34) 

Also, let us take the gauge group to be SL(2,R) rather than 
SU(2); this is achieved by an alteration of the reality condi­
tion (25). So Jbecomes an SL(2,R)-valued matrix. Finally, 
impose the condition that J be symmetric [which is consis­
tent with Eq. (34) ]. Then (34) is effectively Einstein's vacu­
um equation for cylindrically-symmetric space-times (with 
x playing the role of time and p as the radial coordinate). 21 

Numerous ways have been developed for generating solu­
tions of these reduced Einstein equations, and the solutions 
can be interpreted in many different ways (for example, as 
cylindrical gravitational waves, as cosmological models, and 
as "gravitational solitons"). The twistor description pro­
vides a more geometric way of constructing and interpreting 
such solutions, and may prove to be usefu1. 21 (The corre­
sponding structure for stationary axisymmetric space-times 
has already been studied in some detai1. 22

) 

Let us return now to the sine-Gordon (sG) equation. 
To obtain this, we must reduce via a constant spacelike Kill­
ing vector, say V = ax' In addition, the number of dependent 
variables is reduced by imposing algebraic constraints on the 
fields AI' and <1>, consistent with Eq. (16). The situation may 
be summarized as follows. 

Let g and rp be functions of t,y. Take AI' and <I> to have 
the form 

At = -Ay = !iguz, 

Ax = - !i(1 + cos rp)u3 - F(sin rp)u l , (35) 

<I> = F( 1 - cos rp)u3 - F(sin rp)u l , 

where uj are the Pauli matrices. Substitute (35) into the 
Bogomolny equations ( 16); the function g is easily eliminat­
ed, and the only equation that remains is the sG equation 

R. S. Ward 2250 



                                                                                                                                    

'Pyy - 'Ptt = sin 'P. 

Note from (35) that 'P and ct> are related by 

- tr ct>2 = l( 1 - cos 'P)' 

(36) 

(37) 

Of course, one already knows how to construct solu­
tions of the sG equation. The twistor picture merely gives an 
alternative (and more geometrical) view of the solutions. 
Let us see how to construct the one-soliton solution, for ex­
ample. 

The splitting procedure of Sec. IV can be carried out 
explicitly if the matrix Fis upper triangular. 14 In this partic­
ular case, take 

F(y,A) = [~ 
where the function r is given by 

ny,A) = Q -I(h -I + h t), 

Q=(A-a)(A-1-a), 

h = exp[A -ly/(1 - a 2
)] 

(a being a real number with lal < 1). 

(38) 

(39) 

This patching matrix F does not satisfy the reality condi­
tion Ft = F, but it is equivalent to one which does. Namely, 
if we multiply F on the left by 

-h -I] 
o ' (40) 

which is holomorphic on D, then the resulting matrix does 

satisfy the reality condition. (Multiplying on the left by a 
matrix which is holomorphic and nonsingular on D, and on 
the right by one which is holomorphic and nonsingular on U, 
simply amounts to a change of coordinates in the bundle, 
and does not affect A JL or ct>.) 

The gauge field generated by (38) can be expressed in 
terms of the function 

1/I(t,x,y) = f r(izA + 2t - iZA -I,A)dA /(21TiA), (41) 

which is a solution of the wave equation [cf. (12)]. The 
contour in (41) is 1,1 1 = 1. Furthermore, there is a concise 
expression for tr ct>2 in terms of 1/1, namely 

tr<l>2=~(a;-a; -a;)log1/l. (42) 

This is true no matter what r is. If we take r to be given by 
(39), then (41) yields 

1/1= [21(1-a 2 )]e-iXcosh[{3( y- Vt)], (43) 

where 

V = - 2a/(1 + a 2
), 

(44) 
{3 = (1 + a 2)/(1 - a 2) = (1 - V2) -1/2. 

And then using (37) and (42) gives an expression for the sG 
field 'P, namely 

cos'p= 1-2(a; -a;)logcosh[{3(y- Vt)], (45) 

which is the one-soliton solution of (36). 

In fact, one can check that (38) does indeed generate 
the fields AJL and ct> of (35), where'P is the one-soliton solu-
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tion (45). This way of doing things is made slightly awk­
ward by the gauge freedom in A JL ans! ct> (corresponding to 
the freedom in the matrices Hand H which split F). One 
may avoid this by using the gauge-invariant matrix J, and 
generate the appropriate solutions of (33) by using the "Rie­
mann problem with zeros." 16.18.19 

Multisoliton solutions can be understood similarly in 
this picture. One needs to use an upper triangular matrix F as 
in (38), except that A and A - 1 on the diagonal are replaced 
by A n and A - n, where n is a positive integer. In this case, 
there is a formula for tr ct>2 as in (42), with 1/1 replaced by the 
determinant of an n X n matrix of functions, each generated 
by an integral like (41). The analogous formula for multiso­
liton solutions of the sG equation is, of course, well known. 
The details of all this have not yet been worked out, but it 
might be interesting to do so. 
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An algorithm is developed for computing the nth gravitational multi pole moment of an 
asymptotically flat, empty, stationary axisymmetric space-time. The moments are expressed in 
terms of the expansion coefficients of the Ernst potential on the axis of symmetry. The values 
of the first ten multi pole moments are given. 

I. INTRODUCTION 

During the past two decades there has been slow but 
relentless progress in the theory of relativistic gravitational 
multi pole moments. These moments are expected to be an 
effective means of generating solutions of the gravitational 
equations 1 as well as defining the space of relativistic states2 

once an efficient algorithm for computing them is found. 
The basic ideas were developed by Geroch.3 He considered 
multipole moments in curved, static, asymptotically flat and 
empty space-times. The nth moment is given by the value at 
spatial infinity of a symmetric and traceless tensor 
P l'~:"'in (xi) on the background three-space4 of the timelike 
Killing trajectories. 

Hansen I and ThomeS have generalized the notion of 
gravitational multipole moments to asymptotically flat sta­
tionary space-times. Their definitions are equivalent. A 
three-space (vi( ,h) with positive-definite metric h is called 
asymptotically flat if it can be conformally mapped to a 
manifold (~,ii) and 

(i) ~ = vl(UA, where A is a single point; 
(ii) 0IA =O.iIA =0, 1>;L>kOIA =hikIA' 

- 2 where hik = 0 h ik • 

There are two sets of multipole moments describing 
mass and angular momentum, respectively, and they are giv­
en in terms of two potentials. These potentials are construct­
ed from thenormJ = K/l.K/l. and curl tP/l. = E/l.vpa KV KP;a of 
the timelike Killing field K. From the vacuum Einstein equa­
tions R/l.v = 0, the curl is locally a gradient: tP,., = tP;p' It is 
convenient to unify these potentials in the complex Ernst 
notation 

~ =J+ itP· 
The complex gravitational potential 

5= (1- ~)/(1 +~) 

is assigned the conformal weight -!, i.e., 

't= 0- 1/25, 

(1) 

(2) 

(3) 

The mass and the rotation potentials are then given by 
the real and imaginary parts, respectively, 

5 = ,pM + i,p J • ( 4 ) 

The corresponding complex multipole tensors are defined 1 

recursively: 

P (0) (xj ) = 5, 
P)I)(xi) = 5,;, 
Pl~:':.~) (xi) = <tf [Di Pln)'i 

12 n+ t n+ 1 I " 

- !n(2n - I)R;; Pl n.-:/) ], 
.l. 12 J n+ 1 

(5) 

where the symbol C(j denotes the operation of taking the 
symmetric and trace-free part. The values of the nth multi­
pole moment are given by the smooth continuation of the 
conformal image of the nth multipole tensor to the point 
AeJi. [The conformal image P I ~) .. i (xi) is defined by the 

, 2 n 

tilded version of Eqs. (5).] 
A good candidate for the study of multipole moments is 

the class of axisymmetric gravitational fields. It has been 
shown6 that these metrics are determined by the value of the 
complex gravitational potential on the axis of symmetry. It is 
the purpose of this paper to present an algorithm for com­
puting the gravitational multipole moments in asymptotical­
ly flat, empty, stationary axisymmetric space-times. In Sec. 
II we summarize the theory of gravitational multi pole mo­
ments in such space-times. The power series expansion of the 
potential't on the symmetry axis will be used in Sec. III for 
obtaining the multipole moments. In Sec. IV we shall give 
the results of the computation for the first ten moments. 

II. MOMENTS IN AXISTATIONARY SPACE-TIMES 

We first briefly review the theory of multi pole moments 
in an asymptotically flat, empty, stationary, axisymmetric 
space-time. 1 We write the metric in the canonical form 

d? = (lIj) [e2y (dp2 + d~) + p2 dcp 2] 

- J(dt - OJ dcp)2, (6) 

where the functions!, y, and OJ depend only on Xl = P and 
x2 

=Z. 

Since tensors on the symmetry axis p = ° are invariant 
under a rotation about the axis, the multipole moments 
P },~). in I A are necessarily multiples of the symmetric trace­
free outer product of the axis vector na with itself. Hansen 
has defined the scalar moments by 

Pn = (lin!) Pln)'i n i
, • .. ninl A • (7) 

, n 

Since on the axis na = (0,1,0), the moments are 
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(8) 

Using (6), the metric on the three-dimensional manifold JI 
is 

hij =(~r 
o 

o 

o 
After the coordinate transformation 

p = p/(p2 + z?), z = Z/(p2 + z?), ifJ = cp, 

the metric takes the form 

hy = ~(e~r e~r ~), 
?4\0 0 pz 

where r = p2 + z2. 

(9) 

(10) 

(11 ) 

We drop the overbar from the coordinates. Let 
:k = JI U A, where A is the origin. Let the metric on:k be 
hij = 0,2hij = r4hij' Onecaneasilyverifyt~atifrlA = 1, the 
space is asymptotically fiat. By Eq. (3), S = (1/ r) S. Then 
from the field equation for S, 
(r~~* -1)A~= 2~*[r(V~)2 + 2r~V~Vr+ ~2]. (12) 

The Ricci tensor is 

Rij = (1/D2) (GiG! + GrGj), (13) 

whereD = r~~* - I,GI = Z~I -P~2,G2 =P~I +Z~2 +~, 
and G3 = O. The Christoffel symbols, which are necessary 
for the covariant differentiation in (5), are 
ri3 = 1/p, r~3 = _pe- zr, r:1 = ri2 = - r~z = rl' 
nz = rlz = - nl = r2' and the remaining components 
are zero, where 

(14) 

It follows from Eq. (12) that ~ is uniquely determined 
by its values on the axis. Let 

~(p = 0) = i: mnzn. 
n=O 

It has been conjectured that Pn = m n • This is obviously true 
I 

for n = 0 and n = 1. For static solutions Hoenselaers has 
shown the conjecture to be true when n = 2. Furthermore 
Hansen I has given the moments of the Kerr solution as 
Pn = m (ia) n , which conforms with the conjecture for all n. 
Singer? showed that P3 = m3• But Hauser8 found the conjec­
ture to be false for n = 4 and 5. Subsequently, Hoenselaers9 

has calculated the sixth and seventh moments. 

III. GENERATING ALGORITHM 

The aim of this section is to construct a recursive algo­
rithm for generating the nth gravitational multipole moment 
Pn in terms of the expansion coefficients mk' For obtaining 
Pl~~.; ,0nehastocalculateaIPI~.-:) anda2PI~.~/) . Thus 

I 1'1 I 1'1-1 I 1'1- I 

for the nth moment one needs a~a~~ 1M where a + b<;n. 
Here ~ can be written as 

where aOj = mj. Putting this into (12) yields 

(r+2)2ar +2.s = - (s+2)(s+ 1)ar,s+z 

+ 2: akia!n [apq (p2 + q2 
k+m+p=r 
i+n+q=s 

- 4p - 5q - 2pk - 2q/ - 2) 

+ ap+ Z,q _ 2 (p + 2) (p + 2 - 2k) 

(15) 

+ ap _ 2,q+ 2 (q + 2)(q + 1 - 21)]. (16) 

Using this equation one can express the constants aij in 
terms of m k. For the calculation of a given aij one needs 
nearly all such akl for which i + j> k + /, or for which 
i + j = k + 1 and k <j. Equation ( 16) iIIE'lies that aij = 0 if i 
is an odd number, which is necessary for S to be analytic at A. 

Define 

P Cn) _ P- Cn) 
a,h,c - 1"·12···23"'3, (17) ---b 

where a + b + c = n. Invoking the forms of the Christoffel 
symbols, the recursive definition (5) of the tensors Pin).; , . 
takes the form 

P Cn) 1 '~{ a pCn-l) L.apCn-l) [( ( 1) 2 b) 2 1 ]pcn-I) a,b,c = -;;v a ap a-I,b,c + & a,b-I,c - a a - + a rl + ac; a-I,b,c 

- [2ab+b(b-1)]r2P~~b-=-\~C +a(a-1)r2p~n_-2,lt+I,e +b(b-l)rIP~n+-I,lt_2,e 

+ c(c - 1)pe-2rp~"+-l,l~e_2 - (n - n [a (a _1)Rl1p~n_-2~t,e 

+ 2abR 12P ~"---I~L I,e + b(b - 1)R22P ~~b-=-2i.e] } , 

where now the symbol C(J denotes the trace-free part only, 
For Pin).; we also get the correct value if we replace P ik)'i by 

, If I k 

(18) 

(19) 

where k < n, and Q lk'-:-i 2) is any tensor, since we get only additional terms that vanish when we take the trace-free part, As is 
, k 

shown in the Appendix, one can take the trace-free part by subtracting such a tensor. Define the tensors S ~~t,e by writing S 
instead of P everywhere in Eq. (18), adding h(i,i, Q 13~'-:-S on the right-hand side, and dropping the operation C(J. Let 
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S(O) _ pro) SO) _ pO) 
0,0,0 - 0,0,0' a,b,c - a,b,c' (20) 

Then 

(21) 

We now show that Q },k '-:i:) can be chosen such that S ~1c = 0 if c =1= O. This is obviously true for n = 0 and n = 1. Suppose that it 
is true for k < n. Obviously one has to choose Q ~1c so that Q ~~~c = 0 if c =1= O. Then S ~~~c =1= 0 only if c = 0 or c = 2. From S ~~~2 
= 0 we get 

Q~~b.(2) = [en -1)/p]e-2Ys~n+-I,I~0. (22) 

Then S ~~~c = 0 if c=j:.O. Let S ~n) = S ~~~o. The definition of the tensors P ~~~c takes theform 

S (I)_~S(O) I - 0 • 
Jp 

s(n)=~{a~s(n-I)+(n-a)~s(n-l)+a[(a+I-2n)y _a-l]s(n-I) 
a n Jp a - I Jz a I p a - I 

+ (a - n)(a + n - I)Y2s~n - I) + a(a - l)Y2S~~_-/) 

+(n-a)(n-a-l)(YI- ~)s~n+-II)-(n_ ~) [a(a-l)Rl1s~n_-/) 

+ 2a(n - a)R 12S ~"--/) + (n - a)(n - a - l)R22S ~n - 2)] } • (23) 

and 

P~~~c = 'G'(s~n»~~~,c. (24) 

where'G' denotes the trace-free part. For a given n S ~n) has only n + 1 components in contrast to the 3n components of the ten­
sor p}n)'i . 

, n 

LetRll =p2R ;1' R12 = pR ;2' R22 = R 22' YI = PYJ' and Y2 = p2y;. Then it follows from (13) and (14) thatR II' R J2' 
R ;2' Y; , and Y2 are each power series in p2 and z. Let 

Then (23) becomes 

Z (O) - f: 
o -~, Z

O) -~Z(O) 
o - 0' 

Jz 
Z (1) -~Z(O) 

I - 0 • 
Jp 

z(n) =~ {a~~z(n-I) + (n -a) ~z(n-I) 
a n p Jp a-I Jz a 

(25) 

+ a(a + 1 - 2n)y;Z ~n_-II) + (a - n)(a + n _ 1)Y2P2Z ~n - I) 

+a(a-l)Y2Z~"--21) + (n -a)(n _a_l)(p2y ; _l)z~n+-II) 

- (n - ~) [a(a - 1)R Ilz~n_-/) + 2a(n - a)R 12Z~"--/)] + (n - a)(n - a - I)R 22z~n-2)]} . (26) 

One can easily verify that Z ~n) again has the form of a power 
series in p2 and z, 

Since S ~~~c = 0 if c=l= 0, so when one takes the trace-free 
part, h 33, which is singular at A, does not occur, Hence using 
the trace-free part of s~n)lA> one gets the right value for 

P~1cl,... so 
p(n) 1 - 'G'(s(n)1 )(n) 

a,h.c A - a A a,h,c' (27) 

Using (25) we obtain thatS ~n) I,.. = 0 if a =1= O. For the calcu­
lation of the scalar moments we only need P in)'21,.., Thus we 
have to calculate the trace-free part of a tensor S;'~)'in for 
which only Si n

)'2 =1=0, and we need only the 2·,·2 compo­
nent of the result (Cf. Appendix). From the definition (7) of 
the scalar moments we get 
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(28) 

IV. THE COMPUTATION 

The computation up to the mth moment consists of the 
following steps. 

(1) The coefficients aij in the power series expansion 
(15) of 't are expressed in terms of m i using the relation 
(16). We need the coefficients aij up to i + j<,m. 

(2) The components of the Ricci tensor Rij are obtained 
from (13) as polynomials of degree m - 2 in p and z. The 
derivatives of the metric function yare then given by Eqs. 
(14). 

Fodor, Hoenselaers, and Perjes 2254 



                                                                                                                                    

(3) Computation of the quantItIes S 6°) = t, S 61
) 

= (JIJZ)S6°), and S~I) = (JIJp)S60). The polynomial 
S (0) is required to degree m, but the polynomials S ~ I) are 
needed only to order m - 1. 

e 4) Computation of the polynomials S ~n) from the re­
cursive relation (23). Their respective degrees are m - n. 
We need only the S ~n)'s for which a<m - n and a < n. 

facility for differentiation and algebraic manipulation of 
polynomials. 10 To reduce the size of computations, it is often 
advantageous 11 to drop terms containing piz j whenever 
i + j> n for some positive n. We introduce the convenient 
notation 

(5) Evaluation of Eqs. (28) for the moments Pn • 

The evaluation of the moments by computer requires a 
I 

where i > j + 1. The results of the computation of the first 
ten multipole moments are 

Po = mo, 

PI=m l , 

Pz = m z, 

P3 = m3 , 

1 
P4 = m 4 - -Mzomt, 

7 

P I M * 1M * 5=m5-- zom l -- 30m O' 
21 3 

P I M *z 5 M * 4 M * 8 M * 6 M * 6=m6+- zomo m o--- ZOm2 -- 30m l -- 31 m O -- 40m O' 
33 231 33 33 11 

P _ 3 M *z 10 M * * 5 M * 15 M *z 
7 - m7 - -- zomo m l + -- 20mOmi mo - -- 20m 3 + -- 30m O mo 

143 429 429 143 

-~M m*---±-M m*-~M m*-~M m*-~M m* 429 30 2 39 31 I 143 40 I 143 41 0 13 50 0' 

P _ 1 M *3 21M *z 2 M * * 38 M * * 
g - mg - -- 20mO mo + - 20mO m 2 - -- 20mOmi m l + -- 20mOmOm2 

143 11 143 3003 

1 M *2 M * 24 M *2 12 M * * +-- 20ml m o--- 20m4 --- 30mO m l +-- 30m Om i m O 
273 143 143 143 

14 M * 3 M *2 23 M * 3 M *2 15 M * - -- 30m 3 + - 31 m O mo - -- 31 m Z + - 40m O mo - -- 40m 2 
429 13 429 13 143 

34 M * 4 M * 45 M * 11 M * M * - -- 41 m l - - 50m l - -- 42m O - - 51 m O - 60m O' 
143 13 143 13 

P _ 1 M *2 1 M * 2 M *3 21 M *2 * 2 
9 - m9 - -- 20m3m O - -- 20mS + -- 20mO moml - -- 20m O m l mo 

221 221 221 2431 

174M * * 20 M * * 106 M * * +-- 20m Om 2m l +-- 20m Om Om 3 ---- 20m Om 2 m l 
2431 2431 17017 

41 M *z 8 M * * 7 M *3 2 - --- 20m I m l + -- 20m I momz - -- 30m O mo 
17017 2431 221 

18 M * * 112 M * * 35 M *2 --- 30mOmlmi +-- 30m Om Om 2 +-- 30m l mo 
143 2431 2431 

49 M * 24 M *2 42 M * * 7 M * --- m --- m m +-- m m m --- m 2431 30 4 221 31 ° I 221 31 0 I 0 221 31 3 

38 M *2 42 M * * 147 M * 7 M *2 - -- 40mO m l + -- 40mOmi m o - -- 40m 3 + - 41m O mo 
221 221 2431 17 

-~M m*+~M m*2m -~M m*-~M m*-~M m* 2431 41 2 17 50 0 0 221 50 2 2431 42 I 221 51 I 

-~M m*- 148 M m*-~M m*-~M m* 17 60 I 221 52 0 17 61 0 17 70 0 , 

P _ 70 M * * 63 M *2 56 M * 
\0 - mlO - -- 20m 3m Om i - -- 30m 3m O - -- 30m S 

4199 323 4199 
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13 M *3 2 42 M *2 * 727 M *z z * 
- 4199 zomo m l + 4199 zomo m l mom I - 138567 zomo momz 

38222 M * * 37 M * *z z 274 M * * + 969969 zomo mzmz - --- zomo m I mo + --- 20mO mOm4 
12597 46189 

146 M * * 683 M *z 262 M * * - --- ZOmOmlm3 + --- 20mZm l + zom l mOm3 
46189 57057 138567 

106 M * * 71 M *z 294 M *3 ---- 20mlmZml+ m m +-- m m m 46189 138567 20 0 z 4199 30 0 0 I 

168 M *z * z 4144 M * * 8960 M * * - -- 30mO m l mo + 30mOmOm3 - 30m m m l 4199 138567 138567 0 2 

3010 M *2 112 M * * 28 M *3 2 30m l m l + -- 30m l momz - -- 31 mO mo 
138567 8151 323 

264 M *2 348 M * * 4872 M * * 
--- 31 mO m2 --- 31 mOm l m l +--- 31 mOmOm2 

4199 4199 46189 

84 M *z 938 M * 28 M *3 z + -- 31 m l mo - --- 31 m 4 - -- 40mO mo 
2431 46189 323 

28 M * * 4872 M * * 84 M *2 --- 40mOm l m l +--- 40mOmOmz +-- 40m l mo 
247 46189 2431 

_ 1764 M m* -~M m*2m +~M m*m*m _ 3626 M m* 
46189 40 4 4199 41 0 1 323 41 0 1 0 46189 41 3 

42 M *2 112 M * * 392 M * 498 M *z - -- somo m l + -- 50mOm l mo - -- 50m 3 + -- 42m O mo 
323 323 4199 4199 

239·M * 210 M *z 924 M * 210 M *z --- 42mZ +-- slmo mo--- 51 m 2 +-- 6{)mO mo 
2717 323 4199 323 

_ ~ M6{)m! - 1426 M52mT _ 182 M61mT _ 168 M70mT _ 1553 M53mt 
323 4199 323 323 4199 

Note that there exist algebraic identities among the quanti­
ties Mik of the form 

m a+2M b+2 ,c + m cM a+3,b+ 1 = m b+ I Ma+3,c' 

The values of the coefficients A in) are determined by the 
conditions satisfied by a symmetric and trace-free tensor 
'1fJT, 

where a>b>c. This makes it possible to rearrange some 
terms. We have not been able to find a closed expression for 
all the terms in these results, For the Kerr metric we have 
Mik=O. 

APPENDIX: TRACE-FREE PART OF A SYMMETRIC 
TENSOR 

The trace-free part of a symmetric n-index tensor 
Ti,i, ... in = TU,i, .. in) is obtained by adding multiples ofsym­
metrized outer products of suitably many copies of the met­
ric hik with the traces of the tensor T, 

[n12] 

'1fJ(Ti .... in )i, ... in = Ti .... in + I A in )h(i,i,hi,i4
' ··hi2k_Ii2k 

k~l 
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(A2) 

Although these relations are valid generally in D dimen­
sions, we are interested here only in the values of A in) in 
D = 3 dimensions. From (A2) we then get the recursion 
relation 

A (n) _ (n - 2k)(n - 2k - 1) A (n) 

k + I - - 2 (k + 1)( 2n _ 2k _ 1) k' 

and we can define A bn
) = 1. Thus we obtain the coefficients 

A ~n) in the trace-free part (AI), 

A (n) = (- 1)mn!(2n - 2m - I)!! 
m 2m m!(n _ 2m)!(2n - I)!! 

(A3) 

As an application, we now consider a domain for which 
h22 = h 22 = 1 [This holds on the z axis of a regular axisym­
metric space with metric (3)], and compute l2 the 22· . ·2 
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component of the trace-free part of a symmetric tensor 
T

i"
" in with the only nonvanishing component T22 ... 2 , 

[n12J 

~ (Til' 'i)22"'2 = T22"' 2 + T22"' 2 LA!::) 
m~ 1 

T2·· '2n! [n/2] (_ l)m(2n - 2m - l)!! 

(2n - l)!! m~o 2m m!(n - 2m)! 

T2 ··· 2 n! 

(2n - I)!! 

lR. O. Hansen, J. Math. Phys. 15,46 (1974). 
2R. Beig, Acta Phys. Austriaca 53, 249 (1981). 
3R. Geroch, J. Math. Phys. 11, 2580 (1970). 

(A4) 

<The metric of the background space of Killing trajectories is defined by the 
projection hI" = fg", + K"K, where local space-time coordinate indices 
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are chosen IL, v, ... . The integral curves of the vector field K (or points of 
the background three-space) will be labeled by {x'}, i = 1,2,3. The com­
mutator of the covariant derivatives of a three-vector Vi defines our sign 
convention for the curvature quantities by (DiDj - DjDi) Vk = Rijhv' and 

Rile = R ~"k' 
5K. S. Thome, Rev. Mod. Phys. 52, 299 (1980). 
6W. Simon and R. Beig, J. Math. Phys. 24, 1163 (1983); F. J. Ernst, in 
Solutions of Einstein's Equations. Techniques and Results, edited by C. 
Hoenselaers and W. Dietz (Springer. Heidelberg, 1984). 

7B. Singer, thesis Universitiit Wiirzburg, 1985. 
81. Hauser, private communication. 
9c. Hoenselaers, in Gravitational Collapse and Relativity, edited by H. Sato 
and T. Nakamura (World Scientific, Singapore, 1986). 

10 At various stages of our work, we employed the algebraic language RE­

DUCE [A. Hearn, Reduce user's manual (Rank, Santa Monica, 1983) 1 
and POL YNOM (C. Hoenseiaers, preprint 1982). 

llWhen one uses a REDUCE code, this can be achieved by declaring WEIGHT 

p = 1, Z = 1, WTLEVEL n. To enable differentiation again, one can cancel 
truncation by CLEAR p, Z. 

12We are indebted to J. Revai for evaluating the sum in (A4). 

Fodor, Hoenselaers, and Perjes 2257 



                                                                                                                                    

Poisson maps and canonoid transformations for time-dependent 
Hamiltonian systems 
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After a new presentation of the geometric theory of time-dependent systems in the 
Hamiltonian formulation, using Poisson structures, a characterization of canonoid 
transformations with respect to a dynamical vector field is given. The associated constants of 
motion and the generating functions of canonoid transformations are also studied. The theory 
is illustrated with several examples. 

I. INTRODUCTION 

The symplectic geometry has been shown to be the ap­
propriate geometric setting for the description of autono­
mous systems in both the Hamiltonian and Lagrangian ap­
proaches, but conversely as far as time-dependent systems 
are concerned, there exist different alternative geometric ap­
proaches. Leaving aside the homogeneous formulations (see 
e.g., Ref. 1 and other references therein), the geometric ap­
proach developed in Ref. 2 seems to be the most often used. 
The main difference versus the time-independent approach 
is the geometric meaning of the time. While in that case the 
time is only locally defined and arises as being the parameter 
of the integral curves of the vector field responsible for the 
dynamics, in this time-dependent approach the time will be a 
new variable and curves obtained by a time reparametriza­
tion have to be considered as equivalent ones. That means 
that the relevant mathematical objects in the theory are no 
longer vector fields and its integral curves but one-dimen­
sional distributions and its integral submanifolds. However, 
use is very often made of the possibility of choosing vector 
fields representatives of such distributions in such a way that 
the parameter of their integral curves reduces to the time 
variable, up to a constant time translation. 

The geometric approach to the theory of canonical 
transformations in the time-dependent case is not so clear as 
in the time-independent one, mainly because the space is 
odd-dimensional, and the situation is worse for the theory of 
canonoid transformations. In order to elucidate the geomet­
ric meaning of the concept of canonoid transformation as 
introduced in Ref. 3, we first give in Sec. II an alternative 
approach for the description of time-dependent systems 
based on the product structure R X M, which allows us to 
define two supplementary distributions ofvertical and hori­
zontal fields and a one-to-one correspondence between these 
last fields and semibasic one-forms. By making use of these 
concepts, we introduce a Poisson bracket endowing R X M 
with a Poisson structure. An identification is also given of 
those vector fields whose integral curves are obtained as so­
lutions of Hamilton-like equations. Poisson maps and ca­
nonical transformations are analyzed from this new perspec­
tive of Poisson structures4 in Sec. III. 

We remark that not only canonical transformations in 
the phase space (those preserving the form of Hamilton 
equations of motion whatever the Hamiltonian His) may be 

relevant for solving, or at least simplifying, a specific prob­
lem. On the contrary, given such a problem, there exist other 
transformations that will also preserve the Hamiltonian 
character for the equations for this particular Hamiltonian 
Hbut may not be so for another Hamiltonian function H'. 
They are said to be canonoid3 with respect to H. The proper­
ties of such transformations have recently been investigated5 

in the time-independent case, using the tools of modem dif­
ferential geometry. In this way, previous results obtained by 
Leubner and Marte6 and by Negri et aF were generalized 
and recovered in the language of symplectic manifolds, and 
furthermore, some additional interesting properties were ob­
tained as, for instance, the existence of associated non­
Noether constants of the motion. 

One of the aims of this paper is to complete the geomet­
ric study of such canonoid transformations by covering the 
case of time-dependent systems. Consequently, the theory 
must be developed using as basic objects vector fields defined 
on odd-dimensional manifolds, and we must use constant 
rank presymplectic forms, i.e., degenerated closed two­
forms, and contact structures in the sense of Ref. 2 instead of 
symplectic manifolds. 

Once the theory of canonical transformations has been 
reviewed in this new approach, a suitable geometric defini­
tion of canonoid transformation with respect to a vector field 
may be introduced. This is made in Sec. IV, where its proper­
ties are also analyzed. The simplest case of a time-dependent 
two-dimensional system is used in Sec. V for an illustration 
of the physical meaning of the existence of canonoid trans­
formations, and their consequences are explained; they give 
rise to constants of motion of a non-Noether theorem origin. 
The more general case of a higher-dimensional system is 
then presented in Sec. VI, and as well the theory of generat­
ing functions is developed in Sec. VII. Finally, several exam­
ples are collected in Sec. VIII. 

II. TIME-DEPENDENT FORMALISM 

Let (M,@) be a 2n-dimensional symplectic manifold, 
and let N denote the product manifold N = R X M. The nat­
ural coordinate on R will be denoted t and 11' I: R X M -+ Rand 
11'2: R X M -+ Mare the projections of N onto Rand M, respec­
tively. 

The standard approach to time-dependent Hamiltonian 
dynamics uses the so-called2 time-dependent vector fields X 
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in M and their suspensions to R X M. A time-dependent vec­
tor field in M is a map X: R X M ..... TM such that 
X(t,m)ETmM for any (t,m)ERXM. Actually, these fields 
are but vector fields along the projection 'TT2. For each such a 
field X, there is an associated vector fieldXEI(N), such that 

'TT2*(t.m) [X(t,m)] = X(t,m) 

and (dt,X) = 1 (see e.g., Ref. 2). This vector field is called 
the suspension of X. 

We recall that if liJ is a two-form on a manifold P, then 
thesetR", defined by R", = {vETPli(v)liJ = o} is called the 
characteristic set of liJ. So a characteristic vector field is a 
vector field X such that Xp ER", for all pEP. Moreover, if liJ is 
of constant rank then Rw is a subbundle of TP, and if liJ is also 
closed, then Reu is integrable as well. 

Given a time-dependent Hamiltonian function 
HEC'~ (RXM), a contact form liJH is defined by 
liJH = W + dH I\dt where wEA2(RxM) denotes the two­
form defined in R X M by the pullback W = 'TT 2 * (liJ ). The 
dynamics is given by a field XH that is the suspension to 
R X M of a time-dependent field in M and is a characteristic 
field for liJ H' In this way, these fields X H represent, in this 
odd-dimensional manifold, something similar to the Hamil­
tonian vector fields in a symplectic manifold. Nevertheless, 
this usual approach presents some difficulties for giving a 
correct interpretation of some fundamental concepts, as for 
instance, the meaning of locally Hamiltonian time-depen­
dent vector fields or Poisson brackets of time-dependent 
functions. 

We are now going to introduce an alternative formalism 
in which horizontal vector fields and semibasic forms will be 
used to define a Poisson structure in N and for a geometric 
definition of canonoid and canonical transformations. 

The product structure N = R X M and the natural chart 
for R permits us to define a vector field a I at that gives a basis 
for the COO (N)-module of vertical (w.r.t. 'TT2) vector fields. 
Similarly, the one-form dt defines a 2n-dimensional distribu­
tion and the vector fields in such a distribution will be called 
horizontal vector fields: they are annihilated by the one-form 
dt. We also recall that a one-form aEA I (N) is said to be 
semibasic (w.r.t. 'TT2) if the contraction of a with any vertical 
field vanishes, i.e., i(a lat)a = O. We will denote 
IH (RXM) and A!b (RXM), respectively, as the sets 

IH(RxM) = {XEI(RxM) I (dt,x) = O} 

and 

A~b(RXM) = {aEA1(RXM) la(:J = o}. 
If {Si}, i = 1, ... ,2n, are local coordinates for the mani­

fold M, the coordinate expressions for horizontal fields and 
semibasic forms in N in these coordinates are 

and 

a X =/;(t,f;-j)-. , ~ as' 

respectively. 

(2.1) 

(2.2) 

Given a one-form, aEA1(N), we will denote asb as the 
semibasic part of a, that is, 

2259 J. Math. Phys., Vol. 30, No. 10, October 1989 

(2.3 ) 

In particular, if FEC"" (N), d'b Fwill denote the semiba­
sic one-form defined by 

dsbF= (dF)Sb=dF- {i(:JdF}dt. (2.4) 

These properties can be extended to higher degree forms, so 
any k-form 1]EA k (N) may be written as the sum of a semiba­
sic k-form 1]sb and a nonsemibasic k-form, and this splitting 
is unique. Also, d'b 1] = (d1]) sb . 

Two important algebraic identities to be used later are 

d sbF 1\ dt = dF 1\ dt, (2.5a) 

i(Xh)dSbF= i(Xh)dF, (2.5b) 

for FEC''''' (N) and any horizontal vector field 
XhEIH(RxM). 

The form W = 'TT2*(liJ) is degenerated and its kernel is 
made up by 'TT2-vertical vectors. The equation i(X)w = a has 
a solution for XEI(N) if an only if a is semibasic; for in­
stance, when a is the differential of the pullback through the 
projection 'TT2 of a function defined in M. Moreover, the solu­
tion is not unique but undetermined up to the addition of a 
vertical field. Nevertheless, we can define via w a one-to-one 
linear map between the set of horizontal fields IH (R XM) 
and that of semibasic one-forms A!b (R X M). So, if a is a 
semibasic one-form, the vector field Xu is the horizontal one 
such that i(Xa)w = a. In a similar way, for a field X in 
IH (RXM), the correspond one-form ax is determined by 

ax = i(X)w (2.6) 

and then (ax,a lat) = o. This map is a linear bijection. 
Consequently, if F: RXM ..... R is a Coo -function, then 

there is one horizontal vector field X FEIH (R X M) uniquely 
determined by the condition 

(2.7) 

Now we can give an intrinsic definition of the Poisson 
bracket in R X M as follows. 

Definition: Let (M,liJ) be a symplectic manifold and 
F,GEC''''' (R X M) be time-dependent functions. The Poisson 
bracket of F and G is the function 

(2.8) 

where X F and XG are the horizontal vector fields associated 
with F and G, respectively. 

Using the property (2.5b), we have 

w(XF,xG) = i(Xc)dSbF= i(Xc)dF, 

so that we can express {F,G} in the alternative form 

{F,G}=Xc(F) = -XF(G). (2.9) 

The set C'X> (N) is so endowed with a Lie algebra struc­
ture. The map so defined is bilinear and skew-symmetric and 
for the Jacobi identity we will obtain first the value of X{C,F}' 
If Fand G are arbitrary functions in N, then using the identi­
ty 

i( [XF,XC])W = Lx, {i(Xc )w} - i(Xc )Lx,.w, 

and the conditions defining X F and X G' we will obtain 
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iqXF,XGPW=LxF{dG- (dG, :Jdt} 

- i(XG)d {dF- (dF, :t)dt}, 

where we have also used that LXFw = d{i(XF )w}, since w is 
closed. Therefore 

i( [XF,XG])w = d(XFG) 

- [XF(dG, :t) -XG(dF, :t) ]dt, 

and taking into account that 

XF(dG, :J -XG(dF, :J = (:Jd{UJ(XG,XF)}, 

we see that 

i( [XF,xG])w = dsb{G,F}, 

and as the vector field [XF,xG 1 is horizontal, the preceding 
relation shows that 

(2.10) 

The Jacobi identity is a consequence of the fact that the two­
form w is closed. Thus dw(XF,XG,xH) = 0, and making use 
of the property (2.10), this is equivalent to the Jacobi identi­
ty for F, G, and H. 

Note that Eq. (2.10) means that the correspondence 
assigning the horizontal vector field X F to the function F is 
an antihomomorphism of Lie algebras. 

Moreover, the Poisson bracket defined by (2.8) gives a 
Poisson structure4

•
8 on the manifold N. In fact, the Leibniz 

property, 

{F,G1G2 } = G 1{F,G2 } + G2{F,G1}, 

follows from the definition {F, G} = - X F ( G), because X F 

is a vector field. The skew-symmetric two-times contravar­
iant tensor A defining the Poisson structure is defined by 

A(dF,dG) = {F,G}=w(XF,XG) = -XF(G). (2.11) 

Its rank is 2n and the kernel is generated by dt. The 
tensor A can be used for defining vector fields corresponding 
to one-forms in N and the vector fields associated to exact 
forms dF are the Hamiltonian vector fields X F. The Casimir 
functions are the 1T1-basic functions (pullback through the 
projection 1T1 offunctions defined by R), namely, arbitrary 
functions of the time t. If {Si} with i = 1, ... ,2n, are arbitrary 
local coordinates for M, then the local expression for the 
Poisson bracket and the vector field X F , respectively, is giv­
en by9 

(2.12) 

(2.13 ) 

where fk denotes the fundamental Poisson brackets 

(2.14 ) 

In particular, if {qi ,Pi} are Darboux coordinates in M 
for the symplectic form UJ, then the coordinate expression for 
the Poisson bracket {F,G} is 
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(2.15 ) 

As a first application of the above definition, we will 
deduce the geometrical characterization of the Poisson 
bracket theorem,3 according to which a time evolution of a 
system is generated by some Hamiltonian if and only if for 
every pair of dynamical variables R, S, the well-known fol­
lowing relation holds, 

:/R,S} = {~ ,S} + {R, ~}, 
that in geometric terms reads 

r({R,S}) = {r(R),S} + {R,r(S)}, 

where r is the vector field giving the dynamics. 
It has recently been proved5 that for time-independent 

systems [that is, rEX (M) 1, this relation is equivalent to r 
being locally Hamiltonian (that is, LrUJ = 0). The follow­
ing theorem presents the extension of this equivalence to the 
more general case of time-dependent systems. 

Theorem: Let (M,UJ) be a symplectic manifold and 
rEx(RXM) be a vector field. Then the relation 

r({F,G}) = {r(F),G} + {F,r(G)} (2.16) 

holds if and only if r preserves the horizontal distribution 
and Lrw annihilates any pair of horizontal fields. 

Proof· The Lie derivative of the Poisson bracket {F,G} is 
given by 

Lr{F,G} = (Lrw)(XF,XG) + W( [r,XF ],xG) 

+w(XF,[r,XG] ), 

where X F and X G are the horizontal vector fields associated 
to the semibasic differentials d'b F and d'b G. 

For w([ r,XF l,xG) we get 

wqr,xF ],XG ) 

= i(XG)(LrdSbF) - (Lrw)(XF,XG) 

= i(XG )dr(F) - {i(:JdF }{i(XG )dr(t)} 

- (Lrw)(XF,XG) 

= {r(F),G} - {{:JdF }{i(XG )dr(t)} 

- (Lrw)(XF,XG), 

where we have used that i(XG )dt = 0 and 

i(XG )dsbr(F) = i(XG )dr(F). 

A similar expression is obtained for w (X d r,x G] ), so, fin­
ally, Lr {F,G} turns out to be 

Lr{F,G} = {r(F),G} + {F,r(G)} - (Lrw)(XF,XG) 

+ [{{:JdG }i(XF) 

- {i(:JdF }i(XG) ]dr(t). 

Therefore, if we assume that r is such that (dt,r) only 
depends on t and Lrw annihilates any pair of horizontal 
fields, then the relation (2.16) is true. Conversely, if this 
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relation holds, necessarily (Lrdt)(XF)=O and 
(L r w) (X F'XO ) = 0 for any pair offunctions. 0 

Notice that the first of these two conditions, 

Ker Lr (dt) = xH(RxM) 

means that r preserves Ker(dt), or in an equivalent way, 
that the horizontal distribution xH(RxM) is invariant un­
der r, namely, 

In relation to the second condition it seems that, for those 
vector fields preserving x H (R X M), the vanishing of the re­
striction to that distribution of Lr w is the analog in R X M of 
being locally Hamiltonian in a symplectic manifold. Remark 
that this means that (LriiJ )sb = o. 

A general vector field in R X M is locally written in the 
form 

k a b k a a r=a -+ --+c-. 
aqk apk at 

Then the first condition, that characterizes only the vertical 
part of r, tells us that the coefficient c must be a function of t 
along, c = c(t), while the second one, that characterizes 
only the horizontal part, concerns the coefficients a k and bk 

by imposing the well-known relations aak laqi 
= -abklapi· 

The above theorem asserts that vector fields r, for 
which (dt,r) = c(t) =11, can be admissible for the descrip­
tion of time-dependent Hamiltonian dynamics. In this case, 
their integral curves will be parametrized by a parameter s 
that does not correspond with the time t, butdt Ids = c(t) on 
the integral curves. The following proposition studies the 
particular case of vector fields for which (dt,r) = 1 and 
gives a more direct characterization of the locally Hamilto­
nian behavior for them. 

Proposition: Let rEx(RXM) satisfy (dt,r) = 1, and 
define (;)rEA2(RXM) by 

(;)r =w+i(r)wl\dt. 

Then 

(LrW)(Xh,yh) = 0, V'Xh,yhEXH(RxM) 

is equivalent to Lr(;)r = o. 
Proof If Lr w annihilates any pair of horizontal fields, 

then we can write 

Lrw = 81\ dt, 8EA I (R XM). 

But as Lrw = d[i(r)w], we have d[i(r)w] = 8l\dt, and 
therefore 

d(;)r = d [w + i(r)iiJl\dt] 

= dw + (Lrw) I\dt 

=0. 

Since (dt,r) = 1, the vector field r is characteristic of (;)r, 
and consequently Lr(;)r = o. 

Conversely, let us assume that Lr(;)r = 0 holds. Then, 

Lrw+ [i(r)Lrw] I\dt=O, 

and therefore Lrw annihilates any pair of horizontal vector 
fields. 0 
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III. POISSON MAPS AND CANONICAL 
TRANSFORMATIONS 

The time-preserving Poisson transformations cI>: N - N 
of (N,A), i.e., such that cI>*t = t, will playa relevant role in 
the time-dependent Hamiltonian formalism in much the 
same way as in the autonomous case. They are time-preserv­
ing diffeomorphisms cI>: N - N such that cI>* A = A, or in 
other words, {F,G}ocI> = {Foct>, Goct>} for any pair offunc­
tions F,GECoo (N). A characterization of such transforma­
tions in terms of the transformation properties of w is given 
in the following theorem. 

Theorem: A time preserving diffeomorphism cI>: N-N 
is a Poisson map if and only if there exists one semibasic one­
form K such that 

cI>*w = w + K 1\ dt. (3.1 ) 

Proof The condition for cI>: N - N to be a Poisson map is 
written using the definition (2.8) of the Poisson bracket as 
follows: 

ct>* [w(XF,XO)] = w(XFo<l>,xoo<l»' V'F,GEC 00 (N), 

or in a different, but equivalent, way, 

ct>*[i(Xo)dF] =i(Xoo<l»d(Foct». 

The left-hand side of this expression can also be rewrit­
ten in such a way that the preceding relation becomes 

i( ct>-I.XO )d(Foct» = i(Xoo<l> )d(FocI», 

and this shows that cI> is a Poisson map if and only if 

ct>-I.XO = XOO<l> , V'GECoo(N). (3.2) 

If cI> is time-preserving, the image under cI> of the definition 
(2.7) of the horizontal field XF is 

i(ct>-I.XF)cI>*w = d(Foct» - ct>*( (dF, :J )dt. (3.3) 

Let us assume that there exists a semibasic one-form K 

such that cI>*w = w + K 1\ dt. By contracting this relation 
with the vector field a lat, we see that K = - i(a lat)ct>*w. 
Then, using that ct> - I. X F is horizontal since cI> is time pre­
serving, (3.3) becomes 

i(ct>-I.XF)W = d(Foct» - {i(ct>-I.XF)K 

(3.4) 

Now, taking into account that K = - i(a lat)cI>*w, the 
term i(cI>-I.XF)Kcan be replaced on the right-hand side of 
(3.4) by 

i(cI>-I.XF)i(i.)cI>*W = - (~*w )(~ cI>-l.XF), at at' 
and therefore (3.4) becomes 

= dsb(~*F). 

Since cI> is time-preserving, the vector field cI> - I. X F is 
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horizontal, and in this way we see that <I>-I,XF =Xfb<l>' 
Therefore <I> will be a Poisson map. 

Conversely, let us assume that <I> is time-preserving and 
(3.2) is true for any function GEC"" (N). Taking into ac­
count that 

i(<I>-I.XG )& = dsb(<I>*G) 

= d(<I>*G) - (d(<I>*G), !)dt 

transforms under <I> into 

i(XG)<I>-'*&=dG-<I>-'*(d(<I>*G), :Jdt, (3.5) 

together with i(XG )& = d"bG, we obtain that <1>*& - & an­
nihilates any pair of horizontal vector fields X F ,X G and since 
they give a local basis for.32 (N), there will exist a one-form 8 
such that <1>*& - & can be written as <1>*& - & = 8/\ dt, and 
then K = - <1>*8 is such that <1>*& = & + K /\ dt. 0 

Note that this transformation law can be rewritten as 
(<I>*&)sb = &. 

Lemma: Let a be a semibasic one-form. Then, a /\ dt is 
closed if and only if a is the semi basic part of a closed form. 

Proof Let 

a = a j (q\Pk,t)dqj + b i(q\Pk,t)dpi' 

the local expression of a in Darboux coordinates for &. 
Then, a is closed if and only if 

Ja j Jak Jb j Jb k Ja j Jb k 

Jqk - Jqi' JPk = JPj' JPk = Jqi ' 

and this means that there exists a function H such that 

from which we see that a locally coincides with d'b H. The 
converse is obvious because if a = fJ'b with (J a closed one­
form, then a /\ dt = (J /\ dt and therefore a /\ dt is closed. 0 

Let us remark that since 0) is closed, the semi basic one­
form K arising in (3.1) is such that dK /\ dt = 0, and accord­
ing to the previous lemma, this means that there will locally 
exist a function K<I> such that K = d'b K<I>' 

The characterization of time-preserving Poisson diffeo­
morphisms in terms of & supports the definition of canonical 
transformation, although some authors apply it only for the 
case corresponding to K being an exact form. Actually, Eq. 
(3.1) of the above theorem corresponds to the property (S) 

of Ref. 2. Hereafter we will refer to such canonical transfor­
mations as Poisson maps. When we have a one-parameter 
subgroup <I> s of such canonical transformations, then there 
will exist a family Ks of semibasic one-forms such that 
<l>s *& = & + Ks /\ dt and therefore if X is the infinitesimal 
generatorof<l>s, thenLx& = {; /\ dt, where {;is the semibasic 
one-form {; = (d /dS)Ks I s= O)Sb. The vector field X is hori­
zontal because the <l>s are time-preserving. 

The form {; also satisfies that d{; /\ dt = ° and therefore it 
is possible to find, at least locally, a function K such that 
L x& = dK'b /\ dt. This property is equivalent to saying that 
Lx& vanishes on every pair of horizontal vector fields. On 
the other hand, the condition indicating that <I> s is a sub-
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group of canonical transformation Lx A = 0, reduces to that 
of the Poisson bracket theorem because of 

(LxA)(dF,dG) 

= LAF,G} - A{d(XF),dG} - A(dF,d(XG») 

= Lx{F,G} - {X(F),G} - {F,X(G)}. 

A general vector field will be called locally Hamiltonian 
with respect to the Poisson structure A if LxA = O. Notice 
that in such a case i(X)dt must only be a function of t, be­
cause the preceding relation shows that {i(X)dt,F} = 0, 
't/ FEC'''' (RXM), and thereforei(X)dtcan only depend on t. 

Let r be a vector field in RXMsuch that i(r)dt = 1, a 
a semibasic one-form, and define O)a = & + a /\dt. Then 
i( r)O)a = 0 if and only if i( r)& = a and i( r)a = O. 

Proposition: Let a be a semibasic one-form in N. The 
two-form a /\ dt is closed if and only if da annihilates any 
pair of horizontal fields. 

Proof If a /\ dt is closed, then da /\ dt = O. This means 
that da is of the form 

da = n /\dt, nEA~b (RXM), 

and thus 

(da) (X\yh) = 0, 't/X h,yhE.32H (RXM). 

Conversely, if 

(da) (X\yh) = 0, 't/X\yhE.32H (RXM), 

we can write da = n /\ dt and 
= d(a /\dt) = O. 

therefore da /\ dt 
o 

According to this proposition, if r satisfies 
(Lr&)(X\yh) = 0, then dO)a = ° and the pair 
(R X M,O) a) is a contact manifold, 2 that is, the manifold is 
odd-dimensional and O)a is a presymplectic form of maximal 
rank. Moreover, there will exist a closed one-form {;a such 
that a = ({;a )sb. The one-form (;a can be locally expressed 
by the differential of a function H and therefore a is locally 
written as a = d'h Hand O)a as 0) H' The vector field r is then 
a characteristic field of O)a and the coordinate expression of 
r in Darboux coordinates for & is 

If <I> is a time-preserving Poisson map, then using 
<1>*& = & + K /\dt, we obtain for any (RXM,O)a = O)r) a 
new contact structure (R XM,O)/3)' with 0)/3 defined by 

=&+{<I>*r)&}Adt 

and satisfying <1>* (0)/3) = O)a' Conversely, any time-pre­
serving diffeomorphism <1>: RXM ..... RXM which satisfies 
<1>* (O)<I>.r ) = O)r for any vector field r such that i(r)dt = 1 
is a Poisson map. 

We can reformulate this last relation in a way that al­
lows us to extend the above characterization to maps be­
tween different manifolds. 

Let (Ma,O)a) and (Mb'O)b) be symplectic manifolds, 
Mab the product manifold 

Mab = RXMa XMb, 1T'i: Mab ..... RXMj, 

the projections onto RXMj , i = a,b, and 
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n = 1Ta *(Wa ) - 1Tb *(wb), 

where Wi = 1T2*(Wi ). If VEX(RxMa XMb ). we write flv 
for the two-formfl v = fi + i( V)fl A dt. Then thetime-pre­
serving diffeomorphism ~: RXMa --+RXMb is a Poisson 
map if and only if i. * (fi v) = 0 for any vector field Y of the 
form V = rx<I>. r. with rEX(RXMa ), i(r)dt = 1, G. is 
the graph of ~. and i. is the natural inclusion 
i.: G. --+RXMa XMb· 

The two-form i. *(fiv) is closed and its action on 
x(G.) is given by 

i. *(fl V )(Z.,Z2) 

= 1Ta * [wa + i( 1Ta. V)wa Adt ] (Z.,Z2) 

- 1Tb *[ Wb + i(1Tp V)wb Adt] (Z •• Z2)· 

As RXMa and G. are diffeomorphic, the fields 
Z.,Z2EX(G.) may be written as Z. = (X.<I>.X). and 
Z2 = (Y.~. Y). So 

i. *(fi V )(Z.,Z2) 

= {[ Wa + i( 1Ta. V)wa A dt ] 

- ~*[ Wb + i(1Tb• V)wb Adt ]}(X,Y), 

and if V is of the form V = r X ~ • r. i.e .• the field V is tan­
gent to G., we obtain 

i. *(fi V )(Z.,Z2) = {(wa}r - ct>*(wb). r}(Z.,Z2)· 
• 

Therefore the vanishing of i. * (fl v ) means 
<I>*(Wb) •• r = (wa)r' 

An equivalent approach is to characterize such Poisson 
maps by the condition [i. * (fi) ] sb = O. In any case, we can 
use the corresponding relation to prove, the same as for sym­
plectic transformations, the existence of a generating func­
tion. 

IV. CANONOID TRANSFORMATIONS 

The study of canonoid transformations in the time-inde­
pendent case has recently been carried out from the geomet­
ric point ofview.5

•
10 We recall that a cononoid transforma­

tion3 with respect to a Hamiltonian function H is a 
diffeomorphism that preserves the form of Hamilton's equa­
tions for this particular H. Therefore the aforementioned 
property ct>*(WK} = WH' characterizing canonical transfor­
mations. does not hold. 

We introduce next a geometric definition of canonoid 
transformation with respect to a vector field satisfying the 
conditions i(r)dt = 1, and 

(Lrw)(X".Y") = O. VX".Y"EXH(RxM). 

or in an equivalent way Lrwr = O. In the particular case of 
r being globally defined as r = X H + a !at (X H is the hori­
zontal vector field associated to HEC'" (RXM)], then the 
definition will reduce to the concept of canonoid transforma­
tion w.r.t. the Hamiltonian H. 

Definition: Let (M.w) be a sympletic manifold and 
rEX(RXM) a vector field which satisfies i(ndt = 1 and 

(Lrw)(X",Y") = 0, VX".Y"ExH(RXM). (4.1) 

Then, a diffeomorphism <l>EDiff(RXM) is called a canon­
oid transformation with respect to the field r if it preserves 
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the time and the transformed field~. rEX(RXM) is such 
that 

(L. rW)(X",Y") = 0, VX",Y"EX(RXM). 
• 

If ~ is canonoid with respect to r, then 

(L. rmHX".Y") = O. X".Y"EXH(RXM). • 
and this means that the semibasic one-form PEA • (R X M). 
defined by /3 = i( ct>. r)w. is such that the two-form wp de­
fined by wp = W + /3 A dt is closed. Therefore the pair 
(RXM,wp ) turns out to be a contact manifold2 with the 
transformed field ~. r generating the characteristic line 
bundle of wp. 

Locally. there is a function K such that the form /3 is 
given by 

/3 = dsbK, 

and therefore wp can be written as wp = W K with 
WK = W + dK Adt. In coordinates, if (q., .... q" .P.' .... Pn) isa 
set ofDarboux coordinates in M for w. we have the following 
expression for r: 

r=aH~_aH~+~ 
api aqi a( api at ' 

and therefore if ~ is canonoid with respect to r, then the 
transformed field ~. r is given by 

~ r= aK ~_ aK ~+~. 
• api aqi aqi api at 

The first thing to be noticed is that the new local Hamil­
tonian function K is determined jointly by r and ~ and that. 
according to this definition, the associated two-form WK. 
that will be invariant along the integral curves of the field 
~. r. is not given by ct>*(wK} = WH but its relation withwH 

will be, when obtained. something not so simple as a direct 
pullback. 

Moreover. the transformed field is characteristic of the 
form wp. Since i(<I>. r)wp = <I>-··[i(r)<I>*wp ], we see 
that the primitive field r is simultaneously a characteristic 
vector field for two different contact structures (R X M,wa ) 
and (RXM.ct>*wp)' This property will be proved later to 
have very interesting consequences. 

V. CANONOID TRANSFORMATIONS FOR TWO­
DIMENSIONAL HAMILTONIAN DYNAMICAL SYSTEMS 

Let <I> be a time-preserving diffeomorphism ct>: 
R X M --+ R X M. Then ~ induces for every value of t a unique 
diffeomorphism ~, on M such that <1>, (m) = 1T2o~(t.m). 

If dim M = 2, a two-form on M that is not zero at any 
point is a volume element and thus any two arbitrary nonde­
generate two-forms must be proportional. Therefore there 
will exist a function/.EC'" (M) associated to every <1>, such 
that 

ct>, *(w) =/.w. (5.1 ) 

This property will permit us to prove that, when dim M = 2, 
it is possible to express the two-form <I>*(wp ) in a form 
closely related with Wa' 

Since ct>*(dt) = dt. the pullback of wp is 

ct>*(wp } = ct>*(w) + ct>*( {J) Adt. (5.2) 
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Using (5.1), we obtain that <1>* (m) is given by 

<I>*(m) = fo> + u/, 

where the function IEC'" (RXM) is defined by 
I(t,m) = Ir (m) and the two-formUJ' involves thedt depend­
ence. This means that UJ' can be written as UJ' = 01\ dt, with 
oEA I (RXM), and consequently it satisfies the equality 

Concerning the second term arising in (5.2), using the 
definition of /3, we get 

<1>*( (3) I\dt = [i(r)<I>*(ill)] I\dt, 

and therefore it turns out to be 

<1>*( (3) I\dt =/[i(r)m] I\dt + [i(r)UJ'] I\dt. 

So combining the two expressions, we obtain 

Locally, the form UJ' reads 

UJ' = gl (q,p,t)dq 1\ dt + g2(q,p,t)dp 1\ dt, 

(5.3 ) 

where (q,p) are local Darboux coordinates for UJ in an open 
U of M and the two functions q;EC'" (RX U), i = 1,2 are 
given by 

aQ ap aQ ap 
gl=-----

aq at at aq 

and 

aQ ap aQ ap 
g?=-----, 

- ap at at ap 

respectively, where Q and P denote Q = <I>*(q) and 
P = <1>*( p), as usual. In this case, UJ a is written as UJ H , 

HEC'" (RX U), and Eq. (5.3) reduces to <I>*(UJK ) = IUJ H , a 
relation that replaces, for time-dependent two-dimensional 
dynamical systems, to the equality <1>* (UJ K) = UJ H, obtained 
in the case of the transformation <I> being canonical. 

The relevance of this function I is pointed out in the 
following theorem. 

Theorem: Let <l>Ex (R X M) be a vector field that satis­
fies (4.1) and (dt,r) = 1. If UJ u EA2(RXM) is the contact 
form associated to the field r, defined by 
UJ u = m + [i(r) (UJ)] I\dt, and <l>EDiff(RxM) is a time­
preserving diffeomorphism, then <I> is a canonoid transfor­
mation with respect to the field r if and only if the function 
IEC'" (RXM) defined by <I>*(UJ{3) =IUJu , where UJ{3 de­
notes the contact form associated to the transformed field 
<I> * r, is constant along the integral curves of r. 

Proof: If <I> is canonoid with respect to r then we have 
L¢> r (UJ/3) = 0, and so 

* 
L¢>.r (UJp) = <1>* [L r (<1>*UJ{3)] 

= <1>* [L r (/UJa )] = O. 

Now, we can write 

Lr (IUJu ) = r( I )UJu + I(LrUJa ), 

thus since LrUJa = 0, we obtain r( I) = O. 
Conversely, assume r(/) = O. Then, 
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r( j)UJa = Lr (IUJ u ) = Lr[ <1>*(UJ{3)] = 0, 

and the theorem is proved. 0 
In a similar way as was obtained for the time-indepen­

dent case,5 the function f, when expressed in local coordi­
nates, turns out to be the Poisson bracket {Q,P}. This 
theorem corresponds to the geometrical approach of the 
time-dependent case of a result by Leubner and Marte.6 It 
generalizes the canonical case for which I takes the value 
1= 1, and introduces a fundamental connection between 
canonoid transformations and the existence of constants of 
the motion. 

VI. 2n-DIMENSIONAL HAMILTONIAN DYNAMICAL 
SYSTEMS 

In this section we shall study the higher dimensional 
case, dim M = 2n > 2. In this case, the two-form UJa can be 
used for obtaining a volume element UJ:;" 1\ dt. 

We then have 

Lr (dt) = d(Lrt) = 0 

and 

Lr(UJ:;") =nUJ:;Cn-llI\LrUJa =0, 

and so UJ:; n 1\ dt is an invariant volume element for r. Ob­
serve that it follows in a similar way that UJ; n 1\ dt is a vol­
ume element invariant under the transformed field <1>. r. 
Consequently we obtain that the (2n + I)-form 
(<1>*UJp ) 1\" 1\ dt satisfies 

Lr[ (<1>*UJ{3) I\n I\dt] = O. 

Next we consider the family of two-forms 

UJ"EA2 (RxM), AER 

defined by UJ" = UJ a - A (<I>*UJ(3 ), and we denote by!lA the 
volume element generated by UJA, !l" = UJf:n I\dt. 

Proposition: !lA is an invariant volume element for r. 
Prool: The Lie derivative of fiA with respect to the field 

r takes the form 

Lr!l" = [nUJf:<n-ll 1\ LrUJA ] I\dt+ UJf:" I\Lr(dt). 

Then, since 

LrUJ" = LrUJa -ALr (<1>*UJ(3) =0, 

it follows that Lr!l" = O. 0 
From the existence of such an invariant volume ele­

ment, one is able to deduce some important properties for 
the transformation <1>. 

Two different volume forms must be proportional, so 
there is a A-dependent function I" EC'" (R X M) such that 
!l" =1" (UJ:;n I\dt). This function/A is a polynomial of de­
gree n in the A parameter, since 

!lA = i (~) ( - 1 )jA j[ UJ~ - j 1\ (<1>*UJ(3 )j] 1\ dt 
j~ I ) 

" Ia/"jUJ:;nl\dt. 
j~ I 

Then, according to the above proposition, we see that 

Lr[ I" (UJ:; n 1\ dt ] = r( fA )(UJ:; n 1\ dt) 

+ IALr (UJ:;" I\dt) = 0, 
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and this shows that the function 1:.. satisfies Lr ( f).) = O. 
Using the form off). just obtained, this last equation can also 
be written in the form 

n 

IJ..JLraj =0, 
j= I 

and as a consequence of this, we wee that everyone of these 
coefficients must be a constant of the motion Lraj = 0, 
Vj= 1, ... ,n. 

In order to present which ones are the coordinate ex­
pressions of these constants, we consider now the two sim­
plest cases n = 1 and n = 2 and assume that a = dH. 

(i) If n = 1, then 

0). = [WH -A.(<I>*WK)] Adt 

and we obtain a l = {P,Q} 
(ii) If n = 2, then 

0). = [WH -A.(<I>*wK)]2Adt 

= w~ Adt - 2A.WH A (<I>*wK) Adt 

+ A. 2(<I>*WK)2 Adt, 

and we obtain 

at = {PI,Qt} + {P2,Q2}' 

a2 = [ql,q2] [PI,P2] + [ql,PI] [q2,P2] + [ql,pJ [q2,ptl, 

where [ , ] denotes the Lagrange brackets. 
We have proved that to every time-dependent canonoid 

transformation, there will be n associated constants of the 
motion. The first of them, the coefficient aI' generalizes the 
functionfobtained for n = 1 in Sec. V, and will always corre­
spond to the sum of {Pi ,Qi }. The remaining constants of the 
motion will be different combinations of products of La­
grange brackets. These n constants are of non-Noetherian 
character and they can be nonindependent. 

VII. GENERATING FUNCTIONS FOR CANONOID 
TRANSFORMATIONS 

In the case of W being an exact symplectic form, 
W = - de, and we have WH = - deH with 
e H = e - H dt, e = 1T2*e. In a similar way, 
W K = - de K' with e K = e - K dt. Now, using these one­
forms, the property Lr (WH - <I>*wK) = 0 becomes 

d [L r (eH - <I>*eK)] = o. (7.1) 

That is, Lr (eH - <I>*eK) being closed is equivalent to <I> 
being canonoid with respect to r. This means the local exis­
tence of a function W such that 

Lr (eH - <I>*eK) = dW 

Using local coordinates, we have 

a
2
H Pk _ aH + Pk ~{H,Qk} 

aq'aPk aq' aq' 

+ {H,Pk}aQk _ aAj = aw, 
aq' at aqj 
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(7.2) 

(7.3a) 

a2H a 
--Pk +Pk _{H,Qk} 
apjapk apj 

+ {H,Pk}aQk _ aBj = aw, 
apj at apj 

a 2H a aQk 
--Pk + Pk _{H,Qk} + {H,Pk}-
ataPk at at 

- ~(H - <I>*K) _ {H,<I>*K} _ ac 
at at 

aw 
=Tt' 

where 

and 

aQk 
c=Pk --· 

at 

(7.3b) 

(7.3c) 

Given a canonoid diffeomorphism <1>, then the associat­
ed function W(q,p,t) may be considered as its generating 
function. Same as for canonical transformations, this gener­
ating function can be determined up to an additive arbitrary 
function f(t) of the time t alone. Reversing the procedure, 
given a function W, then every solution Q = Q(q,p,t), 
P = P(q,p,t) of the above equations represents a canonoid 
transformation for the Hamiltonian H(q,p,t). 

As a final comment concerning these equations, suppose 
that when studying the transformation determined by a cer­
tain function W(q,p,t), we see that in that particular case 
there is a function F such that W can be expressed as the Lie 
derivative W = Lr F. Then we obtain that the solutions of 
(7.3) will represent a transformation that turns out to be not 
only canonoid for H, but also of canonical in general. More­
over, one can prove that if we write in Eqs. (7.3) 
W = {F,H} + (aF / at), then we obtain 

aF = P _ A, aF = _ B 
aqj J J ap

J 
J' 

aF = _ (H _ <1>* K) - c, 
at 

recovering in this way the equations that characterize the 
canonicity of a transformation. 

VIII. EXAMPLES 

The resolution of Eqs. (7.3) can be a formidable task in 
the general case. If we restrict ourselves to the so-called 
"fouling" transformations I 1.12 (that is to say, time-preserv­
ing diffeomorphisms inducing the identity for the Darboux 
coordinates qk ) (see Ref. 13) for a time-independent Hamil­
tonian H = H (q,p), then the new variables are Q k = q\ 
Pk = Pk (q,p,t) , and the above equations become 

a 2H aH aAj aw 
-.-(Pk -Pk ) --.+{H,P)--=-, (S.la) 
aqJaPk aqJ at aqJ 

a 2H aw 
--(Pk - Pk ) = -, (S.lb) 
aPJPk apJ 
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a(ct>*K) {ct>*KH} = aw. 
at + , at 

(8.1c) 

As an example, we will obtain the set of all those fouling 
transformations that are canonoid for the Hamiltonian 
H = p2/2 of the free particle. 

Equations (8.1a), (8.1b) are now 

aw ap ap 
-= -p---, (8.2a) 
aq aq at 

aw 
-=p-P. (8.2b) 
ap 

This system can be integrated and solved for P as a function 
P = P(q,p,t) if and only if W satisfies the following partial 
differential equation, 

a 2w aw a 2w 
p----+--=O. (8.3) 

aqap aq apat 

The general solution of this equation is 

W = f[f h( p,q - pt)dp ]dP + P a/~:t) + a/~,t) , 

(8.4 ) 

where h( p,q - pt) and /(q,t) are arbitrary differentiable 
functions of their arguments p and q - pt, and q and t, re­
spectively. 

With this expression for W, we find that the new mo­
mentum P is given by 

P = P - fh( p,q - pt)dp _ aj(q,t) 
aq 

and that, therefore, the Poisson bracket {p,Q} becomes 

{Q,P} = 1 - h( p,q - pt). (8.5) 

That is, {Q,P} does not take the value {Q,p} = 1 obtained 
for the canonical case, but only disagrees with it by a func­
tion h depending on the three independent variables q,p, and 
t by means of U I = P and U2 = q - pt. Let us remark that 
these two functions are precisely the two independent con­
stants of the motion associated to the Hamiltonian H = p21 
2. Moreover, in the case of h( p,q - pt) = 0, we obtain 
Q = q, P= P - a/(q,t)laq, and the function Wreduces to 

W = p a/(q,t) + a/(q,t) , 
aq at 

that can be written as W = Lr / with 

a a r=p-+-. 
aq at 

Consequently, according to the comments of the previous 
section, we see that thisj(q,t) which appears as an arbitrary 
function in the general solution (8.4), in the particular case 
of ~sidering canonical transformations, turns out to be the 
generating function (in the canonical sense). 

In short, for every function Wof the form given by Eq. 
(8.4), we obtain a fouling transformation that is canonoid 
for H = p2/2 and that has an associated Poisson bracket 
{Q,p} that is a function depending on the two independent 
constants of the motion of the free particle. Conversely, from 
Eqs. (8.1 a), (8.1 b) we see that every canonoid transforma­
tion Q = q, P = P(q,p,t) uniquely determines a function W 
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of the form (8.4) up-to an additivej(t), and from Eq. (8.1c) 
we see that this ambiguity is reflected in the new Hamilto­
nian K that will also be determined up to the above j( t). 

As a further illustration, let us consider the family of 
solutions of the form 

W=/(q)p+ (lIt 2)h(q-pt) +gl(P) +g2(t), (8.6) 

wherej(q), h(q - pt), gl (p), and g2(t) are four arbitrary 
differentiable functions. We remark that when h = g2 = 0, 
then W takes the form W = j( q)p + g I ( p) and in this form, 
we recover the general form of the generating function for 
the time-independent canonoid transformations.s The new 
momentum P is given by 

P=p-j(q) -g/(p) + (llt)h'(q-pt), 

and therefore the Poisson bracket {Q,P} is 

{Q,P} = l-g1-(p) -h-(q-pt), (8.7) 

depending of the two constants of the motion in an additive 
way. Moreover, Eq. (8.7) shows that ifg1 and h are lineal 
functions, then {Q,P} = I and the transformation is canoni­
cal. If gland h are quadratic, then {Q,p} = constant and the 
transformation corresponds to the so-called extended ca­
nonical transformations (canonical transformation plus a 
scale change). 

We conclude this section with a final example. Let us 
consider now the transformation associated to the following 
function, 

W= (p2/2) + (l/6t 2)(q-pt)3. 

The equations giving the transformation are 

Q = q, P= (1I2t)(q - pt)2. 

The new Hamiltonian K = K(Q,P,t) turns out to be 

K= (lIt) [Q_j(2tP)1/2]P, 

and the new equations to be solved are 

dQ =~[Q_ (2tP) 1/2], 
dt t 

dP 
-= 
dt 
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The skew tensor field and twistor descriptions of the momentum and angular momentum of a 
classical relativistic particle are adapted to describe a uniformly accelerated particle. An 
extension, natural within the twistor framework, of the usual duality between Poincare 
momenta and symmetries yields osculating planes together with acceleration scalars as 
momenta of uniformly accelerated particles. The adapted twistor description leads to the 
construction of a local twistor attached to an arbitrary world line in a general space-time and a 
conformally invariant prescription for uniform acceleration. 

I. INTRODUCTION 

In special relativistic kinematics the angular momen­
tum of a single particle about an origin is the bivector ob­
tained as the product of position vector with four-momen­
tum. Summing over several particles and allowing the 
space-time origin to vary yields a skew tensor field which 
completely encodes the kinematical structure of a system of 
particles, including the total four-momentum, the intrinsic 
angular momentum, and (in the case of nonzero mass) the 
center-of-mass line. Fields arising this way may be charac­
terized by their particular affine dependence on position and 
also as certain types oftwistors. 1.2 In this paper it is observed 
that the description of a uniformly accelerated particle may 
be similarly encoded into a skew tensor field, now with a 
quadratic position dependence and again with a natural 
twistor counterpart. 

In Sec. II the kinematical structure of systems of parti­
cles in Minkowski space is reviewed and a skew tensor field 
that completely characterizes a uniformly accelerated parti­
cle is presented. No mention of twistors is made in Sec. II; 
readers unfamiliar with them may read this section profit­
ably. In Sec. III the connection between Minkowski space 
symmetries, kinematics, and twistors is recalled and an ex­
tension of the usual duality between momenta and symme­
tries is obtained. In Sec. IV we find twistor counterparts of 
the skew tensor fields representing uniformly accelerated 
particles and characterize the resulting twistors. In the ex­
tended duality, the new momentum (or set of conserved 
quantities) arising in the case of a uniformly accelerated par­
ticle is seen to be essentially the osculating plane of the parti­
cle together with its acceleration scalar. The concluding dis­
cussion includes a construction, based on the twistors for 
uniform acceleration, of a local twistor on an arbitrary world 
line in a general space-time and a conformally invariant pre­
scription for the notion of uniform acceleration. Also, the 
relations these twistors have with Lienard-Wiechert fields 
and the linearized curvature of the C-metric are described. 

Throughout, Minkowski space M is viewed as an ab­
stract affine space of points acted upon by a four-dimension­
al real vector space of displacements. The action of a dis­
placement va on a point x is indicated by x ~x + va. 

Otherwise, the notation for Minkowski space objects, in­
cluding spinors, agrees with that of Penrose and Rindler.3 In 
particular, gab =EABEA 'B' denotes the Lorentzian metric of 

signature ( + - - - ), the alternating tensor e abcd satis­
fies eabcdeabcd = - 24, and the dual *Mab of a skew tensor 
M ab' *M ab 1 ab M cd Fl' I . IS = ze cd . or re evant matena on tWlstors 
the reader is referred to Refs. 1 and 2, whose notation is used 
herein. 

II. SKEW TENSOR FIELDS FOR UNIFORM 
ACCELERATION 

In this section we first review the tensor field representa­
tion of "Poincare kinematics" -the momentum and angular 
momentum of systems of particles in Minkowski space. 
Then uniformly accelerated particles are represented in a 
way that generalizes this (in the case in which the mass is 
nonzero and there is no intrinsic angular momentum). 

The kinematical structure of a system of particles in Mis 
given by a skew tensor field Mab whose position dependence 
is 

(1) 

where pa is the total four-momentum and xa is the position 
vector of the point x with respect to a chosen origin o. If the 
four-momentum is timelike, then 

(2) 

where R a = PbMab and sa = Pb *Mab. The vector 
(PcpC) -IR a(x) is the displacement orthogonal to pa from x 

to the world line of the relativistic center of mass and sa is 
the Pauli-Lubanski spin vector. If k a is a Killing vector 
field, then the quantity 

~MabV akb + Pa k a (3) 

is constant. As k a ranges over the standard generators in an 
observer's coordinate system, the values obtained are the 
energy, the components of three-momentum and three-an­
gular momentum, and the coordinates of the center of mass 
of the system of particles. In a Lagrangian approach, Mab is 
in fact defined as an object dual to the Killing vector fields, 
with the above pairing.4 

Now consider a uniformly accelerated particle in M, i.e., 
a pair (m,y), where m is a positive constant (the mass) and 
y:R--.M is a path with unit future timelike tangent Y" and 
nonzero acceleration vector :ya such that the "acceleration 
bivector" 
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(4) 

is constant. Note that the positive scalar acceleration a given 
2 .••• 

by a = - Yc r may be written in terms of m and the accel-
eration bivector. Under these circumstances 

yUo + t) = o+a- 1 [(sinh at)jr(to) 

+ (cosh at)a- lycUO)], 

where 0 = Yo+ [ - a- 2ya(to)] with Yo: = y(to)' The world 
line of the particle forms one branch of a hyperbola having 
the center 0 (to be employed as the origin) and lying in the 
timelike hyperboloid xcxc = - a- 2

• The other branch will 
be called the "opposite world line." The path s I-+y( ms) is an 
integral curve of the Killing vector field 

pa(x) = mY"Uo) + Cb a(x - YO)b = Cb axb. (5) 

The above formulas hold for an arbitrarily chosen point Yo 
on the world line. 

The promised field that completely determines a uni­
formly accelerated particle (m,y) and that generalizes (1) 

in the case of a single material particle (without spin) is 
given, in the above notation, by 

Mab(X) = - 2(x - Yo)[apb[(x) 

+ !cab(x - Yo)c (x - Yo)C 

- 2x[apb)(x) + !(xcXc - a- 2 )cab. (6) 

The assertions among the following remarks may be proved 
directly with the above formulas; the results of the following 
sections may be helpful. (i) The first expression for M ab is 
independent of the choice of Yo on the world line. In fact, we 
may choose Yo on the opposite world line. Thus M ab vanish­
es on both branches of the hyperbola; these are the only loci 
where it vanishes. (ii) We have again, as in Eq. (1), 

pa = jV bMab. (iii) If pa(x) is future timelike, then the field 
R a = PbM ab at the point x is Pc (x)pC(x) times the projec­
tion orthogonal to pa(x) of the displacement from x to the 
unique world line point on the past light cone of x. Thus 
(PcpC) - 1 R a atx may be interpreted as the apparent position 
of the particle with respect to the observer at x determined by 
pa(x). The field pa becomes null on two null hyperplanes 
which are approached asymptotically by the hyperbola and 
it vanishes on their intersection-a spacelike two-plane con­
taining the point 0 and orthogonal to the osculating plane 
(determined by 0 and cab) of the hyperbola; pa is past time­
like on the opposite world line. (iv) The fieldpb *M ab, corre­
sponding to intrinsic spin in the unaccelerated case, vanishes 
identically. Where Pcpc is nonzero, Eq. (2) with sa = 0 
holds. (v) We will see in Sec. III that there is a duality in­
volving twistors which naturally extends the duality pairing 
(3). For a uniformly accelerated particle, the new conserved 
quantities that arise determine the locus of the osculating 
plane. (vi) At this point, it is clear that the particle (m,y) 
may be completely recovered from Mab. (The correct world 
line is the one on which pa is future timelike.) (vii) Finally, 
we remark that the Lienard-Wiechert field Fab of charge m 
on an arbitrary world line y, when evaluated at a point 
x=y(t) + ria (with [a null and laY" = 1) on the future light 
coneofyU),isFab(x) = -r-3M ab (x). 
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III. TWO-TWISTORS 

The twistor decription of Poincare kinematics, i.e., of 
fields of the form (1), is well known. 1,2 In Sec. IV we will see 
that there is a related twistor description of uniformly accel­
erated particles, i.e., of fields of the form (6). In this section 
some relevant facts about general symmetric two-index twis­
tors, hereafter called two-twistors, are presented. In the spir­
it of Noether's theorem concerning conserved quantities, or 
momenta, associated with symmetries, we start with the 
two-twistors most closely associated with symmetries and 
then pass to the twistors dual to these, some of which de­
scribe Poincare kinematics and some of which describe uni­
formly accelerated particles. 

A two-twistor yaP corresponds to a symmetric spinor 
field yAB on Minkowski space satisfying the two-index twis­
tor equation VA' (A YBC) = O. There is a corresponding skew 
real tensor field 

(7) 

satisfying a corresponding equation, the "tensor two-twistor 
equation": 

(8) 

The expression on the lhs of (8) is simply i times the projec­
tion of vas bc onto a certain Lorentz-irreducible subspace of 
the space of tensors t abc having the symmetry t abc = t a[ bcl. 
Looking at the remaining irreducible parts leads to the 
equivalent equation 

Vcs ab = -2gc[alJ+2gc[akbJ, 

where 

J·a_IV sab ka-IV *sab 
-, b' -, b • (9) 

If sab is a solution, then the fields)" and k a are Killing vector 
fields related by 

lab =Vakb = - ~eab cdV Jd' 

The space of solutions to Eq. (8) is a 20-dimensional real 
vector space which gets mapped onto the ten-dimensional 
space of Killing vector fields via S abl-+k a. In fact, the space 
of solutions is isomorphic to the space of (contravariant) 
two-twistors via the correspondence in (7)-and isomor­
phic to the space of dual two-twistors via (10).5 

If d ap is a dual two-twistor there is again a correspond­
ing spinor field dA'B' and a skew real tensor field A abo To 
eventually match up with usual momentum and angular mo­
mentum quantities, consider the field 

M ab: = _ !*A ab = (i/2) (d A 'B'~B _ ;jrABe4 'B'); (10) 

define vector fields pa and qa in terms of M ab, exactly asjQ and 
k a, respectively, are defined in terms of S ab in (9) and set 
rab: = VaPb· The real duality pairing between the two-twis­
tors d ap and yaP then becomes 

Re(daPyap) =!Mablab +Paka-qal'a+!rab*Sab. (11) 

This will be demonstrated presently. The salient fact about 
formula (11) is that the combination of fields on the rhs is 
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constant. With an appropriate interpretation of the fields it is 
a "conserved quantity." 

Equation (11) is obtained as follows.6 Recall that the 
spinor parts associated with a symmetric twistor d ap con­
sist of the spinor field d A 'B'-the "primary part"-and cer­
tain other spin or fields-the "projection parts" -derived 
from the twistor in an essentially algebraic way, but which 
may be obtained from the primary part by differentiation. 
This association is indicated by 

where it turns out, 

dAB' = - (i13)VAA ,dA'B', 

dAB = -iVAA,VBB,dA'B', 

and dA'B = dB A'. (When the matrix elements areevaluat­
ed at a particular point yeM the symbol':" is used in place of 
-.) The projection spinor parts Y B' A and Y A' B' of a two­
twistor yaP are obtained by conjugating the above identities 
and replacing Jj with Y. In terms of spinor parts we have 

Performing spinor-to-tensor translations of the spinor parts 
(e.g., dA'B'~B = *M ab + iM ab, d AA ' = pa _ iqa, and 
dAB € A' B' = r ab + i* r ab) and taking the real part of the 
above expansion leads to formula ( 11 ). The imaginary part 
yields an expression which, for a fixed d af3' can be made 
equal to the rhs ofEq. (11) by an appropriate choice of yaP. 

IV. TWO-TWISTORS FOR UNIFORM ACCELERATION 

In this section we first comment on the twistor descrip­
tion of Poincare kinematics and then show how uniformly 
accelerated particles, i.e" fields of the form (6), can also be 
described by certain two-twistors. In the remainder of the 
paper every simple skew twistor (XaP or xaP, say) repre­
senting a point in M is assumed to be normalized with re­
spect to the appropriate inifinity twistor laP or laP = lafJ 
(i.e., Xaf3la

fJ = X afJl af3 = 2). 
A skew field M ab has the position dependence ( 1) (with 

pO constant) if and only ifv(a·Mblc = 0, which implies that 
*Mab satisfies the tensor two-twistor equation (8). The 
structure is thus represented by a dual two-twistor d aP­
subject to a restriction involving the infinity twistor; namely, 

pa _ I a). .A ::4aAI 
P = .w 13). = .w 13). • 

(This guarantees that the primary part pAB' of the twistor 
p p is real and constant. The field pa that we have associated 
with a dual two-twistor [after Eq. (10)] is always the real 
part of this primary part. Further conditions are required for 
the primary part to be future pointing and timelike.) A few 
remarks about this well-known representation are appropri­
ate here. First, the "kinematic twistor" d ap is given expli­
citly in terms of the four-momentum P a, the Pauli-Lubanski 
spin vector sa, and an arbitrary point 0 on the world line of 
the relativistic center of mass by 
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d ap =20K(a P Pl +20KAS~P~":'(p~' 2S;;'AB.). (12) 

where OafJ represents the point 0 and PcpcSp is the unique 
trace-free twistor whose primary part is the Pauli-Lubanski 
spin vector. Next, a kinematic twistor with nonzero intrinsic 
spin may be obtained from a kinematic twistor with no 
spin-a "monopole two-twistor" -by "translating into the 
complex" 7 by - iSa. This is achieved twistorially by apply­
ing the transformation induced by the special linear trans­
formation exp (Sp) = fJp + Sp to the monopole twistor giv­
en by the first summand after the equality in (12). Finally, 
the spin vector may be extracted from the two-twistor by 
considering the trace-free part (or the primary part) of 

(13) 

(The inner product Pcpc may be expressed twistorially if 
desired.) 

Likewise, the dual of the skew field (6) that determines 
a uniformly accelerated particle satisfies the tensor two-twis­
tor equation (8). Hence this field also arises from some two­
twistor via (10). In the following we will exhibit the two­
twistor explicitly in the manner of (12), obtain it from a 
monopole twistor in the manner that (12) is obtained-by 
applying an appropriate transformation, discuss the duality 
pairing ( 11 ) for this case, and characterize the two-twistors 
that represent uniformly accelerated particles. 

The two-twistor will be exhibited in terms of invariant 
parameters of the uniformly accelerated particle, namely, 
the center 0 of the hyperbola of the world line-represented 
by OaP' the constant bivector cab = 2my[a1J'J, and the sca­
lar acceleration a. First note that cab may itselfbe represent­
ed by a two-twistor C(!aP whose only nonvanishing spinor 
part ~~ the constant spinor 9f AB = my C'A if. In fact, if tp 
and rp are the trac~-free twistors whose primary parts are 
the consta'!t ~.ectors yAA' (to) and j:-AA' (to), respectively, then 
C(!ap - mrarPXK). h X d b" - K). ,were represents an ar Itrary pomt 
in M. The two-twistor yielding the field (6) is then 

d - 2·,-"K).O 0 . -2U3 afJ - - lu Ka ).f3- la U a f3' (14) 

Again, the real part of the primary part of the twistor 
Pp = r). d P). (which in the present case is equal to 
- 2i9f ).ao).p) is the field pa given in Eq. (5). [The imagi­

nary part is the field - qa defined after (10).] The two­
twistor's relation with the kinematic two-twistor (12) is bet­
ter seen when it is expressed in terms of the twistor P p and an 
arbitrary point y = r(t) on the world line-represented by 
yaP. It turns out that 

d af3 = 2 Y/« a P /1) - 2iC(! /(). Ym Y"!P 

(15) 

This two-twistor was first obtained by "accelerating" 
the monopole two-twistor 2mOK (a T pl , where Tp is such 
that its primary part is a constant unit future timeIike vector 
[to be identified with YCto)], that is, by applying to it the 
transformation induced by a special unitary transformation 
G of twistor space which yields a conformal transformation 

Gerald Harnett 2269 



                                                                                                                                    

of M mapping the world line of the monopole to the world 
line of the uniformly accelerated particle. An appropriate 
such G is given by 

G<p = exp(2iO
aK

f';OA.u )exp( ~ ia-2f'~) 

o (o~ !ia-2~B'(to») 
~ - 2irA 'B (to) !o!: ' 

where f' was introduced in the previous paragraph. Acting 
on M, this yields the composition of the translation 

x f---+X +!a-2YC(to) 

with the special conformal transformation 

x f---+ 0+ [1 + 2rb (to)xb - a2Xbxb] -1 [XC + XdXdYC(tO) ]. 

The point 0 maps to y(to) and is the center of the resulting 
hyperbola. The transformation actually maps the monopole 
world line onto both branches of the hyperbola because the 
original world line, and hence the new one, is topologically a 
circle in the compactified Minkowski space JI, on which G 
acts. (Each ofthese circles is in fact the intersection with JI 
of the two-sphere in complexified compactified Minkowski 
space on which the primary part of the respective two-twis­
tor vanishes. 8

) The transformation is illustrated in Fig. 1 
using a standard Penrose diagram of JI. With this perspec­
tive it is easy to see that the uniform acceleration field (6) 
vanishes only on the hyperbola, as claimed in the remarks 
after ( 6). The calculation of the action of G on the monopole 
two-twistor is somewhat long; it results in Eq. (14). 

If yaP is a symmetric twistor, then 

Re(d af3 yaP) = my(tO)ak a( Yo) + !Cob *sab. 

If yaKlpK = 0, then sob is constant and we obtain only the 
second term. Such yaP may thus be construed as the "sym­
metries" dual to the "momenta" which are essentially the 
osculating planes (and acceleration scalar) of uniformly ac­
celerated particles. 

Let us characterize the two-twistors which represent 
uniformly accelerated particles.9 In what follows n apyo is 
the four-form on twistor space whose twistor conjugate 

I I 

I 

FIG, 1. "Acceleration" of a monopole world line in a Penrose diagram, 
Points with the same labels are identified, 
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n aPYo = natJyli satisfies natJyc5n = 24 The determinant apyo . 
of a two-twistor d a(J is given by 

nKA.u
v d aKd tJA d r.udov = (det d 1Tp )na{3Yo' (16) 

Theorem: Let d a(J be a symmetric twistor satisfying the 
following conditions: (i) A2: = det d ap is real and positive, 
(ii) daAdtJA = - A~, and (iii) datJdKAlaKltJA>o. 

Then d atJ represents a uniformly accelerated particle, i.e., it 
is of the form (14). 

Proof For convenience we rewrite Eq. (14) as 

d atJ = 2"KAOwOAtJ -! a- 2 2' atJ· (17) 

We begin by simply identifying the quantities involved in 
uniform acceleration in terms of d atJ. The twistor 2"a(J 

[which is - 2ica(J in (14) and which determines the accel­
eration bivector (4)] is given by 

2"a(J = d KAlaKlf3\ 

the scalar m 2/2 is identified with A, the scalar 2 (ma) 2 is 
identified with the positive constant in condition (iii) 
[whose reality, we will see, is a consequence of (ii)], and the 
center of the resulting hyperbola is the point 0 represented by 
the simple skew twistor 

Oaf3 = (ma) -2 d aKd tJArA. (18) 

Next we show that these twistors and scalars have the 
required properties. First note that (ii) implies 

(19) 

as can be seen by contracting each side of identity ( 16) with 
d ra dOT. This in turn implies that the scalar in (iii) is real 
and the twistor d aK d tJA I KA represents a point in real com­
pactified Minkowski space. The nonvanishingofthe scalar in 
(iii) implies that this real point is in affine Minkowski space. 
The fact that the scalar is real and positive is necessary to 
obtain a bivector appropriate for a timelike osculating plane, 
as follows. In terms of the spinor parts of d af3' the scalar in 
(iii) is dAB dAB. In the particular case considered in ( 14), 
this scalar was 

-4~AB~AB= _cab cab=2(ma)2, 

where ~ AB = mYC'A rf· Now the condition that the scalar 
~ AB ~ AB associated with a symmetric spinor ~ AB is real 
and negative is necessary and sufficient for the associated 
skew tensor 

Cab = ~ ABcA 'B' + C(j A 'B' CAB 

to be "purely electric," i.e., of the form CAB = U1av b J for 
some timelike U a and spacelike va (orthogonal to Ua).l0 
Thus condition (iii) is equivalent to the condition that the 
projection part dAB = - 2i~ AB yield a bivector of the re­
quired type. 

Finally, we show that our two-twistor may be written as 
claimed in Eq. (17). We already know that the normalized 
contravariant twistor representing the point 0 is simply the 
twistor conjugate of (18). Now we observe that the projec­
tion onto the two-dimensional subspace of twistor space de­
termined by laP' parallel to the two-dimensional subspace 
determined by 0 af3, is given by J <p = I aKO 13K and the com­
plementary projection is given by J;t = oaKlpK ' Thus we 
have 
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d afJ = d aJ.J~ + d aAJ;/' 
Now by using our expressions for the projections (and in 
tum for 0 afJ and its conjugate), we find that the two sum­
mands in this last identity are the two summands in (17), in 
the same order. (The first summand is unchanged under 
contraction with J ~ since its contraction with J;a vani­
shes.) Q.E.D. 

Here is a further remark on condition (iii) in the 
theorem. Assume (i) and (ti) hold. If the scalar in (iii) 
vanishes, the twistor is not necessarily a monopole two-twis­
tor (discussed at the beginning of this section), as one might 
expect. In fact, to obtain a monopole twistor, it is necessary 
and sufficient for d we d fJ)./'cA to be proportional to I afJ [cf. 
Eq. (18)]. The situation is made clear by observing that for 
any nonsingular two-twistor d afJ' the combination on the 
lhs of Eq. (19) maps simple skew twistors into simple skew 
twistors and hence induces a transformation of complexified 
compactified Minkowski space. Equation (19) implies that 
real points are mapped to real points and hence, in particu­
lar, that the point at infinity represented by the infinity twis­
tor is mapped to a real point. If this real point is in real affine 
Minkowski space, we have a two-twistor for uniform accel­
eration; if this point is the point at infinity itself, we have a 
monopole two-twistor. A third possibility-for which the 
scalar in condition (iii) is again zero-is that this real point 
is on the null cone at infinity; we do not know a simple inter­
pretation for such two-twistors. 

v. DISCUSSION 

There are several related contexts in which twistors for 
uniform acceleration appear. One, already mentioned, is 
that of Lienard-Wiechert fields of charged particles. In the 
special case of a uniformly accelerated charged particle, the 
Lienard-Wiechert field may be obtained directly from (the 
inverse of) the appropriate two-twistor by means of a twistor 
contour integral. 1.2 

Another context is that of linear gravity. Weak-field 
curvatures (i.e., tensors on Minkowski space having Rie­
mann curvature tensor symmetries and satisfying the linear­
ized Bianchi identity) can also be obtained from two-twis­
tors via certain contour integrals. From a kinematic 
two-twistor (12) one obtains a weak-field curvature corre­
sponding to one of the Kerr family of solutions; from a two­
twistor for uniform acceleration one obtains a weak-field 
curvature corresponding to the C-metric. This weak-field 
curvature has been studied by Robinson and Robinson. II 
Our construction of a twistor for uniform acceleration by 
"accelerating" a monopole two-twistor reflects the fact ob­
served in Ref. II that this weak-field curvature is a confor­
mal transformation of the linearized curvature of the 
Schwarzschild solution. 

Dual two-twistors also appear as the "charges" result­
ing from the 20 linear gravity intergals of Penrose and 
Rindler2 augmenting the usual ten two-surface integrals 
arising from total four-momentum and angular momen­
tumY We obtain an intepretation for six of the added and 
somewhat curious "ten vanishing integrals" in Ref. 2 by ob­
serving that if the weak-field curvature of the C-metric is 
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used in the 20 integrals (with the two-surface linking one of 
the singular lines), then the resulting two twistor is a twistor 
for uniform acceleration. Thus six of the ten integrals that 
vanish under the conditions considered by Penrose and 
Rindler are the six independent conserved quantities arising 
from the parameters for uniform acceleration. (These six 
integrals were also constructed by Robinson and Robin­
son. 11

) 

Twistors for uniform acceleration may have signifi­
cance in general relativity as well. A subtle modification of 
the procedure for obtaining weak-field gravitational charges 
leads to Penrose's quasilocal mass construction in general 
relativity.2,J3 Our identification and characterization of the 
two-twistors for uniform acceleration may be helpful in clar­
ifying the interpretation of the two-surface twistors ob­
tained in this context. This paper suggests that one need not 
insist that a two-surface two-twistor reduce to ten real inde­
pendent quantities in order to obtain a satisfactory physical 
interpretation. In particular, this paper is a guide to what to 
look for in the case of the C-metric. 

In general relativity we may also construct a local twis­
tor on an arbitrary timelike world line r (with raY" = I) 
simply by taking the matrix form of the two-twistor in (15) 
(with m = I) at each point r(t) of the world line. This local 
twistor encodes in a certain way the geometry of the world 
line. For a straight or uniformly accelerated world line in flat 
space this local twistor is, of course, constant. In a general 
space-time the matrix of its local twistor derivative along the 
world line vanishes except in the upper left-hand block. This 
block is essentially the anti-self-dual part of the bivector 

(20) 

where:YO = VyVyY" and Pab=i,.Rgab - ~ab is a common 
rearrangement of the Ricci tensor. A local twistor is said to 
undergo local twistor transport along a curve if its local twis­
tor derivative along the curve vanishes. If r is a geodesic, this 
occurs for the associated local two-twistor if and only if r is 
an eigenvector of the Ricci tensor. The same is true if r is 
uniformly accelerated in the sense that the Fermi-Walker 
derivative of its acceleration bivector vanishes. [This Fer­
mi-Walker derivative is the first term in (20).] We observe 
that since the vanishing of the local twistor derivative is a 
conformally invariant condition, a conformally invariant 
notion of uniform acceleration is simply that the bivector in 
(20) vanish. 

We have left open the possibility of interpreting two­
twistors that satisfy some appropriate causality conditions, 
but which are neither kinematic twistors nor twistors repre­
senting uniformly accelerated particles. We have not been 
able to find any really satisfactory physical analog for such 
other two-twistors. However, if this is possible it seems that 
such a two-twistor would describe a semiclassical particle 
with a spin vector undergoing some kind of transport along a 
curve. It should also be mentioned that higher valence sym­
metric twistors lying in certain Poincare-invariant subspaces 
of the appropriate twistor spaces represent multipole mo­
ments. 14 It is open to see whether symmetric twistors lying 
outside these subspaces represent some kind of uniformly 
evolving multipole moments. 
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One-dimensional collisions between two isotropic solids, in which the equations of physics lead 
to "multiplications of distributions," are considered. Based on this example, a general 
physicomathematical method, to be adapted to each particular case, is proposed to resolve the 
ambiguity inherent in such products. This can be achieved with the aid of a new mathematical 
theory of generalized functions, which permits dealing with mathematical phenomena of a 
microscopic nature that govern products of distributions having singularities at the same point. 
This tool has recently been applied in various situations (in continuum mechanics) in which 
the equations of physics lead to "heuristic products of distributions." One obtains new 
(algebraic) formulas in the simplest cases, and new numerical schemes in more general cases. 
The key to the resolution of ambiguities lies in more precise statements of the laws of physics 
than are permitted within distribution theory, and have no analog in classical analysis, so that 
in general a resolution cannot be obtained from "formal calculations." 

I. INTRODUCTION 

We consider a frontal collision of two homogeneous iso­
tropic solid layers with indefinite extension in the direction 
perpendicular to their common axis of symmetry, so that 
there is no "definite center." 

We assume that the physical variables depend only on x 
and t; then the general system of elastoplasticity (Appendix 
1 of Ref. 1) reduces to a one-dimensional system of five equa­
tions (plus a few other equations that are dissociated). Three 
of them express the conservations of mass, momentum, and 
energy; the two other ones are constitutive equations follow­
ing from Hooke's law when the material is elastic, and from 
(for instance) a Mie-Gruneisen equation of state when the 
material is plastic. 

Strong enough collisions produce shock waves. Then 
the system is wrought with several products appearing in the 
form of classically undefined (indeed really ambiguous) 
products of distributions. Indeed the usual formulation of 
nonlinear elasticity2 does not hold globally in the case of 
rather strong collisions, such as the ones of projectiles on 
armor; there is not even a bijective correspondence between 
the stress and the strain. One states Hooke's law as an infini­
tesimal linear stress-strain relationship in a Lagrangian 
frame of reference following the medium, and then one ex­
presses the full system in a fixed (Eulerian) frame ofrefer­
ence, since the Lagrangian frame is not convenient for nu­
merical simulations. Although mathematically meaningless 
within distribution theory, the system of equations is cer­
tainly "correct" since it is successfully used by engineers for 
the design of armors and projectiles (Ref. I). 

There appear multiplications of distributions in many 
domains of physics: elasticity and elastoplasticity l,3 shocks 
in fluids,4 thermodynamics,5 acoustics,6-8 plasma physics,9 

relativity and astrophysics,4,10 and quantum field theo­
ries. II

-
13 

In this last subject multiplications of distributions have 
given rise to a wide literature for a long time. Those of the 82 

kind appearing in the adiabatic limie1,10 allow an obvious 
interpretation in our theory. 14 Those appearing in the formal 
perturbation series are much harder to interpret (renormal­
ization theory) and have not been fully understood at pres­
ent, especially in the case of nonrenormalizable theories. In 
this latter case it seems that a mathematical tool alone can­
not resolve the ambiguities. But, perhaps, an intricate corre­
lation between (new) mathematics and (new or not) phys­
ics, as presented in this paper for elastoplasticity, could 
resolve them. The goal of this paper is to present to physicists 
this possibility. 

Using the mathematical theory of "new generalized 
functions" introduced in the literature,I,15-17 one can state 
the system of equations of elastoplasticity in an original, but 
physically natural and mathematically correct, form. Then 
we obtain nonambiguous jump conditions that we compute 
explicitly; more generally one obtains new numerical 
schemes. 

We believe that the main interest of this paper lies in that 
it presents a simple model of the use of this new method, 
which lies at the interface between pure mathematics, theo­
retical physics, and numerical analysis, It is clear that this 
method could be used in a wide variety of circumstances 
(nonlinear and linear problems in which there appear "heu-
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FIG. I. Frontal collision of two homogeneous layers. 
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ristic multiplications of distributions," see Refs. 1,3,6,18-22 
for some results obtained in this way). The ambiguities 
which appear in equations of physics cannot usually be re­
solved on purely mathematical grounds: by allowing more 
precise formulations of the physical postulates, our method 
permits to resolve them, at least in the cases that were stud­
ied up to now. The crucial point lies in that, without the new 
mathematical tool, the required more precise formulation of 
physics-to be discussed in each kind of application any­
way-may be quite hidden, even on a purely formal level. 

II. THE CLASSICAL STATEMENT OF A ONE­
DIMENSIONAL SYSTEM OF ELASTOPLASTICITY, AND 
ITS MATHEMATICAL COMPLEXITY 

In the case of strong collisions the solids are no longer 
Hookean: a linear stress strain relationship cannot hold since 
different strains can correspond to the same stress, at a given 
instant (the history of the collision has also to be taken into 
account). A constitutive equation is obtained by stating the 
differential form of Hooke's law in a (Lagrangian) frame of 
reference following the medium (the "Lame constants" can 
depend on the state of the material). We use classical nota­
tions: p = density, v = (lIp) = specific volume, 1= inter­
nal energy, e = total energy, a = (u i )i<i<3 = velocity vec­
tor, ~ = (Uij )l<iq<3 = stress tensor, S= (Sij)l<iQ<3 
= stress deviation tensor, p = -! (UI,I 

+ Un + U 33 ) = pressure. Note that e = I + ~(iHl) and 
S = ~ + pI if I is the identity 3 X 3 matrix. The system ob­
tained is given in Ref. 1 (Appendix 1). In the one-dimen­
sional case under consideration it reduces to (simplified no­
tations u = U I, S = S 1,1 ) 

p, + (pu);c = 0, balance of mass, 

(pu), + (pu2 )x + (p - S)x = 0, 

balance of momentum, 

(pe), + [peu + (p - S) u ] x = 0, balance of energy, 

S, + uSx - k 2(S)ux = 0, 

the deviation part of Hooke's law, 

p = <I>(p,I), 

(1) 

constitutive equation (usually the isotropic part of 
Hooke's law in the elastic state, and a Mie-Gruneisen 
equation in the plastic state), 

where k 2 = (4/3) G (G is the shear modulus) is a function of 
IS I and where <I> is a function. k 2 depends on IS I and is null 
for IS I large enough, say IS I >So' Then the material is a fluid 
and ( 1 ) reduces to the classical system of fluid dynamics: we 
say that the material is in the plastic state. The terms uSx and 
k 2(S)ux put in evidence products of distributions of the 
kind y. /j ( Y = Heaviside function, /j = Dirac mass) when u 
and S are discontinuous simultaneously (case of shock 
waves). We do not take into account external forces (gravi­
ty), thermal effects, viscosity, and phenomena in the phase 
transition. 

In the classical context of weak solutions of nonlinear 
PDE's the fourth equation in ( 1 ) cannot have discontinuous 
solutions; we refer to Ref. 23 for a standard textbook. In the 
context of our generalized solutionsl

,I5--17 this equation has 
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solutions provided system (1) is stated in a suitably weak 
form. 

It is explained in Refs. 1, 6, and 20 how systems in non­
conservative form, like (1), have an infinite number of 
mathematically possible jump conditions. In Refs. 1 and 20 a 
method is explained to get rid of this ambiguity, in the case of 
systems involving only one constitutive equation. 

III. A MORE PRECISE FORMULATION AND A 
RESOLUTION OF THE AMBIGUITIES 

The mathematical tool is sketched for physicists in Refs. 
6 and 20. It originated in a construction (of pure mathemat­
ics l

,I5--17 ofadifferential algebra ~ (n) (n = any open set in 
RN) containing the vector space !p'(n) of all distributions 
on n. The elements of ~ (n) ("new generalized functions") 
have properties mimicking exactly those of the C 00 functions 
(differentiation, multiplication, etc). The classical concept 
of equality splits necessarily into two concepts (both induc­
ing on 9)'(n) the classical equality): a strong one denoted 
by = (and allowing exactly all the standard calculations) 
and a weak one denoted by ::::: [generalizing exactly the con­
cept of distributional equality, and in general incoherent 
with the multiplication: G I::::: G2 does not imply GG I ::::: GG2 

for arbitrary G, GI , G2, E~ (n)]. 
At first, one states the system (1) with weak equalities 

:::::since they correspond exactly to the usual concept of a 
weak solution in the distributional sense. Then one finds an 
infinite number of possible jump conditions for steady 
shocks, see Refs. 1 and 20. This corresponds faithfully to the 
classical ambiguity inherent in most nontrivial products of 
distributions. In contrast, if all equations in (1) are written 
with the strong equality, then one proves easily that the sys­
tem cannot admit shock waves solutions, which is unaccep­
table, see Refs. 1 and 20. 

The difference between the two concepts of weak and 
strong equalities lies in "microscopic phenomena" such as 
those occurring in the "width of a shock wave" (of the order 
of magnitude of a few mean free paths). Postulating that the 
laws of physics (balance of mass, momentum and energy) 
are valid within the "microscopic" width of the shock, we 
are led to state them with the strong equality. The constitu­
tive equations have never been checked in a state of very fast 
deformation, such as the one inside the shock. This remark 
suggests to state them with the weak equality ::::: [intuitively 
p:::::t/J (P,I) means that p = t/J(pJ) in the classical sense out­
side the width of the shock wave, and that something like 
IP - t/J(pJ) I < + 00 holds within this width]. Then the sys­
tem (1) becomes 

p, + (pu)x = 0, 

(pu), + (pu2)x + (p - S)x = 0, 

(pe), + [peu + (p - S)u]x = 0, 

S, + uSx - k 2 (S)ux zO, 

p:::::t/J(pJ). 

(2) 

In the case of a steady shock it follows from the first two 
equations in (2) (Refs. 1 and 20) that v = II p, u, and p - S 
are represented by the "same Heaviside function" [in ~ (R) 

Jean-Fr~is Colombeau 2274 



                                                                                                                                    

there are several generalized functions equal to ° if x < 0, to I 
if x> 0, and whose jump at x = ° is of the kind of a classical 
discontinuity] . In this case we say that v, u, and p - S vary in 
phase on a shock. 

When the material is plastic, i.e., k 2(S) = 0, then 
S = const = So and we are in the case of hydrodynamics; 
system (2) has nonambiguous (classical) jump conditions; 
formulation (2) permits a new formulation of the system in 
terms of v, u, and p (which gives at once new numerical 
methods), see Refs. 1, 19, 21, 22, 24. Then system (2) ap­
pears in the form 

v, + uVx - vux = 0, 

U, + uux + VPx = 0, 

p, +upx + [(y+ l)p-F(v) -vF'(v)]ux;::::O, 
(3) 

S=So, 

if the Mie-Gruneisen equation is stated in the form 
p = ypI - F( v), y> ° and F a positive function of v. 

When the material is elastic, i.e., IS I < So, when one 
adopts as constitutive equation p;:::: tP (p,I) the isotropic part 
of Hooke's law (see Ref. 1 Appendix 1) and drops the bal­
ance of energy, then system (2) appears in the form 

v, + uVx - vUx = 0, 

u, + uUx + v(p - S) x = 0, 

S, + uSx - k 2(S)ux ;::::0, 

p, + upx + a2ux ;::::0, 

(4) 

(a> ° is a constant: this last equation follows from the 
isotropic part of Hooke's law). 
One usually considers that k 2(S) = k 2, k> ° constant. The 
strong equalities in the first two equations imply that u, v, 
and p - S are represented by the same Heaviside function on 
a shock (see Refs. 1 and 20), but there exist ambiguities in 
the terms uSx and upx' since we do not know the individual 
behavior of Sand p, relatively to u. Setting u = S - p, (4) 
becomes 

v, + uVx - vUx = 0, 

u, + uUx - vUx = 0, 

u, +uux - (k 2+a2)ux ;::::0, 

p, + upx + a2ux ;::::0, 

( 4') 

and the ambiguity lies only in the term upx (from above, the 
term uUx is no longer ambiguous). We propose to resolve 
this ambiguity, as follows, by a method of "transverse ficti­
tious infinitesimal shock waves." For this we take into ac­
count that the real phenomenon is a three-dimensional one. 
Let us imagine an infinitesimal shock wave in the direction 
y'y or Z'Z. One would obtain as above (strong equalities for 
the statement of the laws of balance of mass and momen­
tum) that v and U 22 (respectively, v and ( 33 ) are in phase in 
this infinitesimal shock; since this holds also for v and U ll ' we 
obtain thatp = -1(ull + U 22 + ( 33 ) and v are in phase in 
an infinitesimal shock. Thus all variables v,u,p,u (and so S) 
are in phase in an infinitesimal shock. 

Note: This reasoning does not apply for a noninfinitesi­
mal shock, as will be obvious from the results in Secs. IV and 
V. 
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Remark: This result is based only on the strong equali­
ties in the statement of balance of mass and momentum, and 
on the hypothesis of transverse fictitious infinitesimal shock 
waves. It does not depend on the constitutive equations and 
on the (weak or strong) statement of the balance of energy. 

We shall show (by explicit formulas in a simplified case 
in the next section, then by numerical results in general) that 
this is sufficient to resolve the ambiguities due to the multi­
plications of distributions in the heuristic system (1). 

IV. RESOLUTION BY EXPLICIT JUMP FORMULAS 

For greater simplificity in explicit calculations we con­
sider only shocks in which the density varies slightly in the 
neighborhood of a fixed value Po (this assumption is not 
always justified physically: in strong metallic shocks the rel­
ative variation of density can reach 0,1 ). Then as explained 
in Refs. I and 20, the first two equations in (2) may be 
replaced by 

Po(u, + uUx ) + (p - S)x ;::::0, 

together with the assumption that u and p - S are in phase 
on a shock. Setting Po = lIvo we obtain, in the elastic case 
IS I <So), the system (S = u + p) 

u, + uUx - VOUx ;::::0, 

p, + upx + a2ux ;::::0 

(isotropic form of Hooke's law), 
(5) 

u, + uUx - b 2ux ;::::O(b 2 = k 2 + a2 ), 

with u, p, u in phase on infinitesimal shocks (and u, u in 
phase on finite shocks). In the plastic case (S = So) one 
obtains from (3) the system 

u, + uux + VoPx ;::::0, 

p, + upx + (dp + e)ux;::::O 

(Mie-Gruneisen equation of state), 

S=So, 

(5') 

with u and p In phase on all shocks (d,e = constant 
numbers). 

Calculations ofjump conditions/or (5): We are going to 
show that the assumption that u, p, and u are in phase on 
infinitesimal shocks implies, in the case of (5), that they are 
in phase also on finite shocks. Setting 

w = b.wH(x - ct) + WI' 

with w = u, u, p in (5) (H = Heaviside generalized func­
tion), one obtains at once the relations [one uses the relation 
HH' ;:::: q)H' which follows from H 2 ;::::Hby differentiation] 

b.u b.u 
c - 2 = u/ - Vo b.u ' 

!;;.u 2 b.u 
c - 2 = u/ + a b.p' 

!;;.U 2 b.u 
c--=u/-b -. 

2 b.u 
Elimination of c gives 

b.u b JU;; b.u 
±--2-' 

b.p a b.u 
+_b_. 
-JU;; 
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Therefore, if U,p,O' are in phase, then their jumps are 
proportional. Therefore a superposition of shocks in which 
u,p, and O'are in phase gives a shock in which u,p, and O'are 
still in phase (one has to be aware of the obvious fact that a 
superposition of two shocks in phase, but in which the vari­
ables have nonproportional jumps, leads to shock waves 
which are no longer in phase). Considering a shock as a 
superposition of infinitesimal shocks, the property that u, p, 
and 0' are in phase on infinitesimal shocks implies in the case 
of (5) that u, p, and 0' are also in phase on finite shocks. 

Note: In this reasoning we have assumed that all infinite­
simal shocks under consideration satisfy (6') with the same 
sign + or -, which is the case in the physical situation 
under consideration. There is, further, some lack of math­
ematical rigor in this reasoning, since we treat an "infinite 
sum of infinitesimal shocks" like a "finite sum of finite 
shocks." Therefore a more refined mathematical analysis 
would be welcome. We content ourselves with the above fact 
to justify that the variables u, p, and a are in phase on (finite) 
shocks/or the system (5). 

Now the ambiguities in the multiplications of distribu­
tions are resolved and we are able to compute explicitly jump 
formulas for (5) and (5'). For simplicity we consider only 
the case of a shock wave in which the respective values of 
(u,p,S) are (0,0,0) on the right-hand side and (UI,PI' - So) 
on the left-hand side. This represents the shock wave pro­
duced in a target at rest by a projectile. This assumption is 
only a minor simplification to make the computations easier; 
exactly the same method applies when the values of (u,p,S) 
on both sides are arbitrary and, then, for the explicit solution 
of the Riemann problem by algebraic formulas: one finds 
elastoplastic shock waves like the one considered here, and 
also elastic precursors, see Fig. 5 and Ref. 1 (Appendix 4 of 
Chap. 3). It is convenient to sum up the system and assump­
tions (with 0' = S - p) 

O't +uO'x + (I(S)O' + m(S»)ux;::;O, 

where 

/(S) = 0, m(S) = - (k 2 + a2
) 

if IS I < So (isotropic part of Hooke's law), (7) 

I(S)=a, m(S)=/3 

if IS I = So [(a,/3 = constants) Mie-Gruneisenequa­
tion of state], 

St + uSx - k 2 (S)ux ;::;0, 

where 

k 2(S)=k 2
, 

if IS I <So (deviation part of Hooke's law), 

k2(S) = 0, 

if IS I = So (no stress deviation in fluids), 

U and 0' = S - P are in phase on (global) shocks, (7' ) 

u, 0', and p are in phase on the elastic part and on the plastic 
part of the shock. (7 II ) 

The microscopic profile of the shock can be represented 
by Fig. 2. 
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FIG. 2. Microscopic profile of the shock wave under consideration. 

One has introduced the values ul and ul corresponding 
to the elastoplastic transition. Let C be the shock velocity. 
Then (711) leads to the following form for u, 0', S: 

u(x,t) = (UI - ul)H( - x + ct) + uIK( - x + ct), 

O'(x,t) = (0'1 - ul)H( - x + ct) + uIK( - x + ct), 

S(x,t) = - SoK( - x + ct), (8) 

in which H, K are two Heaviside generalized functions, with 
HK = ° since they represent nonoverlapping phenomena 
(elastic and plastic). 

Equation (7') implies that u/u l and 0'/0'1 are equal 
since they are the Heaviside functions (in the variable 
- x + ct) of U and 0' in the global shock. This gives 

(1 - ul/ul)H + UI/uIK = (1 - UI/O'I)H + UI/O'IK, 

i.e., 

Ul/U I = UI/O'I' 

The first equation in (7) gives 

c(u\ - ul)H' + culK' 

(9) 

+ {(UI - ul)H + uIK}{ - (u l - ul)H' - uIK'} 

- vo{ - (0'1 - ul)H' - uIK'};::;O, 

i.e., 

CUI - (u l - UI )2/2 - ui/2 + VOO'I = 0, 

CUI - ui/2 + UIUI - ui + VOO'I = 0. 

The second equation in (7) gives 

CO'l - H (UI - UI)(O'I - u I ) + ulud 
- a/2(0'1 - UI)(U I - uI ) + ul (k

2 + a2
) 

- /3(u l - uI ) = 0. 

Elimination oful with (9) gives 

CO'l - (~ + a/2)u IO'I + (1 + a)uIO'I 

- (1 + a/2)(ui/u I )0'1 + (k 2 + a2 + (J)U I 

-(Jul=O. 

The third equation in (7) gives 

- cSoK' + ulKSoK' + k 2uIK';::;O, 

i.e., 
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FIG. 3. Schematic representation of the solution of the Riemann problem 
calculated in Sec. IV: we have eight equations for the eight unknowns c" C2' 

U" U" U2, U2, u" ITp An example is given in Fig. 4. For some values ofu"IT" 

u,' IT, and of the coefficients one obtains elastic precursors (see Fig. 5), then 
the Riemann problem has a different solution. 

Equations (9)-( 12) contain the five unknowns c, UI , ai' 
U I , (11' One can more generally compute the complete solu­
tion of the Riemann problem in the form of Fig. 3. 

These formulas prove that our original method easily 
gives algebraic formulas. They can be used to verify the ade­
quacy of numerical methods. These explicit formulas for the 
solution of the Riemann problem can also be used to build 
new numerical codes. 

V. RESOLUTION BY NUMERICAL METHODS 

The ambiguity in multiplications of distributions ap­
pears from the fact that slightly different numerical schemes 
give different solutions (while they all give the same solu­
tions in the case where the mUltiplications of distributions 
are not involved), see Ref. 1 (Appendix 2 of Chap. 3). But 
one has learned how to find numerical schemes expressing 
that some equations are stated with the strong equality l9 or 
that some variables vary in phase on infinitesimal 

5 

shocks.I.21.22 Then these schemes permit a general study of 
these systems. A few situations are given below, to illustrate 
and apply the study in Secs. III and IV. 

The numerical results in Figs. 4 and 5 have been ob­
tained from discretization techniques in Refs. 1 and 23 based 
on the method in Sec. III. A longer computation time or 
minor technical improvements would give very steep shocks. 
We prefer to reproduce the curves in Fig. 4 in order to ob­
serve easily the values ul and al • 

VI. CONCLUSION 

The original mathematical tool permits a more precise 
formulation of physics, which resolves the ambiguities that 
usually appear when one attempts to solve classically, even 
formally, i.e., without mathematical rigor, problems involv­
ing "multiplications of distributions." This fact seems to us 
to be of wide interest due to the very large variety of physical 
problems involving such mUltiplications. 

An interesting point is that this mathematical tool 
brings up new ideas and can be very well taken up on an 
intuitive basis; no deep mathematical study is required to use 
it successfully in physical situations; one only needs some 
familiarity with the basic ideas as explained above in Sec. III. 
The genuine difficulty in the resolution of ambiguities, in any 
particular situation, lies in the more precise way in which, 
with this new tool, one should formulate the equations. Up 
to now, in continuum mechanics, this has been done only by 
using classical ideas (the difference between the basic equa­
tions and the constitutive equations). In quantum field theo­
ry one may wonder whether classical ideas would be suffi­
cient, or if new ideas would be needed for this more precise 
formulation. 

.;It 

FIG. 4. A numerical solution of the Riemann problem for system (7) at time t> O. In this case k 2 = 4, a2 = 9, a = 0, /3 = - 9, So = 2, Vo = 1. The initial 
conditions at t = 0 are on the left side x < 0 (projectile) u = 6, p = S = IT = 0; and on the right side x> 0 (target) u = p = S = IT = O. One observes two 
elastoplastic shock waves propagating to the right at different velocities. The right-hand side wave is the one theoretically depicted in Fig. 2 (in u, S, IT). 
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FIG. 5. A numerical solution of the Riemann problem for system (7) at time t> O. In this case k 2 = 4, a2 = 1, a = 0, fJ = - 9, So = 0,1, Vo = I. The initial 
conditions at t = o are on the left side x <0 (projectile) u = 0,5,p = S = a = 0; on the right sidex> 0 (target) u = p = S = a = O. One observes that "each 
shock as in Fig. 4" is dissociated into an "elastic precursor" and a "plastic shock wave." The following is used as empirical evidence of this dissociation in 
certain cases. In plane accidents involving a frontal collision it has been observed that passengers in the tail of the plane often survive. An elastoplastic shock 
wave (very destructive) would forbid any chance of survival. But in the case of a dissociation as above, the elastic precursor (not destructive) is reflected by 
the tail of the plane; then this tail is cut off at the place where the reflected elastic precursor meets the incoming plastic shock wave. Thus the tail escapes from 
the destructive plastic shock wave. 
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APPENDIX: MULTIPLICATION OF DISTRIBUTIONS IN 
MATHEMATICS AND PHYSICS 

The formula Yo = ~o is certainly the more natural one 
concerning multiplication of Yand O. Indeed, in our context, 
as soon as Y is a Heaviside generalized function one has 
y2:::::; Yand by derivation Yo:::::;~o if ° = Y'. This formula 
gives physically correct results in several cases (Refs. I and 
20, even those in Fig. 5) but gives radically incorrect ones in 
the case of elastoplastic shock waves involving a phase tran­
sition [Figs. 2 and 4, (Ref. 20) Appendix B]. In our context 
the key of the paradox lies in that there are several Heavi­
side-like, Dirac-like, etc., functions. When 0# Y' then the 
product y·o is not in general associated with ~o. 

In this case a mathematically correct multiplication of 
distributions (usually adopted by mathematicians) results in 
physically incorrect jump conditions. In our context there is a 
canonical inclusion fP' C ;§ . In fP' there is one and only one 
Heaviside-like element Yo, one and only one Dirac-like ele­
ment 00; further 00 = Y b. Thus Yo' 00:::::; !Oo: one recovers the 
formulas usually adopted by mathematicians. The observa­
tion that this formula might be inadequate is not paradoxical 
if one thinks of the different ways in which physicists and 
mathematicians conceive and use distributions. 

For mathematicians the space fP' is defined modulo an 
isomorphism (concerning all operations). Such an isomor-
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phic copy of fP' is canonically included in ;§ . It permits, via 
the multiplication in ;§ and the association, a synthesis of 
most existing mathematical multiplications of distributions, 
see Refs. 14 and 25. 

For physicists the space fP' is considered as a reservoir 
of mathematical objects used to describe the physical world. 
In our context the use of the above subspace fP' of ;§ as such 
a reservoir may lead to mistakes in some cases involving 
"multiplications of distributions." Then the correct reser­
voir is ;§ itself, which contains several Heaviside-like, 
Dirac-like, etc., functions. 

In this way a nonambiguous mathematical multiplica­
tion of distributions can be reconciled with the well known 
fact that in physics multiplications of distributions such as Yo 
or 0 2 can give different results according to the context. 

In Part III of Ref. 15 the author attempted to explain 
(perturbative) renormalization in Q.F.T. by adjusting the 
definition of the multiplication (by changes in the definition 
of the auxiliary set Aq) in order to obtain the renormalized 
results. One was forced to this trick from the postulate (done 
in Ref. 15 from a too narrow interpretation of the new set­
ting) that the free field operators were (vector valued) ele­
ments of fP', and so precisely defined elements of ;§ through 
the inclusion fP' C ;§. An exactly similar postulate in con­
tinuum mechanics would amount to imposing the formula 
YO:::::;~O. The subsequent work done in Refs. 1,6,20, and 26 
suggests that the correct viewpoint is to postulate only that 
the free field operators are (a priori unknown) elements of 
;§ which are associated with certain well defined elements of 
fP' (the free field operators considered as distributions). 
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Then, in order to obtain the renormalized results, one should 
determine, from physical ground (as done in this paper, for 
instance by stating some equations with strong equality in 
~ ), which precise elements of ~ the free (and also the inter­
acting) field operators are. Attempts in particular cases 
show that the above trick of adjusting definitions amounts to 
such determination. This better method might be predictive, 
as it is in continuum mechanics. 1.6.19.20.27 

Shock wave solutions of systems in nonconservative 
form can illustrate the standard opinion (Richtmyer,23 
p. 37) that "no amount of mathematical reasoning can tell us 
which set of weak solutions has the right to be called a gener­
alized solution." Nonconservative systems usually have an 
infinite number of possible weak solutions (in the sense of 
association in ~) which are equally acceptable from the 
mathematical viewpoint.l.19.26 In each physical situation a 
choice of one kind of solution, i.e., a resolution of ambiguities, 
can only be done on physical ground. 
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Exact solutions of Maxwell-Dirac equations are investigated for which the Dirac field is of the 
ip x), 

type ¢(x) = a(p)e A . In the subclass where the mass parameter m#O, there exists no 
nontrivial solution of the problem. In the subclass where the mass parameter m = 0, there exist 
infinitely many solutions inherent with arbitrary functions. Furthermore, every solution for 
m = ° must have a null four-current vector field associated with it. 

I. INTRODUCTION 

In quantum electrodynamics, no nontrivial exact solu­
tion is known. The perturbative techniques involving 
Green's functions invariably lead to divergence difficulties. 
On the other hand, classical nonlinear field equations such as 
Einstein's vacuum field equations, I Einstein-Maxwell equa­
tions, I and Einstein-Maxwell-Dirac equations2 have yield­
ed plenty of exact solutions (without perturbative ap­
proaches). That is why we are motivated to investigate exact 
solutions of Maxwell-Dirac equations, which represent clas­
sical electrodynamics. Recently, the initial value problem 
for Maxwell-Dirac equations has been tackled by Flato, Si­
mon, and Taflin.3 In Sec. II, we write down the Maxwell­
Dirac equations and an associated differential identity. We 
also prove that the four-current vector field/ex) is always 
nonspacelike, irrespective of the (real or complex) values of 
the mass parameter m. 

In the case of the free Dirac equation, the plane wave 
solutions are the easiest ones to find. This fact prompts us to 
seek in Sec. III the class of exact solutions of Maxwell-Dirac 
equations such that the Dirac field is of the type ¢(x) 

. A 

= a(p)e'PAX . This problem has been divided into two sub-
classes according to the mass parameter m #0, or m = 0. In 
the first subclass (m # 0), it is proved that there exists no 
nontrivial solution of the problem. In the second subclass 
(m = 0), there exist infinitely many solutions involving ar­
bitrary constants and arbitrary functions. All the solutions of 
the problem m = ° are obtained and classified into four cases 
involving subcases. Every solution of this subclass must have 
an associated null four-current vector field/ (x). This result 
is physically reasonable for the massless particles. 

II. NOTATIONS AND FIELD EQUATIONS 

The combined Maxwell-Dirac equations are studied in 
a flat (Minkowski) space-time manifold M. A Minkowski 
coordinate chart is used. (In the sequel, a mixed coordinate 
chart will be defined and used.) A space-time event is indi­
cated by x= (xO,X I ,X2,X3

) where XO denotes the time coordi­
nate. A greek index takes values from {O, 1,2,3} and a roman 
index takes values from {1,2,3}. The signature ofthe metric 

a) Present address: Okanagan College, Penticton, British Columbia V5A 
8E I, Canada. 

is assumed to be - 2, so that the metric tensor [1/1""] 
= diag[ 1, ( - 1 )3]. Einstein's summation convention is fol­

lowed. The electromagnetic four-potential and field are de­
noted by A I"(x) and Fl"v (x) =a"AI" - allAv, where the par­
tial derivatives are denoted by a 1"' The four-component 
Dirac bispinor field and its Hermitian conjugate are indicat­
ed by ¢(x) and ¢t (x), respectively. The four 4X4 Dirac 
matrices are denoted by y". In this section, we assume that in 
the domain D of consideration, the potential functions A I" 
are of the differentiability class C 3 (D) and the Dirac bi­
spinorfunctions ¢I' ¢2' ¢3' ¢4 are of the class C 2 (D). In such 
a domain DeM, the combined Maxwell-Dirac equations 
(which are Poincare covariant and gauge invariant) can be 
written as 

MI"(x) =a"FI"" - i,., (x) 

=a"F"''' - e¢t(x)'fy"¢(x) = 0, 

D(x) = {iy" [a,., +ieA,.,(x)] -mI}¢(x) =0, (2.1) 

F,.,,, (x) =a,A,., - aI"A", 

y"y" + y"y" = 21/I""I. 

Here e and m are the charge and mass parameters associated 
with the Dirac field and I stands for the 4 X 4 identity matrix. 
In this combined system of partial differential equations, 
there exists one differential identity, viz., 

/ = al" MI" - ie[ ¢t(x)'fD(x) 

- D t(x)'f¢(x)] =0. (2.2) 

Therefore, to make the system (2.1) determinate we have to 
impose one additional equation [which is not inconsistent 
with system (2.1)]. If we choose as that equation the Lor­
entz-gauge condition, then the combined system (2.1) goes 
over to 

Mm(x) =DA I" - j"(x) =a "a"AI" 

- e¢t(x)'fyl"¢(x) 

=0, 

D(x) = {iy I"[al" + ieAI" (x)] -mI}¢(x) =0, (2.3) 

L(x) =al"A I" = 0. 

The above system is invariant under the restricted gauge 
transformatioits: 
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¢(x) = ¢(x)e ~ iefl(x), 

AI' (x) = AI' (x) - af'n, 

on = o. 
(2.4 ) 

We shall use the following Weyl representation of the 
4 X 4 Dirac matrices: 

,fJ = [10 I] k [ 0 r 0' r=u" 
-d'] 
o ' (2.5 ) 

where d' 's are the 2 X 2 Pauli matrices and I stands for the 
2 X 2 identity matrix. 

Now we are in a position to state and prove the following 
theorem about a purely algebraic property ofthe Fermionic 
four-current vector fieldj"(x). 

Theorem 2.1: Let the Dirac bispinor field ¢(x) be de­
fined (but not necessarily continuous) in a domain DeM. 
Then, the four-current vector fieldj"(x) =e¢t(x)yOY'¢(x), 
is nowhere spacelike in D, irrespective of the (real or com­
plex) values of the mass parameter m. 

Proof Here, the star stands for complex conjugation, 
and the vertical bar denotes the modulus of a complex num­
ber. By a straightforward computation we obtain 

(2.6) 

Since, the right-hand-side ofEq. (2.6) is always a non­
negative real number, it follows thatjf' (x) is a nonspacelike 
four-vector field. • 

Now we shall introduce a mixed coordinate chart for the 
flat space-time M by the following coordinate transforma­
tion: 

u=xo = !(Xo + x 3), 

v=x3 = !(xo _ x 3), 

p=x2 = !(x l + ix2), 

p'=x3 = !(x l _ ix2); 

[J ] = ax" = [~ ~ 
axf' 0 -i 

1 0 

det[J] = - 4i#0. 

o 
1 

o 
~ ], 
-1 

(2.7) 

The coordinates u, v are usually called the null or light-cone 
coordinates and p, p' are called the complex-conjugate co­
ordinates. Under the coordinate transformation (2.7), the 
various tensor and spinor fields are assumed to transform as 
follows: x= (u,p,p' ,v); 

2281 

A f'(x) = axf' A Vex), 
axV 

A 

A U(x) = HA o(x) + A 3(X)], 

A Vex) = HA o(x) - A 3(X)], 

A P(x) = HA lex) + iA 2(X)], 

A p' (x) = [A P(x)]*; 

[~ab] = [J]T[7JVf'][J] 
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~2[~ 
0 0 

~} 0 -1 
-1 0 
0 0 

A A A "'-
Au (x) = 2A Vex), Av (x) = 2A "(x), 
A • A 

Ap (x) = - 2A p (x), A . (x) = - 2A P(x); p 

¢(x) =¢(x); 

o-U = !(<f! + 0"') = [~ ~], A [0 iY'= 
0 ~]. 

oP= [~ ~], oP' = [~ ~]; 

r = ! (yO + r) = (; <7") 
o ' 

A (0 Y= <7" 
Q-U) 
o ' 

yP = (:P - oO-P) , yP' = (o-~. - :P,) ; 
}U(x) = e[1¢I(x)1 2 + 1¢4(XW], 

}V(x) = e[1¢2(xW + 1¢3(xW], 

/,(x) = e[ ¢~ (X)¢2(X) - ¢; (X)¢4(X)], 

Y (x) = e [¢; (X)¢l (x) - ¢~ (X)¢3(X)]. 

(2.8) 

Dropping hats in the sequel, the Maxwell-Dirac equations 
(2.3) in the mixed coordinates, by Eqs. (2.7) and (2.8), go 
over into 

x= (u,v,p,p*); 

o=auav - apap'; 

MU(x) =DA u - e[i¢I(xW + 1¢4(X) 12] = 0, 

MV(x) =DA v _ e[ 1¢2(X) 12 + 1¢3(X) 12] = 0, 

MP(x) =DA P - e [¢; (X)¢2(X) - ¢; (X)¢4(X) ], 

MP' (x) = [MP(x)]* = 0; 

D] (x) = [au + ieA" (x)] ¢3(X) 

- rap +ieAp(x)]¢4(X) +im¢l(x) =0, (2.9) 

D2(x)=[au +ieAu(x)]¢4(X) 

- [ap' + ieAp' (x)] ¢3(X) + im¢2(x) = 0, 

D3(x)=[au +ieAu(x)]¢I(X) 

+ [ap + ieAp (x)] ¢2(X) + im¢3(x) = 0, 

D4(x)= [a" + ieAV (x)] ¢2(X) 

+ [ap' + ieAp' (X)] ¢I (x) + im¢4(X) = 0; 

L(x) =auA U + avA v + apA p + ap.A p' = O. 

The preceding systems of equations is easier to solve than the 
equivalent system (2.3) in Minkowski coordinates. 

III. A SPECIAL CLASS OF PLANE WAVE SOLUTIONS 

In the case of the free Dirac equation, the exact plane 
. xi' 

wave solutions of the form ¢(x) = a (p)e'p" are found and 
discussed in the standard textbooks. Fourier integrals in­
volving these plane wave solutions yield more general exact 
solutions of the free Dirac equation. These considerations 
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motivate us to seek the class of exact solutions of the Max­
well-Einstein equations such that the Dirac field is of the 

type t/I(x) = a(p)eip/. This problem has to be divided into 
two subclasses according to m=lO, or else m = O. Complete 
solutions can be found in both subclasses. 

We shall define the notion of the trivial solution for sub­
sequent use. The Dirac field t/I(x) is called trivial in a domain 
D of flat space-time M, provided ", (x) = "2 (x) = "3 (x) 
= ".(x) = 0 for all x in D. 

Now we are in a position to state and prove rigorous 
statements on the exact plane wave solutions of the type 

,,(x) = a(p)eip/. 

Theorem 3"1: Let the potential functions A "EC 2 (D), 
and the Maxwell-Dirac equations (2.9) hold in a bounded 
domain DCM, with e=lO, m=lO. Let, furthermore, the 

Dirac bispinor field be of the type ,,(x) = a(p)eip/, where 
x = (u,v,p,p"). Then, solutions ofthese equations exist in 
D only if the Dirac field is trivial [,,(x) =0]. 

Proof Let us define 

O(x) = (e) -, [p"x"] 

= (e)-'[p"u+pvv+ppp+pp'p"]. (3.1) 

This function satisfies the wave equation 

00=0. 

Therefore, we can make a gauge transformation [cf. Eq. 
(2.4) ] 

¢,(x) = e - ieO(x),,(x) = e - ieO(X)a(p)/P,~· = a(p), 

A" (x) = A" (x) - a"o = A" (x) - (e) -.p,.. (3.2) 

Dropping the hats subsequently, and denoting the values 
a = a (p) (which are independent of x), the system of equa­
tions (2.9) reduces to 

M"(x) =0.4" - e(lad 2 + la.1 2
) = 0, 

M V(x)=DAv- e(la2 1
2 + la3 1

2
) =0, 

MP(x) =0.4 p - e(a; a 2 - aia.) = 0; 

i(e)-·D,(x)=a~v(x) -a.Ap(x) - (m/e)a. =0, 

i(e)-'D2 (x) =a.A" (x) -a~p'(x) - (m/e)a2 =0, 

i(e) -'D3 (x) =a,A" (x) + azAp (x) - (m/e)a3 = 0, 

i(e)-'D.(x)=azAv(x) +a,Ap'(x) - (m/e)a4 =0; 

L(x)=aA"+aAv+aAP+a.AP·=O. (3.3) 
- " v p p 

We shall first solve the Maxwell equations 0.4 v = j". 
We write A V(x) =A ~(x) + A ;(x) such that 0.4 ~(x) = 0 
and 0.4 ; = j". Since the four-current vector field is a con­
stant vector field, we can write the particular solutions as 
A ;(x) = (l/2)j"(uv -I pI2). Furthermore, the homoge­
neous solutions can be written as A ~(x) = ± ~WV(x), 
where WV(x) are arbitrary wave junctions in the domain D. 
The general solutions of Maxwell's equations can be written 
as 

2282 

2A "(x) = e(lad2 + la.1 2 )(uv _I p12) 

+ W"(x) =Av(x), 

2A V(x) = e(la2 12 + la2 12 )(uv _I p12) 
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+ WV(x) =A"(x), 

2A P(x) = e(a; a 2 - aia.) (uv _ I p12) 

- WP(x) = -A .(x). 
p 

(3.4) 

Now, substituting (3.4) into the Dirac equation 
i(e) -'D, (x) = 0, we obtain 

e(uv -I p12)( lad2a3 + a,a;a.) 

+ [a3 W"(x) -a.WP·(x)] - (m/e)a, =0. 

Operating by the d' Alembertian D from the left on the above 
equation we get 

a 3 W"(x) - a.WP· (x) - (m/e)a, = O. 

Similarly, from the other three Dirac equations 

- i(e)-'D2 (x) = - i(e)-'D3 (x) 

= - i(e) -'D.(x) = 0, 

we obtain 

a 2 (a; a 3 + a;a.) = 0, 

a 4 WV(x) - a 3 WP(x) - (m/e)a2 = 0, 

a 3 (a,ai + a 2a;) = 0, 

a. WV(x) + a 2 WP(x) - (m/e)a3 = 0, 

a.(a,ai + a 2a;) = 0, 

a 2 W"(x) + a, WP(x) - (m/e)a. = o. 

(3.5a) 

(3.5b) 

(3.6a) 

(3.6b) 

(3.7a) 

(3.7b) 

(3.8a) 

(3.8b) 

By contraposition, let us assume that the Dirac field is 
nontrivial, i.e., 

(3.9) 

Then, from Eqs. (3.5a), (3.6a), (3.7a), and (3.8a), it fol­
lows that 

(3.10) 

Now, multiplying (3.5b) by a; and (3.8b)" by a., and add­
ing, we obtain 

(a;a3 + a;a.) W"(x) + 0 - (m/e)(la,1 2 + la.1 2
) = O. 

Using Eq. (3.10) and dividing by - (m/e) =10, the above 
equation yields 

lad2 + la4 12 = O. (3.11) 

Similarly, mUltiplying (3.7b) byai and (3.6b)" by a 2 , and 
adding we get 

(a.ai + a 2a;) WV(x) + 0 - (m/e)(la2 1
2 + la3 1

2
) 

= 0 + 0 - (m/e)(la2 12 + la312 ) = O. 

Dividing by - (m/e), the preceding equation yields 

la212 + la3 12 
= O. (3.12) 

Equation (3.11) plus (3.12), contradicts the strict inequality 
(3.9). Thus the theorem is proved. • 

In the above proof, m=lO was used only in the latter 
part, in deriving Eq. (3.11) and (3.12). Therefore, Eq. 
(3.1)-(3.10) hold for every value of m, including m = O. 
Unlike the subclass of m =10, the zero mass subclass allows 
infinitely many nontrivial solutions. In fact, the zero mass 
subclass can be completely solved. We shall summarize a 
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case in this subclass by the following theorem. 
Theorem 3,2: Let the potential function A I'EC 2 (D), 

and the Maxwell-Dirac equations (2.9) hold in a bounded 
domain DeM, with e#O, m = 0. Furthermore, let the 

Dirac bispinor field be of the type ",(x) = a (p)iP"x" such 
that every component of a (p) is nonzero. In this case I, the 
general solutions of the equations exist and can be summar­
ized [after the gauge transformation (3.2) and dropping 
hats] as follows. 

Case I: All components nonzero, i.e., 

al#O, a 2#0, a 3 #0, a 4#0, 

and 

ala; + a 2a; = 0, 

but otherwise arbitrary. 

2A U(x) = e( la l 1
2 + la4 12) (uv _ I p12) 

+ WU(x), 

2A "(x) = e( la212 + la3 12) (uv _ I p12) 

+ la2Ia I 12WU(x), 

2A P(x) = e(a~ a 2 - a;a4)(uv _ i p12) 

+ (a2Ia l ) WP(x), 

2W U (x) = - e{( ia2 1
2 + la3 12)u2 

Here, 

+ laJa212( la212 + la412)v2 

- (a lla2) (ala; - a 3a; )p2 

- (a~/a; )(a~a2 - a;a4)p'2} 

+ Re{L,rF(Ar + AU + vu';A.,v) 

+ G( vr + Au + VU';A,V) ]dA dV}. 

r= la2la,1 2u + v, 

u=v - (a2Ia l )' p, 

u" =v - (a2Ia,)p"; 

(3.13 ) 

F, G are arbitrary twice differentiable functions such that the 
improper integral over 1(;2 is uniformly convergent. 

Proof Equation (3.10) implies ala; + a 2a; = 0, 
which can be solved by setting 

a 2 =(3a l, a; = -(3a;, (3.14) 

where (3 is an arbitrary nonzero complex constant. The Lor­
entz-gauge condition L (x) = ° in (3.3), by (3.4), yields 

a wu+a w"-a wp-a .wp· 
u v p p 

= -e{(la,1 2 + la212)v+ (la212+ la3 12)u 

- (a~ a 2 - a;a4 )p" - (a,a; - ap; )p}. (3.15) 

Dirac equations (3.5b), (3.6b), (3.7b), (3.8b) (for m = 0) 

go over to 

D; (x) =a; WU(x) - a; WP(x) = 0, 

D~(x)=a4WU(x) -a3 WP(x) =0, 
(3.16 ) 

D'; (x) =a~ WU(x) + a; WP(x) = 0, 
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D~(x)=a2WU(x) +aIWP(x) =0. 

We want to solve for the unknown functions WI'(x) 

from the above system of linear equations. The rank of the 
coefficient matrix is two, due to the condition (3.10). Thus 
we have to solve only two independent equations such as 
D; (x) = D; (x) = 0. Solving these we obtain 

(3.17 ) 

Putting (3.17) into (3.4), we obtain the first three equations 
of (3.13) for the four-potential functions A V(x). Substitut­
ing (3.17) into (3.15), we get the following linear partial 
differential equation: 

(au + 1(31 2au +(3ap +(3"ap')WU 

= - e[(la212 + la3 12)u + (la 1 12 + la212)v 

- (ala; - ap;)p - (a; a 2 - a;a4 )p']. (3.18) 

By the method of characteristic curves,4 we obtain the gen­
eral solution of (3.18) as 

WU(x) = Re[ f(r,u,u") J - ~ {( la212 + la3 12)uZ 

(la,1 2 + la4 12)v2 

+ 1(31 2 

_ (a; a z - a;a4 ) "} 

(3* p, (3.19 ) 

r= 1(321u - v, u=v - (3'p, 

u" = v - (3p", p= 1(31 2u + V. 

Here,fis an arbitrary, complex-valued, twice differentiable 
function of its arguments. 

Now, W U is a wave function. Therefore, from (3.19) we 
obtain 

0= OW u = (auau - apap' ){Re[f(r,u,u') n 
= ( - a; + a,aa + a,a . - aaa . ) {Re[f(r,u,u") n. a a 

(3.20) 

The above equation yields 

Of= -Dr, Of=ih(r,u,u"), (3.21 ) 

where h is a real-valued continuous function. Solving (3.21) 
we get 

f(r,u,u') = J G('" )h('" )dr' du' du" + rp(r,u,u"), 

(3.22 ) 

where G( ... ) is the real-valued Green's function, and rp is an 
arbitrary complex-valued wave function. Therefore, we 
must have 

Re[f(r,u,u") 1 = Re[rp(r,u,u') 1, 
Orp = ( - a; + a,aa + a,aa' - aaaa')rp = 0. (3.23) 

We notice that the above differential operator is a homoge­
neous function of degree 2 in the first partial differential 
operators. Therefore, we use the ansatz 

rp(r,u,u") = F(W + Au + vu';/l,v,u), (3.24) 
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where J-l,A, v are complex parameters. The wave equation 
Dt,6 = 0 implies that 

( - J-l2 + J-lA + J-lV - Av)F" = O. (3.25) 

Assuming that F" exists and is not necessarily zero, we have 

J-l2 - J-l(A + v) + AV = O. (3.26) 

Solving the quadratic equation, we have J-l = A or J-l = v. 
Therefore, a linear combination of functions F(Ar + Aa 
+ va' ;A,V) and G( vr + Aa + va' ;A,V) will solve the wave 

equation. The general solution5 of the wave equation in 
(3.23) is 

2Re t,6(r,a,a') = Re{l, [F(Ar + Aa + va';A,v) 

+ G(vr + Aa + va';A,v) ]dA dV}. (3.27) 

Here, F and G are arbitrary, twice differentiable, complex­
valued functions of their arguments such that the above im­
proper integral converges uniformly. By Eqs. (3.19), 
(3.23), and (3.27), the last of the equations in (3.13) is 
proved and that completes the proof. • 

From Eq. (3.10) it is clear that there exists no solution 
in the case where three of a I' a 2, a3, a4 are nonzero. In case 
II, there exists exactly two nonzero components of a. There 
are infinitely many solutions in this case. 

In case III, exactly one of the components of a is non­
zero and there are infinitely many solutions. In the last case 
for which Dirac field is trivial (a l = a 2 = a3 = a4 = 0), the 
Maxwell-Dirac equations reduce to Maxwell equations. 
That case will be ignored. In the following, all the solutions 
of cases II and III will be listed without proof. 

Case II: 
(i) a 3 = a4 = 0, a l #0, a 2#O, but otherwise arbi­

trary. This subcase is obtained directly from Eq. (3.13) by 
setting a 3 = a4 = O. 

(ii) a l = a 2 = 0, a 3 #O, a4#O, but otherwise arbi­
trary. 

2A U(x) = ela412(uu _ I p12) + WU(x), 

2A Vex) = ela312(uu - I p12) + la3/a412W u (x), 

2A P(x) = - ea;a4(uu - I p12) - (a3/a4r WU(x), 

2W U (x) = - e{la312u2 + la4/a3 lV 
- (a3/a;) (a; )2p2 - (a;/a3) (a4)2p"} (3.28) 

+ Re{l,[F(Ar+Aa+ va';A,v) 

+ G(vr + Aa + va';A,v) ]dA dv}, 

r= la3/a412u + u, a=u + (a 3/a4)p, 

a'=u + (a3/a4 rp', 
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(iii) a l = a4 = 0, a 2#O, a3#O, but otherwise arbi­
trary. 

A U(x) = A P(x) =0, 

2A Vex) = e( la212 + la3 12) (uu - I p12) + WV(x), (3.29) 

WV(x) = - e( la212 + la312)(uu + I p12) + Re[F(u,p)]. 

Here, F is an arbitrary function of the u variable and an 
arbitrary holomorphic function of the p variable. 

(iv) a 2 = a3 = 0, a l #0, a 4 #O, but otherwise arbi­
trary. 

A Vex) = A P(x) =0, 

AU(x) = -e(la I 12 + la412)lpI2+Re[F(u,p)]. ( 3.30) 

Here F is an arbitrary function of the u variable and an arbi­
trary holomorphic function of the p variable. 

Case Ill' Exactly one of the components of a is nonzero, 
but otherwise arbitrary. There are four subcases which can 
be directly obtained from Eqs. (3.29) and (3.30). 

At this stage we have found all the nontrivial, local, 
. "" plane-wave solutions [of the type ¢(x) = a (p) e'P" ] of the 

Maxwell-Dirac equations with m = O. Now we shall point 
out three common features of these solutions. 

(i) Comparing Eq. (3.10) with (2.6) we can conclude 
that the four-current vector fieldj" (x) is null for every solu­
tion of this type. 

(ii) Transforming back by the gauge transformation 
(3.2) and the coordinate transformation (2.8), it follows 
that exact solutions for the Dirac wave function are of the 
type: 

t/J(x) = [:~~;~]eiP'X'" 
a 3 (p) 

a 4 (p) 

Here, the only constraint on the coefficient functions is 
a l (p)[a3 (p) r + a 2(p)[a4 (p) r = 0, and there is no re­
striction on the Pv's at all. Therefore, the four-momentum 
components Pv's need not satisfy the mass-shell constraint 
1]'"vp,"pv - m 2 = O. 

(iii) Since the gauge transformation (3.1) presupposes 
that e # 0, the solutions found in this section do not have 
limiting cases for e-+O, unless P," =0. 

I D. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact Solutions of 
Einstein's Field Equations (VEB Deutscher, Berlin, 1980). 

2M. J. Hamilton and A. Das, J. Math. Phys. 18, 2026 (1977). 
3M. Flato, J. Simon, and E. Taflin, Commun. Math. Phys. 112,21 (1987). 
4R. Courant and D. Hilbert, Methods of Mathematical Physics (Intersci­
ence, New York, 1966), Vol. II, p. 62. 

'H. Bateman, Differential Equations (Chelsea, New York, 1966), p. 273. 
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Hostler [J. Math. Phys. 11, 2966 (1970)] has shown that Coulomb Green's functions of 
different dimensionality N are related by G(N + 2) = &'G(N) , where &' is a first-order derivative 
operator in the variables x and y. Thus all the even-dimensional functions are connected, as are 
analogously the odd-dimensional functions. It is shown that the operations offunctional 
differentiation and integration can further connect the even- to the odd-dimensional functions, 
so that Hostler's relation can be extended to give G(N + 1) = &,1I2G(N) . 

I. INTRODUCTION 

Hostler showed in 1970 that Coulomb Green's func­
tions of varying dimension N were related as follows 1-3: 

G (N+2)(x,y,k) 

= _ 1 (~-i.)G(N)(x,y,k), 
1T(X - y) ax ay 

N= 1,2,3, .... (1.1 ) 

Here x and yare the two coordinate variables 

x,y=r1 + r2 ± r l2 (1.2) 

and k is the wave number variable, such that, in atomic units 
(fl=p=e= 1), 

fl2k 2 k 2 Z 
E=--=- V=-. (1.3) 

2p 2' k 

Thus the odd-dimensional functions G (3), G (5), ••• are obtained 
by successive differentiation of G (I), while the even-dimen­
sional functions follows analogously from G (2). We will show 
in this paper that the even- and odd-dimensional Coulomb 
Green's functions can be further connected to one another 
by the operations of fractional differentiation and integra­
tion. 

By the N-dimensional Coulomb Green's function we 
understand the solution of the inhomogeneous differential 
equation: 

(
..!..k2 + ..!..V~ + ~)G (N)(rN, r~, k) = ~(N)(rN - r~), 
2 2 fN 

(1.4 ) 

which is not to be confused with the solution to Poisson's 
equation in N-dimensional space. 

II. RESUME OF THE FRACTIONAL CALCULUS 

The monograph of Oldham and Spanier4 gives a defini­
tive presentation of the fractional calculus. A brief heuristic 
account of some relevant results will suffice to make this 
paper self-contained. 

Multiple differentiation in the complex plane can be rep­
resented by Cauchy's integral formula: 

I(n) (z) = ~ i I (~)d~ , 
2m J (~_ z)(n+ 1) 

(2.1 ) 

for a contour enclosing ~ = z. A possible generalization of 
(2.1) to derivatives of nonintegral order q defines 

(2.2) 

For q=/=n, ~ = z becomes a branch point. Let the contour C 
be taken counterclockwise around z and extending on both 
sides of a branch cut to a lower limit ~ = a. The values a = 0 
(Riemann) and a = - 00 (Liouville) are the most com­
mon. For q < 0, (2.2) reduces to the Riemann-Liouville de­
finition of a fractional derivative, viz., 

I(q)(z) = I r I(~)d~ - D'if(z). (2.3) 
r(-q»a (Z_~)q+l a 

The case q = -! is called the semi-integral: 

D -1I2/'(Z),= _1_ r I(~)d~ . 
a z J ,fii Ja (z _ ~) 1/2 

(2.4 ) 

For q > 0 (and =/= n) the singularity at ~ = z can be removed 
by integration by parts. Thus the semiderivative, with q = !, 
is given by 

D 1I2j (z) = _1_ I (a) + _1_ r f' (~)d~ . 
a z ,fii (z - a) 1/2 ,fii Ja (Z _ ~) 1/2 

(2.5) 

We will actually require the limit value a = + 00. For ap­
propriately behaved I (z): 

D -1I2/,(Z) = _1_· 1'" I(~)d~ (2.6) 
'" z J ,fii z (~_Z)I/2' 

and 

D 112/' (z) = _1_· 1'" f' (~)d~ . 
'" z J ,fii z (~_ Z)I/2 

(2.7) 

III. INTEGRAL REPRESENTATION OF N-DIMENSIONAL 
GREEN'S FUNCTION 

The Coulomb Green's function in N-dimensional space 
can be expanded as a sum of partial waves as follows5

: 
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G(N) = r(N 12) ~ (2L + N _ 2)CN12-I(cos 8)G(Nl, 
2rr'/2(N _ 2) L~O L L 

(3.1 ) 

where C~ (z) is a Gegenbauer (ultraspherical) polynomial, 

v L r(L + 2v) L 1 12 CL(z) = (-) 2FI( -L, +2v;v+ 1/2;( +z) ). 
L W(2v) 

(3.2) 

The partial-wave retarded Green's functions are given by6 

GiN) (r l ,r2,k) = Uk) -I (r1r2) (I - N)/2r(L + N 12 - 1/2 - iv) 

XMf;,+NI2-1( -2ikr< )Wf;,+N12-I( -2ikr», N=3,4,5, ... , (3.3 ) 

where M and Ware Whittaker functions as defined by Buchholz.7,s 

Using Buchholz's integral representation for the above product of Whittaker functions, 

GiN) = - 2( - i)2L+N-2(r1r2)1- N12 i oo 

dq e2ivqeik(r, + r,)cothqJ2L+N_2 (2kAAcsch q), (3.4 ) 

the summation in (3.1) can be carried out using the Neumann series 9 : 

(
kz)1' - Y 00 r(p + n) 2 
- Jz (kz) = kl' L 2FI (p + n, - n;v + l;k )(p + 2n)JI' + 2n (z), 
2 n~onW(v+l) 

(3.5) 

with the identifications n = L, k = cos(812), z = 2kAAcsch q, p = n - 2 and v = (N - 1 )/2. The result is the following 
integral representation for G (N) (see Ref. 10): 

G (N)(x,y,k) = (21T) 112 - N12( _ i)Nk N12 - I12rJ312 - NI2 

X i OO 

dq(cschq)N12-112e2iVQeikscothqJN12_3/2(krJcschq), N= 1,2,3, ... , (3.6) 

where 

5=r l + r2 = (x + y)/2, rJ=2r1r2 cos (812) = JXY. (3.7) 

The above result for N = 2 follows by a separate derivation. The case N = 1 corresponds to Meixner's one-dimensional 
Coulomb system 11 

G(l)=irJiOO dqcschqe2iVQeikscothQJI(krJcschq) = Uk)-lrO-iv)M::2( -iky)W::2( -ikx), 

with the closed form following from Buchholz' integral representation. For N = 2, 

G(2) = _ ~ foc dq csch qe2ivQeikscothQ cos(krJ csch q), 
1T Jo 

which can be reduced to a series of Whittaker functions, 

G(2l= __ ._1_ I r(lml +~-iV)MI:I( -iky)wl:l( -ikx), 
l1TkrJ m ~ - 00 2 

but no further reduction to a closed form is known. 

IV. RELATIONS AMONG DIFFERENT 
DIMENSIONALITIES 

Hostler's operator [cf. Eq. (1.1)], when applied to a 
function of 5 and rJ [cf. Eq. (3.7)], reduces as follows: 

&= -1T(X~Y) (! -~)= 2~rJ (~)s = ~D~2' 
(4.1 ) 

Identifying z with krJ csch q, we have 

D ~2 rJ - v J v (krJ csch q) 

= ( - k csch ql2)nrJ - v- nJv + n (krJ csch q). 

(3.8) 

(3.9) 

(3.10) 

(4.2) 

( 4.3) 

By the well-known derivative formula for Bessel functions, 12 Applying Hostler's operator succesively to the integral rep-
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resentation (3.6) then gives the odd-dimensional Green's 
function 

G (2N+ I) = tJNG(I) 

and analogously, for even N, 
G(2N+2) = tJNG(Z). 

(4.4) 

(4.5) 

The identity (4.2) can be reexpressed as follows (with 
z-.,[Z): 

D:z-V/2Jv ('[z) = (-~)"z-(v+n)/2Jv+,,(,[Z)' (4.6) 

Taking n = I and integrating between the limits a and z, we 
find 

~-V/2Jv(K)]~= - ~f~-(v+I)/2JV+l(K). 
(4.7) 

For v;;;.O, the lower boundary term in (4.7) vanishes for 
a = + 00. Thus the analog of(4.6) fornegativen (multiple 
integration) can be written 

",D
z
-"z-V/2Jv ('[z) = (-2)"z-(v-,,)/2Jv _,,('[z)· 

(4.8) 

It is now suggested that (4.6) and (4.8) might be general­
ized to fractional n. For the semi-integral, Eq. (4.8) with 
n = !, use (2.6) and evaluate the integral. 13 The result is 

D -1I2Z- v/2J ( Iz) = _,_ ~ v 'If, dF-. 1"" F- -v/2J ('f) 
'" z V"~,fii z (~_Z)l/Z ~ 

= i/i.z - v/2 + 1I4Jv_ 1/2 (,[Z). (4.9) 

Likewise, Eq. (4.6) works for n = !. One can therefore write 
the square root of Hostler's operator as 

tJ 1/2 = - (ll,fii) "" D ',{>2 (4.10) 

such that 
tJl/zG(N) = G(N+ I), tJ N/2G(I) = G(N+ I), 

N=I,2,3, .... (4.1l) 

This does not, incidentally, provide a closed form for G(2) 
since the semiderivative still involves either an integral or an 
infinite sum. 
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For Z = 0, the above reduce to free-particle Green's 
functions. In particular, 

GW = (ik) -I [eik(X- y)/2 _ eik(X+ Y )/2], 

GW = - (i/2)Hrl l )(kR), 

G W = - eikR /21T'R, 

(4.12) 

where R=r12 = (x - y)/2. It can be verified that the 
Hostler operator and its square root also transform among 
the functions (4.12) in accord with (4.11). 
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A closed and analytical formula is given for the free Green's function in a harmonic oscillator 
basis. It is very useful for solving the Lippman-Schwinger equation for the scattering of two 
clusters within the resonating group method formula. 

I. INTRODUCTION 

For some problems in atomic or nuclear physics, one is 
led to solve scattering equations describing collisions of com­
plex systems formed with identical particles. The exact solu­
tion for such a problem is presently not feasible once the 
number of particles exceeds 4. Among the approximate 
methods introduced to solve the general problem, the reson­
ating group method (RGM) proposed a long time ago by 
Wheeler! is very attractive and powerful. This method and a 
related one, the generator coordinate method (GeM), have 
been extensively used in atomic and nuclear scattering.2 In 
the RGM, the N-body problem is transformed into a system 
of coupled channel equations for the wave functions relative 
to the various partitions defining the scattered clusters. The 
coupling potentials between distinct channels are strongly 
nonlocal. 

II. RESONATING GROUP METHOD 

It is not our aim to enter into detail concerning this 
method but we shall give the basic equations necessary for 
understanding the philosophy of our paper. The trial RGM 
wave function looks like 

1'II(1,2, ... ,N» 

= L sf I { [ 'lie, (1,2, ... ,N) ) 'lie, (N) + 1, ... ,N)] eX e}), 
e 

(1) 

where the sum runs over the various channels c defined by 
the chosen eigenmodes c) and C2 for the clusters 1 (contain­
ing particles 1,2, ... ,N) and 2 (containing particles 
N) + 1, ... ,N) as well as the various intrinsic couplings (col­
or, spin, isospin, etc.) symbolically denoted by [ ] and the 
total angular momentum coupling denoted by { }. The state 
vector Ix e) describes the relative motion between the clus­
ters c) and c2 • 

The variational RGM principle only acts on the relative 
function Xc while the cluster states tPe, and tPe

2 
are supposed 

frozen once and for all. The Schrodinger equation in the 
Hilbert space spanned by the RGM function (1) gives rise to 
the well known Hill-Wheeler equation3 

L [ENee' - Hee,] IXe')· (2) 
e' 

The norm Nee' and energy H ee, kernels are, in general, very 
complicated as a result of the presence of the antisymmetizer 

sf in the wave function. It is usual to split the contributions 
of sf into two parts: the one called direct (D) comes from 
terms in sf analogous to unity, and the other called ex­
change (E) comes from all other terms. The direct terms are 
relatively easy to calculate; while the exchange terms are 
very cumbersome. Expressing the Hamiltonian as the sum of 
intrinsic cluster Hamiltonians plus the relative kinetic ener­
gy K plus the intercluster interaction V)2' the Hill-Wheeler 
equation (2) is transformed into 

[Ce - K ~D)] IxC> = L Vee' (cc') IXc')' (3) 
c' 

where Cc = E - Ec, - Ee
2 

is the relative intercluster energy 
and 

Vee' (cc') = K~;') + V\t + V\t - cc,N~;') (4) 

is some kind of effective potential, usually nonlocal. The 
form (3) is quite similar to a Schrodinger equation with 
coupled channels, although Ix c) does not represent a proba­
bility amplitude because of the non orthogonality of the ba­
sis. Anyhow, from Eq. (3) one can use the well known meth­
ods of dealing with scattering problems. In particular, the 
Lippman-Schwinger equation relates the transition matrix 
T to the potential matrix V [in this case Vis given by (4) and 
is energy dependent] : 

T= V + VG o+ T. (5) 

All the physical information concerning the scattering can 
be obtained from the transition operator T. 

Usually the Lippman-Schwinger equation is solved in 
configuration or in momentum space in which the free pro­
pagator G 0+ = (E + ic - K) -) takes a particularly simple 
form. In that case, G 0+ has a pole and this may lead to some 
numerical difficulties. However, the point is that, within the 
RGM framework, the exchange kernels are never calculated 
directly in the configuration or momentum space. Most of 
the time the cluster functions tPc, and tPc

2 
are approximated 

by Gaussians, and the more natural way to calculate the 
kernels is to expand Xc on peaked Gaussians.4 Recently we 
proposed5 an alternative method based on harmonic oscilla­
tor (HO) functions rpnl. The advantage is that we are not 
limited to ground state clusters, but radial excitations can be 
considered as well. We proved in a previous paper6 that the 
exchange kernels 

H~;')(n,n';l) = (rpnllH~;')lrpn'/) 
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can always be calculated exactly in such a basis with the help 
of Brody-Moshinsky coefficients. Moreover, it can be 
shown in some cases, and it is expected on general grounds, 
that the exchange quantities are very rapidly convergent in 
the HO basis. In practice they are roughly zero once 
n,n'>na ~4. In other words, the nonlocal exchange poten­
tials are a very limited sum of separable (in HO basis) poten­
tials. The only problem comes from V g» in (4), which is, in 
general, local and cannot always be expanded on HO in a 
very convergent way. A possibility in that case is to use the 
propagator (E + iE - K - V~P» -I in the Lippman­
Schwinger equation. In a number of interesting situations 
(electromagnetic interactions of two neutral objects, strong 
interaction of two colorless systems, etc). this fortunately 
will not be necessary since V~P) vanishes identically. Thus in 
the RGM a natural basis for evaluating the kernels is the 
harmonic oscillator one. In solving the Lippman-Sch winger 
equation, one must manage matrices of order nc X na (nc is 
the number of channels), which is around a few tenth. Com­
ing back to the coordinate or momentum space makes neces­
sary (i) additional calculations to express the kernels from 
the HO basis to the new basis, and (ii) the discretization of 
the r or p axis into n p ~ 100 points. This will result in dealing 
with matrices of order nc X np ' which is typically of several 
hundred. From these remarks one sees that there is a great 
advantage to solving the Lippman-Schwinger equation in 
the HO basis directly. 

III. MATRIX ELEMENTS OF THE FREE PROPAGATOR 

But to perform such a program we absolutely need the 
expression of the free propagator G 0+ in the harmonic oscil­
lator basis. As far as we know this analytical expression was 
never published and the main topic of this paper is to derive 
it in a closed form. 

Thus we are faced with the problem of evaluating 

G O+nn'l (E,b) 

= lim (qlnlm (b) I (E + iE - K) -llqln'lm (b». (6) 
£-0 

The kinetic energy operator K = p2/2/-l is invariant under 
rotation and it is the same angular momentum 1m that ap­
pears in the bra and in the keto Let b be the size parameter for 
the harmonic oscillator wave function; it is more convenient 
to define the space vectors r in units of b, x = rib, and the 
wave vectors k in units of b -), q = b k. The HO wave func­
tions are defined in the configuration space with the usual 
Moshinsky7 phase conventions: 

(xlnlm) = qlnlm (x) = [Unl (x)lx] Y1m (x), 

Unl(x) = [~2(n!)/nn + I +~)] 
XXI+ Ie - x'/2L ~+ I12(X2), 

n r (n + I + ]) 2s 
L~+1/2(X2) = I (_)' 2 ~ 

s~O (n-s)!r(s+l+~) s! 

are the Laguerre polynomials. 

(7) 

In the momentum representation I q) the HO wave func­
tions [Fourier transforms of ¢nlm (x) 1 have the same form as 
in the coordinate representation but differ by an important 
phase factor. Explicitly 
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(qlnlm) = (21T) -3/2 f e- iqXq;nlm (x)dx 

= (_i)2n+lqlnlm(q)· (8) 

It is more convenient to use the momentum representation 
to evaluate the Green's function. For typographical reasons 
we will omit the ( + ) (outgoing propagator) and (0) (free 
propagator) superscript indices in all that follows having 
always in mind that we deal with the free outgoing propaga­
tor. One can write 

Gnn'/(E,b) 

= (_l)n+n'(2/-lb 2Ifr) 

Xlim f qI ~/m (q)q;n'!m (q) [q~ -l + iE] -Idq, (9) 
£-0 

with q~ = 2ltb 2 E 1f/2. The integration over angles is trivial 
and we are left only with the radial integration 

A = lim (00 Unl (q) Un'l (q) [q6 _ q2 + iE] -I dq. (10) 
£-0 Jo 

Using the well known property 

lim [q6 - q2 + iE] - I 
£-0 

= P.P. [q6 - q2] -I _ i1TO(q~ _ q2), (11 ) 

the Green's function can be split into two parts: the real part 
GR coming from the principal part P.P. and the imaginary 
part G1 (present only for scattering problems q6 > 0) com­
ing from the delta function. The imaginary part is easy to 
calculate; the real part is more involved. One has to evaluate 
the following integral: 

R = p.p.loo 
e- Q'q2/+2 

XL ~ + 1I2(q2)L~;r I12(ql) [q2 _ q~] -I. (12) 

Let us remark that L ~+ 1/2(ql)L ~;t-I12(q2) = PN(q2) is a 
polynomial of degree N = n + n'. The trick is thus to isolate 
the singularity of ( 12) in a much simpler integral. The origi­
nal integral can be decomposed into two terms RI and R 2• 

Explicitly 

R =R I +R2' 

with 

R J =P.P. Loo e-<i[ll+2PN(q2) -q6/+2PN(q6)] 

X [ i - io ] - I dq (13 ) 

and 

In R I the pole disappears and the resulting integrals are 
standard. We are left with polynomials in q6 whose coeffi­
cients bk are purely geometrical and can be computed and 
tabu lated once and for all. 

The integral R2 containing the pole is related to the com­
plex error function erf(z).8 After some manipulations, one 
gets 
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(14) 

where 

with 

bk (n,n',I) 

= 22k + I - n _ n' (n!n'!(2n + 21 + I )!(2n' + 21 + 1 )!)1I2 
(n + I)!(n' + I)! 

F(x) = e- X' LX el
' dt 

is the real Dawson integral. 
Now everything is complete. Let us summarize the re­

sults: 

(15) 

(16) 

(17) 

n n' 

xI I ( _ l)P+P' (21 + 2p + 2p' - 2k)!(p + I)!(p' + I)! 
(p + p' + 1- k)!(2p + 21 + 1)!(2p' + 21 + l)!(n - p)!(n' - p')lplp'! 

(18) 
p=o p'=o,p+p'>k-I+1 

The geometrical coefficients bk (n,n',!) fulfill the relations 

bk (n,n',!) = bk (n',n,/), 

bk(n,n',/) = 0, ifk>n + n' + I, 
and qo is given by (9). 

IV. CONCLUSION 

The expressions (16) and (17) give the free propagator 
in the HO basis; the pole has been eliminated analytically 
and this is a great advantage. This procedure allows us to 
solve the Lippman-Schwinger equation in the HO basis; this 
will be very well suited for scattering equations of Hill­
Wheeler type with kernels rapidly converging in the har­
monic oscillator basis. In fact, this method was applied with 
success in the description of nucleon-nucleon interaction in 
terms of quarks,9 of QQqq multiquarks, 10 or of the dilambda 
system. 11 
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The impact parameter model for the scattering of two heavy particles and a light one is 
studied. The asymptotic behavior of the transition probability is studied when the relative 
velocity of the heavy particles goes to zero. In particular, rigorous proof is given from first 
principles, within the context of the model, of the validity of Massey's criterion. 

I. INTRODUCTION 

In this paper we consider the impact parameter model 
for the scattering of a light particle and two heavy ones. In 
this model one assumes that the heavy particles are infinitely 
massive and that their motion along a classical trajectory is 
not affected by the light particle. In this approximation the 
influence of the heavy particles I'In the light one is represent­
ed by time-dependent potentials. We will neglect magnetic 
effects and will take the potentials of interaction between the 
light particle and the heavy ones to be separable. 

For any positive integer m, let L 2(Rm ) be the Hilbert 
space consisting of all complex valued Lebesgue measurable 
square integrable functions on R m 

• For tER I, H(t) =Hv (t) 
is the following self-adjoint operator I in L 2(Rm ) with do­
main H 2 (R m 

) (see Ref. 2), the Sobolev space of order 2: 

Hv(t) = -~~-AIV-A2Vp' (1.1) 

where ~ is the Laplace operator, 3 

m a2 
~=I-2' 

i~1 aX i 

with derivatives in the distribution sense. Also, Al andA2 are 
real, A I > A2 > 0, and V is the rank 1 operator, 

VqJ = g(g,qJ) , ( 1.2) 

for all qJEL 2(Rm), and g a fixed function in L 2(Rm), 

Ilgll = 1, with (-,.) denoting the scalar product in L 2(Rm ) 
antilinearon the factor on the left. Moreover, for gEL 2(Rm ), 

we define 

0.3) 

with 

gp(x) =g(x -p(t)). 0.4 ) 
Herep(t) is a function from R I into R m 

, two times continu­
ously"differentiable and such that, for some t ± > 0, 

I[p(t)-c± -v±t]I<Co/ltla, V±t>t±, 

v ± t> t ± and k = 1,2. (1.5) 

Here a > 0, and c ± and v ± are vectors in R m with v ± #0. 
Furthermore, 

a) Present address: Departamento de Matematicas, Universidad Autonoma 
Metropolitana, Av. Michoacan y la Purisima, Iztapalapa, c.P. 0934 
Apdo. Postal 55-534, Mexico, D.P., Mexico. 

( 1.6) 

and 

l:tkkP(t)I<u\ -C<t<t+ and k=I,2. (1.7) 

We will assume that for some fixed positive constant M, and 
B being any of t ± ' Ie ± I, or C k , k = 0,1,2, one has 

B<M. (1.8) 

The state vector of the light particle satisfies the Schro­
dinger equation4 

( 1.9) 

The solution to ( 1.9) is given by a two parameter family 
of unitary operators5 

Uv(t,s), t,sER I
• (1.10) 

Let Hi' i = 1,2, be the following self-adjoint operators 
with domain H2 (R m 

): 

Hi = -! ~ -A;V. (1.11) 

Since V is rank 1, from the essential spectrum Weyl's 
theorem,6 the essential spectrum of Hi' i = 1,2, is [0, + 00 ). 

It follows by explicit calculation that either Hi ;;;,0 or Hi has 
at most one negative eigenvalue - Qi with multiplicity 1. 
We assume in this paper that this negative eigenvalue - Qi 
exists for Hi' i = 1,2. Note that since A I > A2 it is enough to 
make the assumption for H 2 , and that for given g one can 
find such a A2• 

Let PI be the orthogonal projector onto the nondegener­
ate ground state of HI (i.e., the orthogonal projector onto 
the subspace generated by the eigenvector for the negative 
eigenvalue corresponding to the minimum of the spectrum 
of HI)' The existence of the Moller wave operators 

D+ (u) = s-lim Uv(O,t)e- ilH'PI (1.12 ) 
- t- ± ex 

is proved in Howland,? Yajima,8 and Hagedom9 in the case 
oflocal potentials. We give in Lemma II.3 the simple proof 
in our case of rank 1 interactions (see, also, Arredondo lO

). 

Let 4>,114>11 = 1, be a ground state of HI' and assume that 
initially the light particles is in the state given by 4>. Then the 
probability that after the interaction the light particle re­
mains in the state 4> is given by6,11 

P(u) = 1(4),0+ (u)*O_ (u)4>W 

= 1(0+ (u)4>,O_ (u)4>W . (1.13) 

We denote by F the Fourier transform as an unitary 
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operatorinL 2(Rm ). We have proved the following theorem. 
Theorem I: LetHv(t) be defined by (1.1)-(1.8) withg 

and Fgin H2(R m 
). Then 

IP(v) - 11 = O(v), v-O. (1.14) 

Here v is defined by formula (1.6). 
The well known fundamental experimental criterion of 

Masseyl2,I3 states that transitions between states of different 
energy are improbable if flv/ d < 1, where d is the range of the 
interaction and v = Ivl is the relative velocity between the 
particles in the scattering process. 

Theorem I gives, apparently for the first time, a rigorous 
theoretical proof from first principles of the validity of Mas­
sey's criterion. 

II. PROOF OF THEOREM I 

Lemma Il.l: Let g and p be as in Theorem I. Then if 
..1 1>..12>0, the ground state energy, -E(t), of Hv(t) is 
nondegenerate and lies for all tER I in the interval [ - Eo, 
- QI], where - Eo is the ground state energy of the self­

adjoint operator - !a - (AI + ..12) V. Furthermore, 
- E(t) is a twice continuously differentiable function of t. 

Moreover, there can exist other nonpositive eigenvalues only 
in the interval [ - Q2'0]. The eigenvector for - E(t) can be 

I 

taken as 

\II(f) =F- IQt- I(P2/2+E(t»)-I(C(t)gp +g), (2.1) 

with 

A2(gp,g(p2/2 + E(t»)-I) 
c(t) - (2.2) 

- l-A21ig(p2/2+E(t»)-1/2112' 

and Q t- I a normalization factor in order that 11\11 (t) II = 1. 
Here F - I denotes the inverse of the Fourier transform func­
tion -. Moreover, 

I .;;;llg(p
2 

+E(t»)-
I12

11

2

.;;;..!.., 'iltER I, 
AI + A2 2 AI 

(2.3 ) 

and 

Qt= II(P; +E(t))-I(C(t)gp +g)11 

>(I-~~)II(P; +EO)-lgll' 'iltERI. (2.4) 

Proof Let \II(t) be an eigenvector with eigenvalue 
- E(t) and E(t) > 0: 

Hv(t)\II(t) = -E(t)\II(t). (2.5) 

If we apply the Fourier transforms F on both sides of Eq. 
(2.5) and take the scalarproductwithg = Fg and gp = Fgp' 
we get, in matrix notation, 

[
1-Adlg(p2/2+E(t»)-1/21IZ -Az (g,gp(PZ/2+E(t»)-I)][ (g,\II)] 
-A I(gp,g(p2/2+E(t»)-I) I-Azlig(pz/2+E(t»)- I,Z llz (gp,\II) =0. 

(2.6) 

The equation has a nontrivial solution if and only if 

We show now that the ground state - E(t) satisfies 
- E(t).;;; - QI < - Qz· Note that - QI is strictly negative. 

Let us take a fixed E> 0 independent of t. We define 

with 

a = Iig(pz/2 + E)- 1/2 11 2 (2.9) 

and 

/(t) = I (g,gp (p2/2 + E) -IW. (2.10) 

We have in this case 

sup DE (t)';;;(A] +A2)a, (2.11 ) 
-00<1<00 

-00<1<00 

(2.12) 

Note that in (2.11) the equality will be fulfilled if and only if 
p (t) is a curve through the origin. Then - E is an eigenvalue 
for Hv (t) if and only if 

-00<1<+00 

(2.13 ) 
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(2.7) 

Furthermore (AI + A2)a - A]AZa
2 = I if and only if a = 1/ 

Alora= 1/Az. We also have 

sup (A I+A2 )a - AIA2a
2 

a 

= (AI + A2)a - AIA2a
2

1a ~ <A, + A,)/2A,A, 

= (AI +..12)2/4..11..12> I. (2.14 ) 

Then if - E < 0 is an eigenvalue of Hv (t) for some tER I, 

either 

(2.15 ) 

Since a is a monotone decreasing function of E, we ob­
tain that either - Eo';;; - E(t).;;; - QI or 
- Q2';;; - E(t) <0, where - Eo is the ground state of 
- ~a - (AI + ..12) V. Note that since Al >..12 then 
- QI < - Q2' and that by explicit calculation 

Ilg(pz/2 + Q])- 1/2 1I z = 1/..11' (2.16) 

Ilg(p2/2 + Eo)-1/2112 = 1/(..1) + ..12) . (2.17) 

From (2.9) and (2.15)-(2.17) one obtains (2.3). 
We prove now that there is only one eigenvalue of multi­

plicity 1 in [ - Eo, - Q)]. Leth(t) be a continuous function 
from R I into R m such that h(t) =p(t) if It I > to, for some 
to> 0 and h(O) = O. Now consider It (t) defined as Hv (t) 
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with h(t) instead of p(t). We prove by explicit calculation 
that 

dimP[_Eo._Q,](O) = 1, (2.18 ) 

where PA (t) is the spectral projector of Hv (t) associated 
with the set A. By a continuity argument as in Arredondo, 14 
we can prove that 

(2.19) 

for every teR I. Consider again Hv (t) as in (1.1) with our 
original p (t). From (2.19) we know that, for 1 t 1 > to, 

dim p[ _ Eo. - Q,] (t) = dim p[ _ Eo. - Q,] (t) = 1, (2.20) 

where PA (t) denotes the spectral projector of Hv (t) asso­
ciated with A. Using the same continuity argument as in 
Arredondo,14 one proves that (2.20) is true for all teR I. 

Then, 

dim PI _ Eo. _ Q, J (t) = 1, for all teR 1 . (2.21) 

Moreover, the eigenvalue corresponding to the ground 
state, - E(t), is two times continuously differentiable by 
standard perturbation theory. 15 

It follows by (2.7) and (2.16) that E(t) must satisfy 

1 (g,gp(p2/2 + E(t) )-1) 12 

E(t) - QI = (lIA2 -11g(p2/2 + E(t»)-1/2112)llg(p2/2 + E(t»)-1/2(p2/2 + QI)-1/2112 
(2.22) 

Note that since for the ground state eigenvalue, 1/ 
(AI + A2 ) <a< 1/ AI' we conclude that 

(2.23 ) 

for some C I' C2 > 0, and every teR I. 
By (2.6) we see that 

_ _ Al (g,'I')(gp,g(p2/2 + E(t»)-I) 
(gp,l}I) = 1 _ A211g(p2/2 + E(t»)- 1/2W . (2.24) 

Taking the Fourier transform inHu (t)'I'(t) = - E(t) 'I' (t) 
we obtain (2.1) and (2.2) from (2.24). We now prove (2.4). 
From (2.2), (2.3), and (2.7) one obtains 

c t _ ( 1/ Al - Ilg(P2/2 + E(t) )- 1/2
11
2 )112 

I ( ) 1 - 1/ A2 _ 11g(p2/2 + E(t) )- 1/2 11 2 

<A2IAI < 1. 

From this one obtains (2.4) easily. This proves the lemma.o 
Lemma f1.2: Let g and p be as in Theorem I. Let 'I' (t) 

and - E(t) be the ground state and its corresponding eigen­
value of the time-dependent self-adjoint operator Hu (t). 
Then one has the following estimations: 

(2.25) 

sup I!!..!:...E(!.-) I <CM, sup II dkk'l'(!.-)II<cM' 
IER' dt k V IER 'dt v 

k = 1,2. (2.26) 

I 

Here C M and T M are positive constants depending only on 
M as given in ( 1. 8 ) . 

Proof Statement (2.26) follows easily by noting ( 1.5)­
(1.7) and the formulas given below. We prove only (2.25). 

We want to show at first that 

l:tE(DI<~~, Itl>TM· (2.27) 

Without loss of generality we can assume that p (t) is of the 
form 

p(t) ==(PI (t),O,O,O,oo.,O). 
~ 
m - I times 

We note that 

IpI(tlv)I>! 'Itl, Itl>TM' 

I :t:p(D I <C1•M, 'titeR I and k = 1,2. 

One can see that 

(2.28) 

(2.29) 

-+. E ,(~) == - :t E (D = v-
I
( 'I'(~).H ~(D'I'(~)) . 

(2.30) 

From (2.30) we obtain the expression for - (d Idt)E(t Iv): 

- A2iv-
1 [(gp~'(D'p ). Iii (D) ( 'ii(D,gp ) 

- (gp,Iii(~))(Iii(~).gp~'(~}p))], (2.31 ) 

where' denotes the dot product in Rm. From (2.29) and 
(2.1 )-(2.4) one has 

(2.32) 

We estimate now the second term on the right side of (2.32). This term is equal to 

d2 I v-1p; (!.-) f ~ eip(tIV)'PPlig(p) 1
2(p

2 

+ E(!.-)) -I dmpi 
pi (tlv) v ap~ 2 v 

= 1 Iv-Ip;(!.-)JeiP(lIU)'P~PIlg(P)\2(p2 +E(!.-))-ldmpl<d;, It\>TM' 
pi (tlv) v apf 2 v t 

(2.33) 
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where we have used (2.29) and the hypothesis on g. 16.17 Similarly, one can prove by using (2.2) and (2.3) that 

Ic(tlv)I<CM lt 2
, Itl>TM • (2.34) 

One obtains (2.27) from (2.30)-(2.34). We now prove (2.25) for (d Idt)'IJ(t Iv). From (2.1)-(2.4) one can see that 

.:{ 'IJ(!..) = F - I [.:{ Q ii; . G (!..) + Q Ii; .:{ G (!..)] . 
dt v dt v dt v 

Here F -\ denotes the inverse of the Fourier transform function and 

G(t) =.(P2/2 = E(t»)-I(C(t)gp + g). 

ThederivativesofQ liv\ behave for It I > T M as the derivatives ofE(t Iv) andofc(t Iv). Here one uses (2.4). TheL 2 normofthe 
derivatives of G(t Iv) also behaves in this manner. By using (2.3) and an estimation as in (2.33) one can see that the first 
derivative of c(t Iv) behaves as O( 1/t 2). Since we have already seen that (d Idt)EU Iv) is of this order, we obtain (2.25) for 
k = 1. Now we note that 

From (2.29) and the hypothesis on the function g we get 

(2.36) 

From (2.36) and the just proved estimation for (d Idt)'IJ(t Iv) we obtain that the last two terms on the right side ofEq. (2.35) 
are of order 1/t 2. To estimate the first term on the right side of (2.35) one can proceed as above: we note that 

d: Hu (t) = F- 1 L (~e- iP(t)'Pg,.)~ e- ip(t)·PgF. (2.37) 
dt r + s ~ 2 dt r dt S 

Here F denotes the Fourier transform. Furthermore, if r = 1,2, 

.!!..:.... e - ip(')'p = e - ip(t)·p ~ (i) a/3,/3'd (p'.p )/3, (p" .p)/32 . 
dt r ~ ~~ (2.38 ) 

/3, + 2/3, ~ r 

Herefji' i= 1,2 are non-negative integers. Therefore, as in (2.32)-(2.34) with (2.1)-(2.4) and (2.29) we get 

where we have used (1.5)-( 1.7), (2.38), and the hypothesis 
on the function g. By using (2.35)-(2.39) we then prove 
that (d lldt 2 )E(t Iv) decaysasO(llt 2

), for all It I > TM • A 
very similar argument as the one given for the first derivative 
of'IJ(t Iv) can be used toprovethatd lldt 2'IJ(t Iv) is of order 
1/t 2

• This proves the lemma. 0 
We prove some equalities before we state some results 

on the adiabatic theorem. 18 

Let P( t) be the projector onto the subspace generated by 
the ground state - E(t) for Hu (t). The operator differen­
tial equation 

X(t) = iA(t)XU) , 

where 

A(t) =. - i(.P(t)P(t) - P(t),P(t)), 

and with initial value 

X(T) =P(T), TER, 

has the unique solution given by 

UA Ct, T)P( T) . 

(2.40) 

(2.41 ) 

(2.42) 

(2.43 ) 

Here UA (t,s) is the two parameter family of unitary opera­
tors5 that solves (1.9) with - A (t) instead of Hu (t). From 
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(2.39) 

I 
the equality pl(t) = P(t) one obtains 

P,PP=O, F=i(AP-PA). 

It follows then that Wet) = P(t) UA (t,T) is also a solution 
to (2.40)-(2.42). This is only possible if 

W(t) =.P(t) UA (t,T) = UA(t,T)P(T). (2.44) 

We take 

W (t) = e- i/3(t) 'IJ (t) , 

fj(t) = - 1m f~ 00 (q,(s),'IJ(s»)ds. 

It follows that 

('IJ,'IJ) = o. 

(2.45) 

(2.46) 

(2.47) 

We get from (2.40)-(2.47) that W(t)W( T) and Wet) satis­
fy the following initial value vector differential equation: 

<j?(t) = .P(t)rp(t), rp(T) = \II(T). 

Therefore, we must have 

W(t)W(T) = W(t), VT,tER. (2.48) 

Now let the time-dependent operator Hull' (t) be de­
fined with (1.1) by 

Huly (t) = Hu (t Iy) (2.49) 
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and 

UU/'y(t,s), t,SER 1 , (2.50) 

and two parameter family of unitary operators associated 
with H u1r (t) by (1.9). We take the adiabatic transformation 
for t,sER. 1 and y¥=O, 19-26 

fly (t,s) = exp{ - iy r E(S)dS} Uu/ y (yt,ys). (2.51) 

We also define 

II:r Y(;) I I 
= Ily(! Hu(;) + ! E(;))Y(;) 

- Y(;):r p(;) - :r p(;)Y(;) II 
(2.57) 

for some positive constant C. Here we have used Lemma 
11.1, Lemma n.2, and (2.36). Therefore (2.56) is proved. 

(2.52) Lemma Il.3: The Moller wave operators 

By using (2.40)-(2.44) and (2.51) one obtains 

d . 
- (ny (T,s) W(s)} = fly (T,s) W(s) . 
ds 

(2.53) 

We take T= - r in this identity and we apply it to iii ( - r). 

Integrating then from - l' to r and noting (2.48) we get 

ny( -r,r)iiI(r) - iiI( - r) = f~T nrC -r,s)'ii(s)ds. 
(2.54) 

Now we integrate this last integral by parts, 19.21-23 

We make the change of variables = r/vand takey= 1, r=t / 
v. From (2.51) and (2.55) we get 

lim sup II Uu(! , - !)iiI( - !) 
1_ + '" V V V 

- eXP(iv-
1 f~ I E (~)dq )w(~) II 

<lim sup v I' drll !!.-[Y(:')!!.- w(:.)] II 
t~ + '" _ t dr v dr v 

= O(v). (2.56) 

Here we have used Lemma n.2. Furthermore, for the deriv­
ative of Y one can see that 

!1+ (v) = s-lim Uu(O,t)e-'tH,p, 
- t--±oo 

exist. 
Proof: From (1.9), 

!!..- Uu(O,t)e-'tH't/J = iUu (O,t)gp (gp,t/J)e iIQ, , 

dt 
where tP is the normalized ground state of HI: 

HltP = - QltP , 

I (!l )-' t/J= IIg(p2/2+QI)-lli -2"+Ql g. 

It follows, for 1 rl > Irl > T M > 0, that 

II [ Uu (O,r)e - 'rH, - Uu (O,r)e - iTH, ]t/JII 
1 <--::-----:--

IIg(p2/2 + QI)-III 

xl' ds!(gp,g(P; + QI) -)1 
<C/vl- 2'(lrl- 1 -lrl- 1

) , 

(2.58 ) 

(2.59) 

by the hypothesis on the function g. Then the left side of this 
last equation tends to zero as r,r -- ± 00. This proves the 
lemma. 0 

Proofof{1.14); Letting r-- ± 00 in (2.59) we obtain 

1I[!1± (v) - Uu(O,r)e-'TH']t/J1i 
1 

,;,;;;--::-----:-
lJg(p2/2 + QI)-III 

xi±oo dsl(gp,g(~2 +QI)-I)1 

<c Ivl- 2 Irl- 1 
. (2.60) 

By using (2.60), we get 

+ I [( Uu(~, - Dt/J,t/J) - ( Uu(~, - DiiI( - ~).¢) ]e2,rv-'Q'1 

2295 

+ ! ( Uu (~ , - ~)iiI( - D -eXP(iv-
1 f~ t E (~)dq )\ii(D,¢ )e2iW

- 'Q, ! 

+ lexp( - iv f~ t E(~)dq ) (iiI(D - ¢,¢ )e2itu-'Q,!} 

<l~~ 1tp II UuG, - Diii( -D - eXP(iv-
1 f~ I E(~)dq )iii(D11· (2.61) 
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Here ¢ differs from ,p only by a phase: 

¢=e- i(3,p, (2.62) 

{3= - 1m f_+,,"" (q,(s),'I' (s»)ds . (2.63) 

It follows from (2.1 )-(2.4), (2.22), (2.45), (2.46), (2.62), 
and (2.63) that 

lim IIWCt Iv) - ¢II = 0(1/t) . (2.64) 
t_ + 00 

Similarly, W (t Iv) ->,p, t -> - 00. Therefore, from the adiaba­
tic estimate (2.56) and (2.61)-(2.64) we get 

II(n*+- (v)n_(v),p,,p)I-I(,p,,p)1 1= O(v), v-.O. 
(2.65) 

This proves (1.14). 
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all orders in perturbation theory 
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Generalized Tauh-NUT (Newman-Unti-Tamburino) space-times have compact Cauchy 
horizons and (generically) admit one (spacelike) Killing field in their globally hyperbolic 
regions. A large family of such vacuum space-times can be defined on circle bundles over 
K X R, where K is a compact two-manifold, with the circular fibers of the bundle being defined 
by the orbits of the Killing field. For the simplest case of product circle bundles the symmetry 
preserving vacuum perturbations of such backgrounds to arbitrarily high order in perturbation 
theory are considered. The analytic form of the general solution of the nth-order perturbation 
equations for all n is derived under the restriction that the perturbations considered preserve 
the (one Killing field) symmetry of the background. The evolution equations are treated first 
and then the constraint equations are imposed, recovering along the way the well-known result 
that linearization instabilities arise only if one attempts to perturb from one (Killing) 
symmetry class to another. Gauge transformations, decompositions, and the natural 
symplectic structure associated with the perturbation formalism are also discussed. The 
possibility of extending these results to the case of symmetry breaking perturbations and of 
using the results to derive the asymptotic behavior of solutions near their singular boundaries 
is briefly discussed. 

I. INTRODUCTION 

One of the main open problems in classical general rela­
tivity is the understanding of space-time singularities. Even 
if quantum effects should ultimately be shown to modify the 
nature (or even the existence) of the singularities predicted 
by Einstein's theory, it seems likely that this should happen 
only at distance scales on the order of the Planck length or 
beyond. Thus one would expect that the approach to the 
singular state predicted by general relativity should remain 
valid up to corresponding large values of space-time curva­
ture. The domain of applicability of the classical theory 
would thus extend from Planck scales to cosmic distance 
scales, a range of at least 50 orders of magnitude. 

One of the main difficulties in studying singularities is 
that of producing reliable approximation methods for solv­
ing Einstein's equations near a region of divergent curvature. 
In this paper we develop a new approach to this problem by 
considering the perturbations, to arbitrarily high order, of a 
family of non-curvature-singular space-times, the general­
ized Tauh-NUT (Newman-Unti-Tamburino) space-times 
discussed in earlier work. 1,2 The generalized Tauh-NUT 
space-times all have compact Cauchy horizons at the boun­
daries of their globally hyperbolic regions and each has at 
least one Killing vector field spacelike in the globally hyper­
bolic region and null on the Cauchy horizon. In the analytic 
case (to which we restrict our attention) the metrics of these 
space-times can all be expressed in terms of certain conver­
gent power series expansions about the horizon surfaces 
themselves. They comprise, on any given allowed manifold, 
an infinite-dimensional family of inequivalent solutions of 

the Einstein equations. Though infinite-dimensional this 
family contains (roughly speaking) only half the number of 
free functions one would expect to have in the general solu­
tions of Einstein's equations of the chosen symmetry type. 
This is hardly surprising-even within the chosen symmetry 
class one expects the generic solution to exhibit a curvature 
singularity instead of a Cauchy horizon at the boundary of 
its maximal Cauchy development. Unfortunately, however, 
the method used to construct the generalized Tauh-NUT 
solutions (a slight extension of the Cauchy-Kowalewski 
theorem) does not seem to be directly applicable to obtain­
ing the general solution within the given symmetry class. 
This also is hardly surprising since the generic solution, in 
view of its expected curvature singularity, seems unlikely to 
admit an expression in terms of convergent expansions about 
its singular boundary. Of course, one can always expand the 
general solution about a nonsingular (Cauchy) hypersur­
face in the globally hyperbolic region but, unless one is mi­
raculously able to sum the infinite series expressions explicit­
ly, this technique is unlikely to shed much light on the nature 
of the singularities such general solutions are expected to 
include. 

In this paper we consider the sequence of linear prob­
lems generated by perturbing Einstein's equations, to arbi­
trarily high order, about an arbitrary generalized Taub­
-NUT background space-time. For the present we only 
consider perturbations that remain within the given symme­
try class (of one spacelike Killing field) but we believe that 
the same methods are equally applicable to the general prob­
lem of nonsymmetric perturbations. Our main results in­
clude the determination of the form of the general solution of 
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the nth-order perturbation equations for arbitrarily large n. 
In a sense we accomplish this by showing that one can "fac­
tor out" the singular parts of the nth-order perturbation 
functions and determine the analytic coefficients of these 
singular factors by means of the extended Cauchy-Kowa­
lewski theorem alIuded to above. At first order our tech­
nique is quite analogous to the classical Frobenius method 
for solving an ordinary, linear differential equation near a 
regular singular point of that equation. At higher orders the 
technique is similar except that we now encounter inhomo­
geneous, singular terms that arise from all the lower-order 
perturbations. Remarkably we find that the Frobenius-type 
approach can be extended to handle these singular source 
terms and to determine the form of the general solution of 
the nth-order perturbation equations for arbitrary n. 

The plan of this paper is as follows. In Sec. II we recall 
the main features of our (background) generalized Taub­
-NUT space-times and derive the form of the general solu­
tion of the nth-order perturbed evolution equations for per­
turbations that remain within the chosen symmetry class. In 
Sec. III we impose the perturbed constraint equations and 
discuss gauge tranformations, decompositions, and the nat­
ural symplectic structure for our perturbation formalism. In 
Sec. IV we briefly discuss several possible extensions and 
generalizations of our work. In the future we hope to show 
how one can collect together the "dominant singular terms" 
from each order and sum the resultant truncated series to 
determine the asymptotic behavior of the perturbed solu­
tions near their singular boundaries. 

II. SOLVING THE nth-ORDER EVOLUTION EQUATIONS 

A. Generalized Taub-NUT space-times 

The main property we desire for our background solu­
tions is that they admit compact Cauchy horizons. Com­
pactness corresponds to the physically interesting boundary 
condition of a closed universe whereas the existence of a 
Cauchy horizon ensures (at least in the analytic case) that 
we can express the background metric in terms of conver­
gent power series expansions about the horizon surface it­
self. A compact Cauchy horizon has a null geodesic gener­
ator passing through each of its points and lying entirely in 
the horizon surface. If the null generators are all closed 
curves then the horizon surface must have the structure of 
either a circle bundle or a Seifert manifold (which is covered 
by a circle bundle). 3,4 In these cases Isenberg and the author 
have shown that any analytic vacuum (or electrovacuum) 
space-time with such a horizon necessarily admits a Killing 
vector field null on the horizon (and thus tangent to its gen­
erators) and spacelike in a globally hyperbolic region neigh­
boring the horizon (where its integral curves are also 
closed). Thus a globally hyperbolic region neighboring the 
horizon has the natural geometrical structure of a circle bun­
dle or a space covered by such a bundle. In particular, the 
Taub regions of the Tauh-NUT solutions are (nontrivial) S I 

bundles over S 2 X R. 
Isenberg and the author are attempting to extend this 

result with a proof of the conjecture that if the generators of 
the compact horizon are not closed then there is nevertheless 
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a Killing field tangent to the horizon generators and further­
more the dimension of the full isometry group for the space­
time must be greater than or equal to 2. The last assertion 
follows from the fact that the isometry groups of compact 
Riemannian manifolds are necessarily compact whereas the 
isometry group generated by a single Killing field (with non­
closed orbits) acting on a suitably chosen Cauchy surface in 
the globally hyperbolic region would be noncompact. If the 
stated conjecture is true then clearly the circle bundle hori­
zons (and those covered by circle bundles) would provide 
the "largest" families of vacuum space-times admitting com­
pact Cauchy horizons since the other families would neces­
sarily have higher-dimensional isometry groups. 

Because we wish to treat space-times having only one­
dimensional isometry groups and because the perturbation 
of spatially compact vacuum space-times from one symme­
try class to another is beset with linearization instabilities5

•
6 

we find it most convenient to choose background solutions 
admitting only one Killing vector field and thus belonging to 
one of the S I-bundle (or Seifert) families mentioned above. 
We therefore consider vacuum space-times that are S I bun­
dies over K XR, whereKis an arbitrary, compact, orientable 
two-manifold. For simplicity we shall restrict our attention 
to the trivial bundles K X R X S I --> K X R, though the same 
methods could certainly be applied (by suitably patching 
together local trivializations) to handle the nontrivial bun­
dles as well (see Ref. 2 for the treatment of the nontrivial 
bundle S 3 X R .-S 2 X R) . We shall refer to such vacuum 
space-times having S I-symmetric, compact Cauchy hori­
zons as generalized Tauh-NUT (GTN) space-times, al­
though, strictly speaking, that term ought to be reserved for 
the bundle S3 X R.-S2XR. 

In the following we let {xa
, a = 1,2} represent local co­

ordinates on the compact two-manifold K, x 3 (defined 
mod 217') represent an angle coordinate on the circle, and 
XO = tER represent the "time." 

The Lorentzian metrics on (4) V = K XR xs 1 are ex­
pressible in the form 

ds'l = (4)g dxP dxv 
pv 

(2.1 ) 

where k is a nonzero constant and a / ax3 is a Killing vector 
field. By analogy with the well-known Kaluza-Klein-Jor­
dan reduction we may view t/J, fJa dxa, and 
( - N 2 dt 2 + gab dxa dxb) as a scalar field, one-form, and 
Lorentzian metric, respectively, induced on the base mani­
fold K X R by the space-time metric on K X R X S 1. For sim­
plicity we have imposed the coordinate condition of zero 
shift vector field, which corresponds to dropping the time 
component of the one-form field and the two-dimensional 
shift field of the Lorentzian metric induced on K XR. 

The line element (2.1 ) degenerates at t = O. However, if 
we reexpress it through the change of coordinates 

t'=t 2
, x 3'=x3 -(l/k)lnt, xa'=xa

, (2.2) 

then we can easily show that the transformed metric is ana-
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lytic and Lorentzian on a neighborhood 
ff = K xS IX ( - A,A) of the surface t' = 0 provided 

(i) tjJ(t' ,xa,), N(t' ,xa,), /3a (t ',xb, )dxa, 

and gab (t' ,xc, )dxal dXfJ/ are analytic on ff; 

(ii) N>O and gab is positive definite on ff; 

(iii) (N 2 - e4tP )/4t') is analytic on ff. 

The transformed metric has the form 

d~ = (4)gJ.L'v' dxJ." dxVl 

= ( _ e-itP/4t')(N2 _ e4tP )(dt,)2 

(2.3 ) 

For such a metric it is easy to show that 

(iv) the surface t' = 0 is a null hypersurface with a lax3
' 

tangent to its null generators; 

( v) the Killing field a I ax3
' is spacelike in the region 

t' > 0 but timelike in the region (' < O--its orbits 
there being closed timelike curves. 

Space-times satisfying the conditions (i) -( iii) above are 
globally hyperbolic in the regions ( , > 0 (which were covered 
by the original charts with either (> 0 or ( < 0), have Cauchy 
horizons diffeomorphic to K X S I at t' = 0, and have closed 
timelike curves through every event in their acausal exten­
sions t' < O. For each such space-time, a second, inequivalent 
extension through the Cauchy horizon can be defined by 
introducing the chart 

t'=(z, x3'=x3 +(llk)lnt, xa'=xa (2.4) 

instead of (2.2) and proceeding as before. These two exten­
sions correspond to the well-known pair of extensions for the 
Taub space-time that cannot simultaneously be accommo­
dated within a Hausdorff manifold. 

The Einstein equations for a metric of the form (2.1) are 
written out explicitly in Eqs. (2.4)-(2.6) of Ref. 1. As dis­
cussed in detail in that reference one may prove the existence 
of analytic solutions of Einstein's equations having all the 
properties (i)-(v) above by imposing a suitable coordinate 
condition to fix the lapse function N and applying the ex­
tended Cauchy-Kowalewski theorem sketched there and 
proved in detail in Ref. 2. Every choice of analytic initial data 
{~, /3a,gab} (O,XC

) specified over K (with ~ a function, 
/3a dxa a one-form, and gab dxa dxb a Riemannian metric on 
K) determines a unique, analytic solution of Einstein's equa­
tions having all the properties (i)-(v) above provided the 
lapse function is chosen to satisfy both conditions (i)-(iii) 
above and the condition 

(2,5) 

where (Z)g is the determinant of gab' These restrictions lead to 
the requirement that 

(2.6) 
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which fixes Nuniquely. 
The rigid coordinate conditions described above were 

chosen originally to simplify the form of the Einstein evolu­
tion equations and are not strictly necessary for the analysis 
to follow. Any choice oflapse and shift that still permits one 
to apply the extended Cauchy-Kowalewski theorem would 
probably work just as well. For simplicity, however, we shall 
retain the coordinate conditions of zero shift and a lapse 
satisfying (vi) above in the present discussion. 

Many of the solutions determined by data {~, /3a, gab} 
prescribed on K are isometric to one another. In order to 
characterize the space of inequivalent generalized Taub­
-NUT space-times it is convenient to transform the metrics 
to a canonical gauge. For this purpose we consider, for each 
such space-time, the group of analytic diffeomorphisms that 
preserve the horizon at t' = 0 and commute with the iso­
metry generated by the Killing field a I ax3

,. Infinitesimal 
generators of such diffeomorphisms are vector fields (4)X that 
are tangent to the null hypersurface at t' = 0 and that com­
mute with a I ax3

'. 

We can express such vector fields as 

(4)X=('Y~+XO'~+X3'~, (2.7) 
at' axa, ax3

' 

where ( Y,xa
, ,X 3') are analytic in (t , ,XO

'). The infinitesimal 
gauge transformation of (4)g induced (4)X is given by the Lie 
derivative 2""'x (4)g. In order that (4)X preserve the coordi­
nate conditions we have imposed on (4)g it is necessary (and 
sufficient) that (4)Xbe required to satisfy the evolution equa­
tions [Eqs. (3.4) of Ref. 1] 

y =2~~(..pg /la,), 
" ..pg axo N 

(t/la,)" = (N 212)( ~bY,b' 

(X
3
' + n" = - 2/3oX

a
"" 

where 
/la, = (lit) (XO, _1'a,) 

(2.8) 

and 1'a , are the initial values of X a (i,e., xa, 1" ~ 0)' As in Ref. 
I we can apply the extended Cauchy-Kowalewski theorem 
to prove the existence and uniqueness of solutions of Eqs. 
(2.8) that are analytic and even in t (hence also analytic in 
t ' = t 2) for arbitrary analytic initial data ( Y, 1'a , 1'3') pre­
scribed at t = O. 

The infinitesimal gauge tranformations of (tjJ, /30 ,gob ,N) 
induced by such a vector field are determined by computing 
2"'4>X(4)g and are given in Eqs. (3.5) of Ref. 1. These pertur­
bations reduce, as t --+ 0+, to the expressions [also given in 
Eqs. (3.6) of Ref. 1] 

o~ = ! Y + 2",,,x~' 
0/30 = !(1'3, + Y),o + (2"'''x/3)o' 

Mob = Ygob + (2",,,xg)ob' 

oN = YN + 2""'xN. 

where 

Vincent Moncrief 
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and :£,,,,x signifies the Lie derivative with respect to this 
vector field on K. 

These infinitesimal gauge transformations of the 
Cauchy horizon data clearly consist of (n an infinitesimal 
diffeomorphism of K generated by (2) X; (ii') an "electromag­
netic" gauge transformation of Pa generated by 

Z=!(X 3
' + i), 

and (iii') a "conformal" transformation of (~,gab) genera­
ted by Y. The "conformal" transformation is just such as to 
preserve the tensor e - 2if,gab and in general these gauge trans­
formations preserve the regularity condition N = e2if, dis­
cussed earlier. 

Equations (2.9) define the Lie algebra of a group of 
transformations acting on the space of Cauchy horizon data. 
To see the structure of this Lie algebra let (Y,(2)X,Z) and 
(Y,(2)%,Z) withZ=~(X3' + y) andZ = !(%3' + n be any 
two such infinitesimal transformations and compute their 
commutator. The result is a transformation of the same type 
with a generator given by 

(Y*,(2)X*,Z *) 

= (:£,,,,x Y - :£,,,,x Y, [(2)%,(2)% ]':£""xZ - :£""xZ). 
(2.10) 

The associated group has two obvious, commuting, Abelian 
subgroups determined by generators of the type (Y,O,O) 
("conformal" transformations) and the type (O,O,Z) 
("electromagnetic" gauge transformations). In addition 
there is the non-Abelian subgroup with generators of the 
type (0, (2)X,O). This last subgroup is clearly just the diffeo­
morphism group of K. 

As is well known, every Riemannian metric on K is con­
formal to a metric of constant curvature. The scalar curva­
ture of the transformed metric will be a positive constant if 
K ::::;S2, zeroifK::::; T2, and a negative constant ifKis a higher 
genus two-manifold. We can always choose the conformal 
factor so that the transformed metric g:b satisfies (say) 

1 ~(2)g* = 41T, 

in which case the scalar curvature, (2)R «2)g*), will assume a 
(constant) value fixed by the Gauss-Bonnet theorem and 
depending only upon the genus of K. Without disturbing this 
gauge condition we can apply an "electromagnetic" gauge 
transformation to make /Ja divergence-free (with respect to 
the new, constant curvature metric t:b ). Next we can, with­
out disturbing these conditions, apply a diffeomorphism of 
K to bring the constant curvature metric into a canonical 
form. For example, if K ::::;S2 one could require that 

t:b dxa dxb = dO 2 + sin2 0 d1i 

whereas, if K::::;T2 one could require that the (flat) metric 
g~b have constant components and thus, in view of the condi­
tion 

1?F =41T, 

depend on only two real parameters. More generally, for 
higher genus two-manifolds, the moduli spaces of conformal 
equivalence classes of Riemannian metrics are parametrized 
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by 3g - 3 complex parameters for genusg>2. Thus in a suit­
ably chosen canonical gauge t:b could be uniquely specified 
in terms of 6g - 6 real parameters. 

Finally, without disturbing the foregoing conditions one 
can apply gauge transformations generated by the "confor­
mal isometries" of t:b. More precisely, if(2).xa is any confor­
mal Killing field of t:b and we set 

(2.11 ) 

then 

t5t:b = Yt:b + (:£''''xg*) ab = 0, 

and one can check that the condition that /3 : have vanishing 
divergence with respect to g:b is left undisturbed provided 
we set Z = ! (X 3, + i) = 0. 

The conformal isometry group of (K,g:b) is a Lie group 
of dimension 6 if K::::;S2, dimension 2 if K::::;T2 (and coin­
cides with the isometry group since g:b is flat), and dimen­
sion zero if K is a higher genus two-manifold. Thus for K::::;S 2 

or T2 we can take the quotient by the corresponding group 
action and further reduce the space of inequivalent general­
ized Taub,,-NUT space-times. 

To summarize, we can ahyals choose a canonical gauge 
for the Cauchy horizon data {</J,Pa ,gab} such that (a) gab is a 
constant curvature metric on K depending only on zero (if 
K::::;S2), 2 (if K::::; T2), or 6g - 6 (if K has genusg>2) real 
parameters; (b) /3a has zero divergence with respect to gab; 
and (C) there is a residual gauge subgroup action of dimen­
sion6 (ifK ::::;S2) or dimension 2 (ifK::::; T2) generated by the 
conformal Killing fields of (K,gab), which acts on the data 
(lp, /3a' gab)' 

B. First- and second-order perturbations 

We want to consider perturbations of the Einstein evo­
lution equations for </J, Pa, and gab [cf. Eqs. (2.4) of Ref. 1] 
about an arbitrary generalized Tauh-NUT background. To 
generate the perturbation equations of arbitrary order one 
imagines having a one parameter family of exact solutions 
{</J, Pa,gab} (t,xc ,E) and differentiates the exact equations 
with respect to the parameter € arbitrarily many times, set­
ting € = ° (the background value) at the end. The nth-order 
equations consist of a linear second-order operator acting on 
the nth-order perturbations, 

{",(n)p(n) (n)}={an</J anPa a
ngab }I (2.12) 

'f' , a ,gab - a....n' an' a n 
e € E £=0 

and an inhomogeneous "source" term formed from pertur­
bations of the lapse function and (for n> 1) from all the 
lower-order perturbations. For simplicity we retain the co-

ordinate conditions of zero shift and of (N / F"i).t = 0, 
which means that we only allow perturbations of the lapse 
function N generated by differentiations of 

~ = (~) I e2
A(x

a
.EJ, 

F"i F"i E=O 

(2.13 ) 

where A(Xa ,E) is an arbitrary analytic function of the indi­
cated arguments with A(Xa ,0) = 0. 
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The main tool we require is the extended Cauchy­
Kowalewski (CK) theorem sketched in Ref. 1 and proved in 
detail in Ref. 2. Since the applications of this theorem to the 
present problem follow the same pattern employed in those 
earlier papers (once we have factored out the singularities) 
we shall simply state the results of applying the theorem 
without giving repetitious details. Just as for the background 
'solutions, all of the coefficient functions determined by 
means of the extended CK theorem will prove to be both 
analytic in (xa ,I) and even in t (and thus also analytic in the 
time variable t' = t 2 defined above). For convenience we 
shall refer to any function analytic and even in t as a regular 
function. The analyticity of the solutions will follow directly 
from the application of the CK theorem whereas the even­
ness in t requires a more detailed consideration ofthe specific 
evolution equations-one shows inductively that all odd t 

derivatives of the analytic solutions vanish at t = O. 
The main result we intend to prove may be stated as 

follows. The solutions of the nth-order perturbation equa­
tions are expressible (suppressing the tensor indices on 
13 (n) =13 ~n) and gIn) =g~:) for simplicity) as 

(n-I)/2 (1 t)n-2k-1 
",(n) = ~ n [ (In t)a(n) + a(n) ] 
'f' £.. 2k n - 2k n - 2k - 1 , 

k=O t 
(n-I)/2 (Int)n-2k-1 

13 (n) = L 
k = 0 t 2k 

X (1 t)b (n) + n_2k-1 
[ 

b (n) ] 

n n - 2k t 2 ' 
(2.14 ) 

(n-I)/2 (1 t)n-2k-1 
g In) = ~ n [ (In t)c(") + c(n) ] £.. 2k n - 2k n - 2k - 1 , 

k=O t 

if n is odd (i.e., n = 1,3,5, ... ), and 

a(n) 
+_0_, 

t n 

13(n)= ~ n (lnt)b(n) + n-2k-1 
(n-2)/2 (1 t)n-2k-1 [ b (n) ] 

£.. 2k n - 2k t 2 
k=O t 

b (n) 

+_0_, 
t n 

(2.15) 

(n-2)/2 (In t)n-2k-1 
gIn) = L [ (In t)c~~ 2k + c~n~ 2k _ 1 ] 

k =0 t 2k 

c(n) 
+_0_, 

t n 

if n is even (i.e., n = 2,4,6, ... ). Here each of the coefficient 
fi t · {(n) b (n) (n). 1- 0 1 . - 1 2 3 } '11 b unc Ions aJ , J 'C J , - , , ••• ,n, n - , "... WI e 
shown to be regular [i.e., analytic in (t,xa

) and even in t] in 
a neighborhood of t = 0, the horizon surface of the back­
ground solution. The solutions at each order are determined 
uniquely by the solutions from all the preceding orders up to 
the addition of an arbitrary solution of the first-order 
(n = 1) equations. 

The first-order perturbations, according to the above, 
have the form 
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ifJ(l) = (In,l)ap) + a~/>, 
f3{\) = (In t)b P) + b~/)lt2, (2.16) 

g<1) = (In t)c~\) + c~/), 
and, as we shall see, the freely specifiable data will be the 
initial values 

{
a(l) a(l) b (l) a2b~/) c(l) c(l)} I 

I , 0 , 0 , at2 ' 1 '0 /=0 ' 
(2.17) 

prescribed as analytic tensor fields on K and the first-order 
perturbation of the lapse function computed from Eq. 
(2.13). Thus at nth order the only freedom is that of adding 
an arbitrary solution of the first-order equations, which in 
turn is uniquely determined by the data indicated above. 
Later when we impose the nth-order constraint equations 
some of this "free data" will itself be restricted. The data 
indicated above are, aside from the arbitrary perturbation of 
the lapse function, just the 12 independent functions one 
would expect to have in solving the six second-order evolu­
tion equations for {ifJ, 13a ,gab}' but they are not conventional 
Cauchy data since we are choosing to specify the "initial 
conditions" on a Cauchy horizon instead of on a Cauchy 
surface of the background space-time. 

The difference in form ofthe perturbations {ifJ(n) ,g(n)} 

from the perturbations {p(n)} is traceable to the difference 
between the singular time derivative operators that occur in 
the evolution equations for these quantities. The operator 
a 21at 2 + (1/l)a lat, which acts on the quantities ifJ(n) and 
g(n), annihilates any field of the form ((In I)a l (xb ) 

+ao(xb », whereas the operator a 21at 2 + (3It)alat, 
which acts on the 13(n) ,annihilates any field of the form ( 1/ 
t 2)b l (XC) + bo(xC »). These facts determine the form of the 
freely specifiable data in the perturbation equations for these 
quantities. The interaction terms between these variables 
force the additional (In t) term in the first-order perturba­
tion of 13a and, at higher orders, these interactions drive the 
higher-order logarithmic singularities and the higher-order 
singularities in 1/ t 2, which appear in the general solution for 
the nth-order perturbations. If one turns off the 13a field 
altogether (which is always allowed on the trivial bundles 
K XR XSI_K XR) then the general solution for the re­
maining perturbations simplifies to 

ifJ(n) = (In t)"a~n) + (In t) n - la~n~ 1 + ... 
+ (In I)a\n) + arin) , (2.18) 

gIn) = (In t)nc~n) + (In t)n-Ic~~ 1 + .,. 
+ (In t)dn) + crin) , 

where the coefficients {al,n>'cl,n)} are all analytic and even in 
t. 

To analyze the perturbation equations we shall employ a 
convenient schematic form for the evolution equations. 
Since ifJ and gab occur in somewhat parallel ways in the evo­
lution equations we can compress them into a single symbol, 
which, with indices suppressed, we shall call t/J. Thus we let t/J 
stand for the pair (ifJ,gab ) and 13 stand for 13a as before. Tak­
ing account of the coordinate condition, which we have im-

posed to yield (N IFg),/ = 0, we find that the evolution 
equations can be written schematically as 
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t/J,tt + (l/t)t/J,t = A (t/J,N) + B(t/J,N)t 2 d{Jd{J 

+ C(t/J)t/J,tt/J,t + D(t/J)tz{J,t{J,I' 

{J,t1 + (3It){J,t = E( t/J,N)d{J + F( t/J,N)J d{J 

+ G( t/J) t/J,t{J,t' 

(2.19) 

where d{J is the exterior derivative of the one-form {J [i.e., 
d{J = !({Ja,b - {Jb,a )dxb A dxa], A, B, E, and F are certain 
analytic expressions in {l/J,gab ,N} and their first and second 
spatial derivatives and where C, D, and G are similar expres­
sions in l/J and gab alone. The second spatial derivatives of (J 
are indicated explicitly by Jd{J whereas the spatial deriva­
tives of t/J and N are contained in the quantities A, ... ,G and 
thus suppressed in the above notation. 

Linearizing Eqs. (2.19) about a regular background so­
lution and taking account of the coordinate condition (2.13) 
when perturbing the lapse function N we obtain first-order 
perturbation equations of the schematic form 

t/J.~~) + (l/t)t/J.~I) = R·t/J(I) + t 2R d{J(1) 

+ tRt/J;/) + t 3R{J;/) + R, 

f3,~~) + (31t){J,(/) = R·t/J(l) + R·d{J(I) 

+ tRt/J,'rI) + tR{J ,\1) + R, 

(2.20) 

where R· stands generically for a linear (spatial) differential 
operator with regular coefficients and R stands for a regular 
multiplicative operator or a regular additive inhomogeneous 
term (induced by perturbations of the lapse function). 

We now seek solutions of Eqs, (2,20) of the form [cf. 
Eqs, (2,16) above] 

(2.21) 

with coefficients {al/),b lo1)}, which are regular. For conven­
ience we write b 61

) = yo(xa) + t zYI> where Yo is analytic in 
{xa

} and independent of t (as signified by the overhead 
naught) and where YI is regular. Thus we write 

(2.22) 

and 

(2.23 ) 

and substitute these forms into the linearized evolution 
equations (2.20). We organize the resulting system by col­
lecting together all terms having, as an overall factor, a com­
mon power of (In t). At this (n = 1) level only the two pow­
ers (In t)k, k = 1,0, occur. To obtain solutions we demand 
that the coefficients of each power of (In t) vanish separate­
ly. The vanishing of the coefficients of (In t) is equivalent to 
the requirement that Eqs. (2.20), with t/J(I) and {J (I) replaced 
by all) and b ll) and the inhomogeneous R terms dropped, be 
satisfied. But one can apply the extended CK theorem to this 
system and prove the existence of regular solutions 
{a~l),b II)} that are uniquely determined by the arbitrarily 
specified, analytic initial data {aj!), b jl)n=o' Having thus 
killed all the terms with the factor (In t) we find that the 
linearized equations reduce to 
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a6 1),t1 + (lIt)a6 1 ),t + (2It)a\I),t 

= R'a61
) + tR(a61 ),t + aj!)It) 

+ tZR d(YI + Yolt2) 

+t 3R(YI,t +bjl)lt- (2/t 3 )Yo)+R, 

YI,tt + (31t)Yl,t + (2It)bl l ),t + (2It Z)bll) 

= R'a61
) + R'd(YI + YoltZ) 

+ tR(a61),t + a\I)I!) 

+tR(YI,t +b\I)lt- (2/t 3 )Yo)+R. 

(2.24 ) 

These have the form of Eqs. (2.20) (with {a61)'YI} in place 
of {t/Jw, (JW}) supplemented with some additional inhomo­
geneous terms arising from all) ,b ;1), and Yo' Recalling that 
all) and b ll) are regular (and thus even in t) one sees that all 
of the inhomogeneous contributions are regular except for 
the terms (2It 2)bj!), occurring on the left-hand side, and 
[R'd(yolt

2) - 2RYolt
2] occurring on the right-hand side 

ofthe equation for YI' We can kill the singularity provided by 
these terms, leaving only an additional regular inhomogene­
ity, by requiring that the initial data for b ll) (which was 
arbitrary up to this point) be fixed by the equation 

(2.25) 

for any choice of yo(xa ). With this restriction, Eqs. (2.24) 
become amenable to the extended CK theorem, which guar­
antees that regular solutions {a61) ,YI} exist for arbitrary, 
analytic initial data {a61)'Yln=0' 

Thus we obtain solutions of the linearized equations 
uniquely determined by the independent data 
{ap>'a6 1)'YI,Yo(xa)} It=o withb ll) fixed by Eqs. (2.20) and 
the initial condition (2.25). The independent data consists 
of two analytic functions, two analytic one-forms and two 
analytic, symmetric tensor fields that one can prescribe arbi­
trarily on the two-manifold K. By treating the linearized 
equations as a Hamiltonian system one can show that this 
free data consists of canonically conjugate pairs of variables, 
as we shall see in Sec. III D, When we impose the linearized 
constraints some of this "free data" will, of course, be fixed 
in terms of the remaining data, The constraints will be dealt 
with in Sec. III. 

Before turning to the general inductive proof it may be 
useful to sketch how the pattern of solution continues to the 
second order. The second-order perturbation equations con­
sistofequations oftheform (2.20), with {t/J(1),{JI1)} replaced 
by {t/J(2), (J(Z)}, supplemented by additional inhomogeneous 
terms that arise from quadratic terms in the first-order per­
turbations. These additional inhomogeneities consist of 
terms of the form [ROn t)2 + ROn t) + R It 4

], occurring 
in the t/J(Z)equation, and [R (In t)2 + (R It 2) (In t) + R It 4 ], 

occurring in the (J(2) equation. Following the inductive hy­
pothesis [ (2.14) and (2.15)] we seek solutions of the form 

t/J(2) = On t)zaf) + On t)al 2) + a6Z) It 2, 

(J(2) = On t)2b f) + On t)b ;2) It 2 + b 62 ) It 2, 

(2.26) 

with regular coefficients {alo2 ),b lo2
)}. For convenience we 

also write 
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a6Z) = a6Z),0(Xb ) + t ZaiZ),O 

biZ) = Y6Z),1 (xb ) + t 2r iZ).1 

b 6Z) = Y6Z)'0(Xb ) + t 2r ?)·0 

(2.27) 

where {a6Z).0(Xb ),Y6z
).1 (xb

), Y6Z).0(Xb
)} are analytic and in­

dependent of t and where {aiZ),0,ri2).I,ri2),0} are analytic 
and even in t. Thus we substitute the forms 

tiP = (In t)2aiZ) + (1n t)aiZ) + a\Z),O + a6Z).0(xb)lt z, 

{3(2) = (1n t) 2b iZ) 

+ (In t) [riZ).1 + Y62).1 (xb)lt 2] 

(2.28) 

into the second-order perturbation equations and collect to­
gether all the terms with the factors (In t)k, where 
k = 2,1,0. Again we attempt to solve the equations by re­
quiring that the coefficients of each independent power of 
(In t) vanish separately. Demanding that the coefficients of 
(In t)2 vanish leads to equations of the form (2.20), with 
{tflt),{3(t)} replaced by {a~2),b i2)}. The extended CK 
theorem applies and yields regular solutions. for arbitrary 
initial data {af>,b iZ)}I,= o. Next we demand that the coeffi­
cients of (In t) vanish. This leads to equations of the same 
type for {a\Z),riz).l} except that there are some additional 
regular inhomogeneities arising from {aiZ) ,b iZ), Y6Z

).1 (xb)} 
and, in the riZ).1 equation, a collection of inhomogeneous 
terms with the singular coefficient 1/t 2. This singularity can 
be killed, leaving only an additional regular inhomogeneity, 
by requiring that the (heretofore arbitrary) initial data for 
b f) be constrained to satisfy an equation of the form 

4b~Z)I,=0 = [R·d(Y6Z).I(Xb»)-2RY6Z).I(Xb) +R ]1'=0' 
(2.29) 

With this restriction the extended CK theorem becomes ap­
plicable and assures the existence of regular solutions deter­
mined uniquely by arbitrary, analytic initial data 
{aiz>'riZ).I}I,=o and arbitrarily chosen, analytic Y62 )'I(Xb). 

Finally we demand that the remaining terms in the sec­
ond-order perturbation equations vanish. This also leads to 
inhomogeneous generalizations ofEqs. (2.20) for the quan­
tities {aiZ).o,riZ),O} with inhomogeneities of the form R 
+ rlt 2 + rlt 4 occurring in each of the equations. Here 
r = r(xb ) stands generically for a time-independent, analyt­
ic factor and R is regular as before. One can kill the singular 
terms by imposing the conditions 

4 a6Z ),0 = r, 

- 2 Y6Z
).I = r, 

2 a(Z)1 = {R'a' (2).0 - 2Ra(Z),0 + r}1 Z ,=0 0 0 ,=0' 
2 riZ),II,=o = {- 2biZ) + R'a6Z),0 

+ R·(d(Y6Z),0») - 2Ra6Z),0 

+ RY6Z
).1 - 2RY6Z),0 + r}I,=o, 

(2.30) 

leaving equations that are again amenable to the extended 
CK theorem. The latter have regular solutions uniquely de­
termined by arbitrary, analytic data {aiZ),O,rIZ).on = o. This 
procedure leaves {a\2).O,riZ),o, a\Z),Y6Z).on = 0 completely 
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arbitrary, which of course simply corresponds to the free­
dom to add an arbitrary solution ofthe first-order equations 
to any solution of the second-order equations. 

We can describe the above procedure in a more logically 
ordered way as follows. First, choose the free data 
{a(Z),o r(Z),o a(2) ';:"(Z).O}I arbitrarily' then use the first I 'I , I '/0 (=0 , 
three of Eqs. (2.30) together with Eq. (2.29) to determine 
{a' (Z),O ';:"(2).1 a(Z) b (Z)}I . and finally use the fourth of o '10 , 2 '2 t=O" , 

Eqs. (2.30) to fix riZ).11 (= o. Having fixed all the initial data 
in such a way as to guarantee the cancellation of the singular­
ities described above, solve in order for each of the pairs 
{ai2>'b iZ)}, {a\z>'rI 2 ).1}, and {a\2J.O,riZ),O} by applying the 
extended CK theorem to the corresponding (desingular­
ized) evolution equations. 

c. Perturbations of arbitrary order 

We now complete the proof of the inductive hypothesis, 
given in Eqs. (2.14) and (2.15), for the form of the nth­
order perturbations. Since the previous section has already 
treated the first and second orders we need to consider all the 
orders n > 3 in the following. 

We first need to determine the form of the inhomogen­
eous "source" terms in the nth-order equations that are in­
duced by all the lower-order perturbations. Assuming the 
inductive hypothesis to be valid up through order n - 1, it is 
straightforward to compute the form of the inhomogeneous 
terms generated in the nth-order equations. The results of 
that rather lengthy computation may be stated briefly as 
follows. Let S ~n) represent the source term in the nth-order 
perturbation equation for t/J and S 1n

) represent the corre­
sponding source term in the nth-order perturbation equation 
for {3. These sources are certain polynomial expressions in 
the lower-order perturbations {t/J( k) ,{3 (k)} (for 
k = 1,2, ... ,n - 1) and their first and second derivatives and 
in the perturbations a(I), ... ,a(n) of the function a, which de­
termines the lapse function N [cf. Eq. (2.13)]. For conven­
ience we include the nth-order perturbation of a as a part of 
the source since the quantity a (n) is specified arbitrarily and 
thus contributes a fixed inhomogeneity to the nth-order 
equations for {t/J(n),{3 (n)}. For all n>3 one finds that 

s~n) = (In t)nR + (In t)n-1R 

s 1n) = (In t)nR + (In t)n - Iii 
t Z 

(n-I)/2 [ (In t)n- 2kR 

+ k~1 t Zk + Z 

if n is odd, and 

s~n) = (In t)nR + (In t)n-IR 

(n-Z)/Z [ (In t)n-ZkR 

+ k~1 t Zk + Z 

(In t) n - Zk - 1 R ] 
+ t2k+ Z ' 

(2.31 ) 

(In t) n - 2k - 1 R ] 
+ Zk+4 ' t 

(In t)n-2k- IR] 
+ t Zk + Z 

(2.32) 
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S ~n) = (In t)nR + (In t)n - IR It 2 

(n-2)/2 [Ont)n-ZkR (Int)n-Zk-IR] 
+ k~ I t 2k + Z + t Zk + 4 

+ R It n + Z 

if n is even. As before, R stands generically for a regular 
function. 

The nth-order perturbation equations take the form 

if;(n).tI + (1!t)if;(n).t 

= R'if;(n) + t 2Rd/3(n) + tRif;(n),t + t 3R /3(n),t + s~nl, 
(2.33 ) 

/3 (n),tI + (3It)/3(n)" 

=R'if;(n) +R'd/3(n) + tRif;(n)" + tR/3(n)" +S1n), 

where the notation used is the same as that introduced for 
the first-order equations (2.20). If we now substitute the 
conjectured form for {if;(n},/3(n)} [cf. Eqs. (2.14) and 
(2.15)] into the above equations and collect all the terms 
having the common logarithmic factors On t)k (for 
k = n,n - 1, ... ,1,0) we may attempt to solve these equations 
by requiring that the coefficients of each independent power 
of On t) vanish separately. 

Beginning with the coefficients of (In t) n we obtain the 
equations 

a~n),tt + (1!t)a~n),1 = R 'a~n) + Rta~n)" 
+ t 2Rdb (n) + Rt 3b (n) + R 

n n,t' 

(2.34) 

b ~n},tt + (3lt)b ~n),1 = R·db ~n) + Rtb ~n),1 

+ R'a~n) + tRa~n)" + R, 

The extended CK theorem applies to this system and guar­
antees the existence of regular solutions for arbitrary, analyt­
ic initial data {a~n},b ~n)n~o' 

Turning to the coefficients of (In t) n - I we find it con­
venient to reexpress the (regular) function b ~~ I as 

b ~n~ 1= Ybn),n-I + t 2y\n).n-l, (2.35) 

where y\n)n - I is regular and where Ybn),n - I is analytic and 
independent of t (as signified by the overhead "naught"). 
Demanding that the coefficients of (In t) n - I vanish leads to 
the equations 

a~n~ l,tI + (1!t)a~~ 1,1 + (2nlt)a~n)" 
= R 'a(n) + R(ta(n} + na(n) + Rd(yO (n),n - I 

n - t n - 1,t n 0 

tZk(a(n},n-Zk + ~a(n).n-zk) + k~1 4(/- k)2tZI-Zlr(n).n-Zk 
k,tt t k,l I~O I 

+ t 2 y \n),n - I) + Rt 3y\~),n - I _ 2RYbn},n - I 

+ nRt 2b ~n) + R, (2,36) 

y(n),n - I + 2- y(n),n - I + ~ b (n) + ~b (n) 
1.<1 t I, t 2 n t n,l 

= R 'dy\n),n - I + Rty\n),n - I 
.' 

+ R'a~~ I + R(ta~n~ 1,1 + na~n) 
1 0 0 

+ nRb ~n) + 2[ R'dYbn),n-1 + R - 2Rybn),n-I]. 
t 

To cancel the singularity of order 1 It 2 in the second equation 
we require that the (heretofore arbitrary) initial data for 
b ~n) be fixed by the condition 

2nb (n) I = {R ·d:V(n).n - I + R - 2R:V(n},n - I}I 
n t~O (0 (0 I~O' 

(2.37) 

With this in force (for arbitrary y~n},n - I) the above system 
becomes amenable to the extended CK theorem, which as­
sures the existence of regular solutions determined by arbi­
trary analytic initial data {a~n~ I ,y\n),n - I} I, ~ o. The quanti­
ty Ybn),n - I also remains arbitrary at this point. 

Continuing in this manner we write 

(

k-I ) a(n} = ~ t 2l&.(n).n - Zk + t Zka(n),n - Zk 
n - 2k £., 1 k' 

I~O 

b ~n~ Zk = (k i l 
t zlYin).n - Zk) + t 2kyin),n - 2\ 

I~O 

(

k 1 (2.38) 
a(n) = ~ t 21ao (n),n - Zk - I) + t Zka(n).n - Zk - I n - 2k - I £., I k, 

I~O 

b (n) = (~ t 21y
O (n).n - Zk - I) + t Zk + 2y(n},n - 2k - I n - Zk - I £., I k + I , 

I~O 

where k=1,2, ... ,(n-l)/2, if n is odd, and 
k = 1,2, ... ,(n - 2)/2, if n is even. For n even, we also write 

(
niZ - I ) a(n) = ~ t 2llr(n},O + t na(n},O 

o £., 1 n/2' 
I~O 

(2.39) 
b bn) = (niI I t 2IYin),o) + t ny~~~,O, 

I~O 

which extends the pattern of the first two of Eqs. (2.38) to 
the case k = n12. In the above quantities {lrjn).m,Yin),m} are 
all taken to be analytic and independent of t (signified as 
before by the overhead "naught") whereas the 
{ain),n - Zk,ykn).n - Z\ akn},n - 2k - I ,yinl'7 - 2k - I} are expect-

ed to prove regular in the subsequent analysis. 
Requiring that the coefficients of (In t) n - 2k vanish 

leads to the equations 

+ 2(n - 2k + l)ta~~zk+ 1,1 + (4 - 4k)(n - 2k + l)a~~zk+ I + (n - 2k + l)(n - 2k + 2)a~n~Zk+Z 

2304 

k-I 
= t Zk{R 'akn),n - Zk + Rtak~/,n - 2k + t 2RdYkn},n - 2k + t 3 RYk~),n - 2k} + I t ZIR .&.in),n - 2k 

I~o 

k-I k-I k-I + I (21_2k)t ZIRlrjn),n-2k+ I tZ/+zRdYjn).n-Zk+ I (21_2k)t 21 +zRyin),n-zk 
I~O I~O I~O 

+ (n - 2k + l)t2Ra~~2k+ I + (n - 2k + I)Rt 2b ~n~2k+ 1+ R I/Z, 
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t2k(Y~~I:,n-2k + + y~~/,n-2k) + :t~ 4(/ - k)(/- (k - 1»)t 2l
-

2yl n),n-2k 

+ [2{n - 2k + 1 )It]b ~~2k+ 1,1 + (2 - 4k)[ {n - 2k + 1 )lt 2]b ~~2k+ I + (n - 2k + l){n - 2k + 2)b ~~2k+2 
k-I 0 

= t 2k{R 'dy~n),n - 2k + Rty~~/,n - 2k + R 'a~n),n - 2k + Rta~~/,n - 2k} + L t 21R 'dyln),n - 2k 
1=0 

k-I 0 k-I k-I 
+ L (2/_2k)t 2IRyln),n-2k+ L t 2IR'aln),n-2k+ L (2/_2k)t 21Raln),n-2k 

1=0 1=0 1=0 

+ (n - 2k + l)Rb ~n22k+ I + (n - 2k + 1)t2Ra~n22k+ I + R It 2, 

where k = 1,2, ... ,(n - 1 )/2, if n is odd, and where 
k = 1,2, ... ,n/2, if n is even (with n>3 in either case). 

We should like to divide these equations by t 2k and ap­
ply the extended CK theorem to find regular solutions. To 
do this, however, we must first cancel the inhomogeneities of 
order t -2, to, ... ,t 2k - 2 that occur in both equations, since 
otherwise division by t 2k would not yield a regular "source." 
If k = 1, it is easy to see that we can always choose a6 n),n - 2 

to cancel the terms of order t -2 in the equation for a\n),n - 2. 

If k>2, then a careful inspection of Eqs. (2.40) reveals that 
one can always choose the quantities 

aln),n - 2\ 

Y
o (n),n - 2k 

1 , 

1 = O,I, ... ,k - 1, 

1 = O, ... ,k - 2, 
(2.41) 

in such a way as to cancel the inhomogeneous terms of order 
t -2, ... ,t 2k - 4 in the a~n).n - 2k equations and the correspond­
ing terms of order t -2, ... ,t 2k - 6 in the y~n).n - 2k equations. 

I 

One first solves for the 1 = 0 coefficients {a6n
),n - 2\ 

Y6n
).n - 2k} and then proceeds successively to higher values of 

I. For all k> 1, we must still cancel the terms of order t 2k - 2 

in the a~n),n - 2k equations and the terms of order t 2k - 4 and 
t 2k - 2 in the y~n).n - 2k equations. 

Assume for the moment that we can cancel these re­
maining inhomogeneities (we shall show below how this is 
accomplished). Then one can apply the extended CK 
theorem to obtain regular solutions for arbitrary, analytic 
initial data {a~n),n - 2k,yin),n - 2kllr = 0' The analytic quantity 
Y~~'7 - 2k would also remain arbitrary at this point. Recall­
ing Eqs. (2.38) we see therefore thatthe coefficients oft 2k in 
a~~ 2k and the coefficients of t 2k - 2 and t 2k in b ~~ 2k would 
remain arbitrary through this stage of the argument. 

Returning to the mainstream of the proof we now de­
mand that the coefficients of (In t) n - 2k - I in the nth-order 
perturbation equations vanish separately. This leads to the 
equations 

( 
I ) k-I t 2k a(n),n-2k-I+_ a (n),n-2k-1 + L 4(/_k)2t 21-2a (n).n-2k-1 

k,lI t k.1 1=0 1 

+ [2(n - 2k)lt ]a~n2 2k,I - (4k It 2)(n - 2k)a~n2 2k + (n - 2k)(n - 2k + l)a~~ 2k+ I 

_ t 2k{R 'a(n).n - 2k - I + Rta(n).n - 2k - I + t 2Rdy(n).n - 2k - I + t 3 Ry(n).n - 2k - I} - k k,l k+1 k+I.1 

k-I k-I k 0 

+ L t 2IR'aln)n-2k-l+ L (2/_2k)t 21Rajn)n-2k-l+ L t 21Rdyln).n-2k-l 
1=0 1=0 1=0 

k 

+ L(2/- (2k+2)jt 21Ryjn),n-2k-l+ (n-2k)Ra~n22k + (n-2k)t2Rb~n22k +Rlt 2 , 

1=0 

t 2k +2(yinl'7,-;;2k-l +1.. y~"l'7,;-2k-l) + kil 4(1- k)(/- (k + l))t 21 - 2yl n),n-2k-1 
t 1=0 

+ 2(n - 2k)tb ~n2 2k.1 + (n - 2k) (2 - 4k)b ~n2 2k + (n - 2k) (n - 2k + l)b ~n2 2k + 1 

k 0 

_ t 2k + 2{R 'dy(n),n - 2k - 1 + Rty(n).n - 2k - 1 + R 'a(n).n - 2k- 1 + Rta(n),n - 2k- I} + " t 2IR'dy(n),n - 2k - I - k + 1 k + 1.1 k k,l ~ 1 
1=0 

k 0 k-I k-l 
+ L(2/-(2k+2)jt 2IRyjn),n-2k-l+ L t 21 +2R'ajn),n-2k-l+ L (2/_2k)t 21 +2Raln),n-2k-l 

1=0 1=0 1=0 

+ (n - 2k)Rt 2b ~n2 2k + (n - 2k)Rt 2a~n2 2k + R It 2, 

(2.42) 

where k = 1, ... ,(n - 1 )/2, if n is odd, and k = l, ... ,(n 
- 2)/2, if n is even (and n>3 in either case). 

I 
the inhomogeneities of order t -2,tO, ... ,t 2k - 2 that occur in 

We should like to divide Eqs. (2.42) by t 2k and t 2k+ 2 

and apply the extended CK theorem to prove the existence of 
regular solutions. To do this, however, we must first cancel 
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the equation for ain).n - 2k - 1 and the inhomogeneities of or­
der t -2,tO, ... ,t 2k that occur in the equation for yi"l'7 - 2k- I 

since otherwise the remaining "source" terms (after division 
by t 2k and t 2k + 2 , respectively) would not be regular. A care-
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ful inspection of Eqs. (2.42), however, reveals that we can 
always choose the quantities 

, (n),n-2k-1 a 1 , 

Y
'(n),n-2k-1 

I , 

I=O, ... ,k-l, 
(2.43) 

I=O, ... ,k-l, 

in such a way as to cancel the inhomogeneous terms of order 
t -2, ... ,t 2k - 4 occurring in both ofthese equations. One first 
solves for the quantities {a6n),n-2k-t,r6n),n-2k-l} and 
then proceeds successively to higher values of I. We must still 
cancel the inhomogeneities of order t 2k - 2 in the equation 
forain),n - 2k- 1 and those of order t 2k - 2 and t 2k in theequa­
tion for yi "1:7 - 2k - I. If we can succeed in canceling these 
remaining inhomogeneous terms then we shall be able to 
apply the extended CK theorem to prove the existence of 
regular solutions of Eqs, (2.42) determined by arbitrary, 
analyticinitial data {ain),n - 2k - I, Yi"l'7 - 2k - I}I, = o. In ad­
dition, the quantities rin),n - 2k - 1 would also remain arbi­
trary at this point. Recalling Eqs. (2.38) we thus see that the 
coefficients of t 2k in a~~ 2k _ 1 and the coefficients of t 2k and 
t 2k + 2 in b ~ ~ 2k _ 1 would therefore still remain arbitrary at 
this stage in the argument. 

Now we shall show that one can cancel the remaining 
troublesome inhomogeneities by appropriately choosing the 
free data that rests at our disposal. We have yet to cancel the 
terms of order t 2k - 2 in the equation for ai,,),n - 2k and the 
terms of order t 2k - 4 and t 2k - 2 in the equation for yin),,, - 2k. 

However, the coefficient of t 2k 
- 2 in the quantity a~"2 2k + 2' 

which occurs on the left-hand side ofEq. (2.40) with a con­
stant coefficient, remains at our disposal for k> 1. We there­
fore choose this heretofore free data to cancel the remaining 
singularities in the ai,,),n - 2k equations. Furthermore, since 
the coefficients of t 2k - 2 and t 2k in b ~ ~ 2k + 1 remain at our, 

disposal for k> 1, we can choose these in such a way that the 
terms 

(lIt)b~n22k+l,r + [(1-2k)/t2]b~~2k+1 

which occur on the left-hand side ofEq. (2.40) with a non­
zero constant coefficient, cancel the inhomogeneities of or­
der t 2k - 4 and t 2k - 2 in the yin).n - 2k equation. 

Finally, we need to cancel the inhomogeneous terms of 
order t 2k - 2 in the equation for ain),n - 2k - 1 and those of 
order t 2k - 2 and t 2k in the equation for yi "l'7 - 2k - I. How­
ever, the coefficient oft 2k - 2 in a~"2 2k + 1 [which occurs with 
nonvanishing coefficient on the left-hand side ofEq. (2.42) ] 
remains at our disposal. We therefore choose this data to 
cancel the remaining troublesome singularity in the 
ain),,, - 2k - 1 equation. Furthermore the coefficients of t 2k 

and t 2k - 2 in b ~ ~ 2k remain at our disposal. One can choose 
this (heretofore arbitrary) data in such a way that the quan­
tity tb ~n2 2k,1 + (1 - 2k)b ~n2 2k' which occurs with nonvan­
ishing coefficient on the left-hand side ofEq. (2.42), cancels 
the singularities of order t 2k - 2 and t 2k in the y(n),,, - 2k - 1 k+1 
equation. 

III. SOLVING THE PERTURBED CONSTRAINT 
EQUATIONS 

A. Constraints and Bianchi Identities 

The Hamiltonian and momentum constraints (written 
JY' and JY'j> respectively) of the usual Arnowitt, Oeser, and 
Misner (ADM) formalism7 are given explicitly (in the un­
primed coordinate chart) by 

JY' = te'" Fi {4~ 2 [g"Cgbdgcd,lgab,' - ~ g<dgcd" - gcdgcd"gefge/., ] + ;2 (¢J,,¢J,r + ~ ¢J.,) 

1 e4"'t 2 d (2) b t 2e4"'g"cgbd } 
+ '2}j2 g< '/3C.I/3d" - R + 2g" ¢J,a¢J.b + 4 (/3a,b - /3b,a) (/3c,d - /3d,c) , 

JY' = _ ~ [ t 3Fi e4",,.,abQ ] 
3 aXa N IS Pb,1 , (3.1) 

JY'a = /3aJY'3 - 2 {V b [ fj. (gbdtgad" - t8:g<dgcd,,) ] 

_ (2Fi) ¢J (t¢J + 1) + Fi N + 1- t
3
Fi e4"'gbdQ (Q -/3 )}. N ,a.1 N2 ,a 2 N Pd,1 Pa,b b,a 

Here (2)g = det (gab), g"b is the inverse of gab' Va is the covar­
iant derivative with respect to gab' and (2)R is the scalar cur­
vature of this metric. 

Equations of motion for the quantities {JY',JY'j} are im­
plied by the Bianchi identity and, when our evolution equa­
tions are imposed, take the form8 

a:; + ( + _ ¢J,I + + g"bgab.r )JY' 

= 2e"'g"bN,b (JY'a - /3aJY'3) 

+ e"'N(g"b(JY'a - /3aJY'3) l,b' 
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(3.2) 

These equations have a slightly different form from those 
usually presented because we have derived them from a 
Hamiltonian in which the lapse function N depends explicit­
ly upon the dynamical variables [through the coordinate 
condition (2.6) above] and the shift vector is zero. Any reg­
ular solution of the evolution equations [Eqs. (2.4) of Ref. 
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1 ] that, in addition, satisfies the regularity condition N = e2t/> 

(discussed in Sec. II A above) yields analytic expressions for 
{J¥', J¥'J that, moreover, vanish as t-O. However, the ex­
tended CK theorem applies to the system (3.2) and shows 
that the unique analytic solution of these equations having 
vanishing initial data is, in fact, identically vanishing. This 
result was used in proving the basic existence and uniqueness 
theorem for generalized Taub-NUT space-times given by 
Theorem (2) of Ref. 1. 

B. Solving the linearized constraint equations 

Recalling the results of Sec. II B let us write the first­
order perturbations of {ifJ,gab,/3a} in the form 

ifJ(\) = (In t)h (1),1 + h (1).0, g~~) = (In t)h ~~),I + h ~~),O, 

fJ~1) = (In t)h ~I),I + (llt 2 )h ~I),O, (3.3), 

(4h (1),1 _ "",bh (1),1) 1 = 0 
IS ab 1 = 0 , 

(~ [2n e41>gabh ill'O])I =0, ax N ,~O 

where as before {h(l),1 h(\)'O h(l),1 h(l),O h(I),1 h(l),O}are 
, " ab , ab , a , a 

each analytic and even in t (i.e., regular). Recalling also Eq. 
(2.13) we see that the first-order perturbation of the lapse 
function N can be written 

l)N = 2NA (I) + I Nr"bg(l) 
2 5 ab' (3.4) 

where A (I) is an arbitrary analytic, time-independent func­
tion on K. 

Linearizing the constraint equations J¥' = J¥'j = 0 
about an arbitrary generalized Taub-NUT background so­
lution and substituting the perturbations (3.3) and (3.4) 

into the linearized expressions we find that the necessary and 
sufficient conditions for the vanishing of l)J¥' and l)J¥'j as 
t-O are 

{
2e - 21> ~g ~ (_ 2A (I) + 2h (1),0 _ l..-gCdh (1),0) _ v [n (gbdh (1),1 _ l)bgCdh (1),1)] 

V ~ axa 2 cd b N ad a cd 

+ ~ ifJ h (1),1 + 2n e4 1>gbd(fJ - fJ )h (I),O} I = O. 
N ,a N a,b b,a d I ~ 0 

(3.5) 

In fact, conditions (3.5) are actually sufficient to guar­
antee the vanishing of the linearized constraints {l)J¥',c5J¥'j} 
for all t (in the interval of existence of the perturbations). To 
see this we first consider the terms in {c5J¥',c5J¥'j} that con­
tain the factor (In t). The coefficients of this factor are pre­
cisely the linearized constraint operators acting on the (reg­
ular) quantities {h (1),1, h ~!),l, h ~I),I}, which occur (as 
coefficients of In t) in the perturbations (3.3). However, as 
we showed in Sec. II B, these quantities are regular solutions 
of the homogeneous, linearized evolution equations. It fol­
lows from linearizing Eqs. (3.2) about a GTN background 
and applying the extended CK theorem to this system that 
the linearized constraints (evaluated upon such a regular 
perturbation) vanish identically if and only if they vanish at 
t = O. The vanishing at t = 0, however, is ensured by the first 
of the three conditions (3.5) above. Thus the coefficients of 
In t in the linearized constraints {l)J¥', l)J¥'j} vanish sepa­
rately (for all t in the interval of existence of the perturba­
tions) leaving purely analytic expressions for these quanti­
ties, which, moreover, vanish at t = 0 by virtue of the three 
conditions (3.5) imposed above. Once again the extended 
CK theorem may be applied to the linearized form of Eqs. 
(3.2) to conclude that c5J¥' and l)J¥'j vanish identically on 
the domain of existence of the perturbations. 

Thus the solution of the linearized constraints reduces 
precisely to the solutions of Eqs. (3.5) that constrain the 
choice of initial data at t = O. The first of these equations 
merely fixes the trace of the (heretofore unrestricted) quan­
tity h ~!),II I = 0 in terms of h (I).II I = o. The second of Eqs. 
(3.5) merely requires that the (heretofore unconstrained) 
one-form (e41>IN)h bl),O)I,~o have vanishing divergence 
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I 
(relative to the metric gab I,~o). The third of Eqs. (3.5) can 
[upon making use of the background regularity condition 

Ne - 21>1,_0 - 1 

and the first of Eqs. (3.5)] be reexpressed in the form 

{l..- gac V (,.bC) _ e2 1> A bd(fJ -fJ )h (1),0 
2 rg b r g a,b b,a d 

- ~ ( - U (I) + h (1),1 + 2h (1),0 

axa 

- ~ gCdh ~~),o)} 1,=0 = 0, (3.6) 

where 

Y'c = n(~Cgbdh ~~)'I _ Iysbcgadh ~~)'I), 

gab = e- 21>gab' (3.7) 

rg=e- 21>n, 

and where Vb signifies the covariant derivative with respect 

" to gab' 
The quantity y"b is a symmetric, traceless tensor density 

defined on the two-manifold K (we have suppressed the re­
striction to t = 0 to simplify the notation). Any such field 
can be uniquely decomposed into L 2-orthogonal summands 
of the form9,I0 

y"b = y"bTT + rg(Vayb + Vbya _ gabvc YC), (3.8) 

where Vb = gbCV c' etc., and where the "transverse traceless" 
summand y"bTT satisfies 

gaby"bTT = Vby"bTT = O. (3.9) 
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The vector field Y = y a a /axa is determined by solving the 
linear elliptic equation obtained by computing the diver­
genceofEq. (3.8). By standard linear elliptic methods 11 one 
shows that this equation always has a solution unique up to 
the addition of a conformal Killing field of (K,gab ). Since 
only the conformal Killing form of Yoccurs in Eq. (3.8) the 
decomposition of y"b is unique even if Y is not. 

For any compact, orientable Riemannian two-manifold 
(K,gab) the space of transverse traceless symmetric tensor 
(densities) is finite dimensional and represents (roughly 
speaking) the tangent space to Teichmiiller space at the 
point represented by gab. 12 In particularif K :::::S2 then y"bTT 
vanishes identically, if K ~ T2 then y"bTT belongs to a two­
dimensional space, and if K is diffeomorphic to a manifold of 
genus g;;.2 then y"bTT belongs to a (6g - 6)-dimensional 
space. 

Substituting the decomposition (3.8) into the con­
straint equation (3.6) one gets 

{~ac Vb [Fg(Vbyc + vcyb - rcv d yd)] n=o 
= {e24>Fi,g,.bd(fJ _ {3 )h (I ).0 + FggA ( _ U (I) 15 a.b b.a d 

+ h (1),1 + 2h (1),0 - ~dh ~~),o) ,a}I,= o. (3.10) 

The self-adjoint linear elliptic operator on the left-hand side 
of this equation has precisely the conformal Killing fields of 
(K, gab) as its kernel. By standard linear elliptic theory, 
therefore, Eq. (3.10) has a solution (unique only up to the 
addition of a conformal Killing field) if and only if the 
source term on the right-hand side satisfies the integrability 
conditions 

1 {e24> Il2Cg,.bdza(fJ -{3 )h (l),O}1 -
'oj ·1515 a.b b,a d ,- 0 

K 

+ L {Fg(Vaza)(U(I)_h(l),1 

_ 2h (0,0 + J.- gCdh ~y,o)} I = 0, (3.11) 
2 ,=0 

for all Z = Z a a / axa such that 
A A A 

(Vaz b + Vbza - gabvcZC) 11=0 = o. (3.12) 

Since the transverse (i.e., divergence-free) part of 

(e44> / N)h bl ),0)1, = 0 = (e24>h bl),o) I, = 0 

remains at our disposal along with A (I), h (1),1, etc., we can 
always satisfy the finite number of integrability conditions 
by imposing the integral conditions in Eq. (3.11) upon this 
free data, 

Solving Eq. (3.10) for Yuniquely determines the "lon­
gitudinal" part of y"b in the decomposition (3.8) and thus 
completes the solution of the linearized constraint equa­
tions. 

c. Singular gauge transformations and gauge 
conditions 

In Sec. II A we considered analytic diffeomorphisms of 
the background space-times generated by vector fields of the 
form 

(3.13) 
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where (Y,X"', X 3
') were required to be analytic in (t', x a

'). 

Since we are now studying singular perturbations of these 
same backgrounds we must also consider singular gauge 
transformations (i.e., infinitesimal space-time diffeomor­
phisms) since the latter can masquerade as nontrivial singu­
lar perturbations. To do this we relax the requirement that 
( y,x a, ,x 3,) be nonsingular and demand only that (4)X pre­
serve the coordinate conditions that we have imposed on (4)g 

throughout. 
This requirement leads to the following system of differ­

ential equations for the vector field components 
( Y,X a',X 3

,): 

(3.14 ) 

(X 3
, + n" = - 2{3axa"t' 

where A (I) is, as before, an arbitrary time-independent ana­
lytic function of the {xa}. Since both A (I) and N /.f1'g are 
independent of t we can time differentiate the first of Eqs. 
(3.14) and appeal to the second of these equations to reex­
press the result as a wave equation for the function Y: 

Y" + J.- Y, = ~~ (.f1'gNg«by b). 
. t' .f1'g axa ' 

(3.15 ) 

By means of the same techniques developed in Sec. II B we 
can show that the general solution of Eq. (3.15) (in the 
analytic case) has the form 

Y=(lnt)Yo+YI' (3.16) 

where Yo andYI are both regular and determined uniquely by 
their initial values prescribed at t = O. 

Substituting the result (3.16) into the second of Eqs. 
(3.14) and reexpressing the result slightly leads to an equa­
tion of the form 

xa", =t(lnt)<5~O) +t<5~I), (3.17) 

where <5'(0) and <5~1) are both regular. Integrating this one 
finds that X a' has theform 

Xa'=t2(lnt)..1,~b) -1-..1,'(;" (3.18) 

where A ~b) and A '(;) are both regular and given explicitly by 
the formulas 

(3.19 ) 

A ~;) = f s(<5~l) - A '(b) )(s,xb)ds +,i ~;) (xb
), 

where,i ~;) (xb
) is arbitrary, analytic initial data for A ~;) 

(and hence for X a ,). 

Substituting this result into the third of Eqs. (3.14) and 
reexpressing the result slightly leads to an equation of the 
form 

(3.20) 

where p(O) and P(l> are regular. Integrating this as above 
leads to the expression 

(3.21) 
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where Yeo) and Y( I) are regular and given by 

12y(O) = i' sp(O) (s,xb)ds, 

(3.22) 

i' bOb 
Y(I) = 0 sCPO) - Y(O» (s,x )ds + Y(I) (x ), 

in which r(1) (xb) is arbitrary, analytic initial data for Y(I) 

(and hence for X 3
1 + Y). 

The wave equation imposed on Y together with the 
equation for X al suffice to ensure that the quantity 

4A (I) = IY _ 2N ~ (Fi x al ) 
,I Fi axa N . (3.23 ) 

is indeed independent of 1 as required in the first of Eqs. 
(3.14). Thus we need only evaluate Eq. (3.23) at 1--+0 to 
determine the relationship between A (I) and the free data {Yo, 
YI' X a" X 31 + Y}I,=o' The result is 

4A (I) = ko - C~~ d:a (~ x a-))} 11=0' (3.24) 

Having obtained the general form of a vector field that 
preserves the assumed coordinate conditions we can com­
pute the induced gauge transformations of the first-order 
perturbations {</P), g~!), f3 ~ I), 8N}. Since these quantities are 
determined by data prescribed at t = 0 it suffices to compute 
the gauge transformations of this "initial data." Recalling 
the parametrization of the first-order perturbations given in 
Eq. (3.3) one finds the induced gauge transformations are 
given by 

8h(l)"I,=0 = (Yo/2)1,=0, 

8h (1).011=0 = «y,/2) + Xa'<,6.alll= 0' 

8h~!)"I,=0 = (gabYo)lt=o, (3.25) 

8h ~!).ol,= 0 = (gabYI + (.2" (2)x·g)adl,= 0' 

8h(l)"1 =0 a (=0 , 

and, if we express h ~I).o in the form 

h ~I).O = r~I),O(xb) + 12y~I).I, (3.26) 

where r~l)·o is analytic and time independent and where 
y~I).1 is regular, 

8r~1).0 = 0, 

8y~I)·1It=0 = {!(X 3, + Y).a + (.2""'x·P)al!r=o· 
(3.27) 

Here .2""'x. designates the Lie derivative with respect to the 
vector field X a, a I axa• 

If, recalling Eq. (3.4), we express the perturbed lapse 
function as 

(3.28) 

then we find that nCO) and n(1) u~dergo the gauge transfor­
mations 

8n(0) It-o = (NYo)lt-o - - (3.29) 
8n(l) 1/=0 = (Ny, + (N 12)yo + .2""'x·Nll,=o· 

If we let w represent the linear perturbation of Ne - 2tP, i.e., 

(3.30) 
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then one can easily show, using the results above, that {U 

undergoes the gauge transformation 

8wl ,=0 = !,voll=o' (3.31) 

The foregoing results could be used to impose suitable 
gauge conditions upon certain of the unconstrained initial 
data. Rather than pursue that issue here, however, we shall 
use the above results to study the possible existence of addi­
tional Killing fields ofthe background space-time metric (4)g 
and the characterization of such Killing fields in terms of the 
background initial data. The possible occurrence of such ex­
tra Killing fields is important for the study of the higher­
order perturbations of the constraint equations since it is 
directly related to the "linearization stability problem" for 
the constraints as discussed in Refs. 5 and 6. 

A vector field (4)X induces gauge transformations of(4)g 
through Lie differentiation, .2"(4)X (4)g. If (4)Xis a Killing field 
of(4)g it thus induces purely vanishing gauge transformations 
of(4)g. From the first ofEqs. (3.25) it follows that a Killing 
field must have Yol,=o = O. However, Yo is uniquely deter­
mined (as a regular solution of the wave equation) from 
Yo I, = 0 and thus, in this case, must vanish identically. This in 
turn implies 8~0) =0 in Eq. (3.17) and thus thatA ~~) =0 in 
Eq. (3.18). Thus Yand X al both reduce to regular quanti­
ties. This in turn implies that Peo) =0 in Eq. (3.20) and 
hencethaty(o) =OinEq. (3.21). ThusX 3

1 + Yalsoreduces 
to a regular quantity. It follows that any Killing field (4)X of 
(4)g must take the nonsingular form already considered in 
Sec. II A. The gauge transformations induced by such a vec­
tor field are therefore regular solutions of the linearized evo­
lution equation that vanish identically if and only if they 
have vanishing initial data. Recalling Eq. (2.9) we thus see 
that (4)X is a Killing field of (4)g if and only if its initial data {Y, 
X al,X 3/l!r=0 satisfy 

{~(X3' + Y),a + (.2"(2)x·P) a} 11=0 = 0, 

{Ygab + (.2""'x,g)abl!r=o = 0, 

{YN + .2" l2Ix· N} 1/= 0 = o. 

(3.32 ) 

Since (N - e2tP ) 1 I = 0 = 0, the last of these four equations is 
redundant, being equivalent to the first. 

Equations (3.32) always admit the "trivial" solution 
Y = Xal = 0, X 3, = 1, since (4)X = a lax31 is always a Kill­
ing field of our background space-times. We shall see in Sec. 
III E, however, that the occurrence or nonoccurrence of 
"nontrivial" Killing fields plays a key role in the analysis of 
the higher-order perturbed constraint equations. Roughly 
speaking, there are no obstructions to solving the higher­
order constraint equations unless nontrivial Killing fields of 
(4)g exist. If such Killing fields do exist then additional inte­
grability conditions must be imposed upon the first-order 
perturbations in order to proceed to a solution of the higher­
order constraint equations. These are simply the "lineariza­
tion stability" constraints that arise when one attempts to 
perturb from one (Killing) symmetry class to another (cf. 
Refs. 5 and 6). 
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D. Symplectic structure and canonically conjugate 
perturbations 

The evolution equations discussed in Sec. II are Hamil­
tonian, having been derived from an ADM variational prin­
ciple after a suitable choice oflapse and shift. It follows from 
general properties of Hamiltonian systems that one can de­
fine a symplectic form that yields a conserved, antisymme­
tric contraction of any pair of solutions of the corresponding 
linearized equations of motion. This form will be conserved 
whether or not we choose to impose the linearized constraint 
equations, provided our perturbations leave the Hamilto­
nian itself fixed. More precisely, we must require that the 
function A, occurring in the coordinate condition [cf. Eq. 
(2.13 )] 

(3.33) 
I 

remain unperturbed from its (vanishing) original value if we 
wish to have a conserved symplectic form for arbitrary pairs 
of solutions of the linearized evolution equation. This is so 
because a non vanishing variation of A induces a correspond­
ing variation of the Hamiltonian itself through its induced 
perturbation of the lapse function. 

One can evaluate the symplectic form on any pair of 
perturbations (41h and (41h ' that satisfy the linearized evolu­
tion equations about a given background (4Ig. Since the re­
sulting quantity, here designated by W«

4Ih, (41h '), is con­
served, it has a limit as t -+ 0 even for singular perturbations 
(provided we take A (I) = A (I), = 0 in lieu of imposing the 
linearized constraints). 

A lengthy but straightforward evaluation of the sym­
plectic form yields [in the notation of Eqs. (3.3) and (3.26) 
and taking A II) = A (I), = 0] 

W(14)h,(4Ih') = fK I:J {4(h (lI,oh (1),1, - h (I),o'h (I).I) + 2e4<pgab(y~I),oybl).I' - y~I),o'Ybl),l) 

+ !(gacgbd _ gabgcd) (h (1),Oh (1),1, _ h (I),O'h (I),I)}I 
2 ab cd ab cd t ~ ° . (3.34) 

If we identify the quantities 

{h (I),O,h ~~),O,y~I),ln~o (3.35) 

as the canonical "coordinates" of the linearized evolution equations (at t = 0) then their conjugate "momenta" are evidently 
given by 

{~ hlI),I, ~ (g"cgbd_g"bgcd)h~J)'I,-21:J e4<Pg"bybl),O}/,=0' (3.36) 

These two sets of quantities are precisely the free data we found for the general solution of the linearized evolution 
equations in Sec. II B. The canonical "momenta" provide the coefficients of the singular terms in the general first-order 
perturbation whereas the canonical "coordinates" yield the regular terms in the perturbation. 

If for (4)h' we substitute a pure gauge perturbation with parameters YI' Y(I) = X 3
, + Y, xa, J IJxa

, and (since we are 
taking A (I) = It (I), = 0) 

I = 2N ~(Fg xa,) 
Yo t ~ 0 Fg Jxa N ' 

(3.37) 

then w«4)h, (4)h') reduces, after some simplification, to 

w(14)h (4)h ) = ( {Y Fg (gabh (1),1 _ 4h (1),1) + (y(l) + {3 Xc<) V [_ 2 Fg e4<pgabh (1),0] 
, gauge J K I 2N ab 2 caN b 

+X a, [e- 2<PFgg(gbch (1),0 _ 4h(I),0) _ (2Fg e4<PgbCh (I),o({3 -(3 ») 
be ,a N C G,b bta 

_ 4 Fg ¢J h (I),I + V [Fg (h (I),lgbc _ {jc gbdh (1),1 )]]} / 
N,a C N ab a bd t = 0 

(3.38) 

Comparing this with Eq. (3.5) we see that the gauge param­
eters are canonically conjugate to the linearized constraints 
as one should have expected. 13 

If, of course, as we eventually intend to do, we impose 
the linearized constraints upon the perturbations, then we 
can also permit perturbations in the lapse and shift (e.g., 
permit nonvanishing It (I), It (I),) and still have a conserved 
symplectic contraction w«4)h, (41h '). A more complete state­
ment of this fact, together with a discussion of its geometri­
cal significance, is given in Sec. III A of Ref. 1 and thus need 
not be repeated here. 
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I 
E. Solving the nth order constraint equations 

It is well known from linearization stability analysis5
•
6 

that obstructions to solving the higher-order perturbed con­
straint equations (on a compact Cauchy surface) arise pre­
cisely whenever one attempts to perturb from one (Killing) 
symmetry class to another. The obstructions take the form of 
certain second-order integral restrictions upon the first-or­
der perturbations one must impose, in addition to the linear­
ized constraints, in order to be able to continue solving the 
constraints to higher order. These second-order conditions 
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are precisely the vanishing of the perturbational conserved 
quantities associated with the Killing symmetries of the 
background solution which the perturbation is breaking. If 
the perturbations considered preserve all the Killing symme­
tries of the background solution then the second-order con­
ditions are identically satisfied and no obstructions prevent 
the solution of the constraints to higher order. In particular, 
if the background has no Killing symmetries at all then ob­
structions are absent. 

Our background solutions all share the Killing symme­
try generated by Y = a / ax3 but, at the same time, our per­
turbations have all been constrained to preserve that symme­
try. Thus we should expect that obstructions to solving the 
higher-order constraint equations will occur only if our 
background solution admits some additional "nontrivial" 
Killing symmetry (generated by one or more Killing fields 
linearly independent of a / ax3

) • The necessary and sufficient 
conditions upon the background data prescribed at t = ° for 
the occurrence of such additional Killing symmetry were 
given at the end of Sec. III C above. We shall see explicitly 
below that the absence of such additional Killing fields is 
indeed precisely sufficient to exclude obstructions to solving 
the higher-order constraint equations. 

Ordinarily one imagines solving the perturbed con­
straints on a Cauchy hypersurface of the background space­
time but, for our purposes, it is more desirable to solve them 
at t = 0, the Cauchy horizon of the background. In this re­
spect we shall follow the pattern already developed for the 
treatment of the evolution equations and the linearized con­
straint equations. 

Suppose for the moment, however, that we have already 
solved the perturbed constraint equations up through order 
n on a Cauchy surface, t = to> 0, of the background. Then 
Eqs. (3.2) and their perturbations up through order n may 
be used successively to prove that the perturbed constraints 
remain satisfied V t > ° such that (in particular) 1<;, to' This 
follows from the uniqueness result in the ordinary Cauchy­
Kowalewski theorem and the fact that identically vanishing 
peturbed constraints are clearly a particular solution with 
the right initial conditions. Thus the perturbed constraints 
vanish vo < t<.to if and only if they vanish on the Cauchy 
surface t = to' 

However, for any 0< k';;'n, we may compute the k th­
order perturbed constraints directly by differentiating the 
exact expressions (3.1) k times with respect to E and substi­
tuting expressions (2.14) and (2.15) [as well as the pertur­
bations of (2.13)] for the fundamental perturbations. Su­
perficially it is clear that these k th-order perturbations of the 
constraints will each contain terms proportional to (In t) 1 

for each 1 = O,l, ... ,k. Contributions to these terms come 
from both the linear terms in the k th-order perturbations of 
the fundamental fields and (for k> 1) from the nonlinear 
terms in the lower-order perturbations. A typical term in the 
k th-order perturbed constraints has the form (In t) 1 r/f", 
where r is analytic in t and x a 

• However, it is straightforward 
to show that such expressions cannot, in fact, vanish on an 
interval (0 < t.;;. to) unless the coefficient of each independent 
logarithmic power vanishes separately. Otherwise one could 
arrive at a contradiction by first multiplying the perturbed 
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constraints by a suitable power of t (to clear the factors in the 
denominator), then differentiating sufficiently many times 
with respect to t and demanding that the resulting expres­
sions have vanishing limits as ( .... 0. 

Thus to satisfy the k th-order constraints we must 
achieve the vanishing of the coefficient of each logarithmic 
power, (In t)1, for 1 = 0,1,2, ... ,k. However, the only freedom 
we have to adjust the k th order perturbation is that of adding 
an arbitrary solution of the homogeneous (first-order) per­
turbed evolution equations to any particular solution of the 
k th order perturbation equations. But such first-order per­
turbations contain only the lowest two logarithmic powers 
of ( (corresponding to 1 = 1,0) and thus (entering linearly as 
they do) contribute only to these two powers of In ( in the 
expressions for the perturbed constraints. Clearly, for k>2, 
there is no freedom to cancel the terms in (In () 1 , for I> 2. On 
the other hand, we know, from the Cauchy surface argument 
given above, that (barring linearization instabilities) it is 
always possible to solve the k th-order constraints for arbi­
trarily large k. 

This apparent contradiction is avoided if and only if the 
terms in (In ()I (for 2.;;.I.;;.k) vanish automatically as a con­
sequence of the perturbed evolution equations and the per­
turbed constraint equations (up through order k - 1) 
which we assume to have already been imposed. For the 
same reason the coefficients of the negative powers of ( that 
multiply (In t)1, for 1 = 1,0, and that cannot be canceled by 
adjustment of the free data must also vanish automatically as 
a consequence of the evolution and lower-order constraint 
equations. Thus the k th-order perturbed constraints auto­
matically reduce to expressions involving only the same 
powers of (In () and of ( as those encountered in the study of 
the first-order constraints. Any other result would contra­
dict the a priori known solvability of the k th-order constraint 
equations. 

Since the free data at k th order has the same form as a 
first-order perturbation [cf Eq. (3.3) ] we shall use the same 
notation introduced at first order to designate this data. 
Thus we let {/,p(I), g~l), f3 ~1)} represent an arbitrary solution 
of the first-order (homogeneous) perturbed evolution equa­
tions which we may add to any particular solution of the 
(inhomogeneous) k th-order equations. 

The dominant surviving term in the k th-order per­
turbed constraints is one of order t - I in the Hamiltonian 
constraint. It takes the form 

( 4h(I).I_"obh(I),I)1 = source 
0; ab 1=0 , (3.39) 

where "source" stands generically for an analytic inhomoge­
neity that arises from the lower-order perturbations. The 
imposition of this constraint ensures the vanishing of the 
perturbed Hamiltonian constraint as t .... ° and also causes a 
term proportional to In t in the (k th-order) perturbation of 
7t' a - f3 a 7t' 3 to drop out in the limit as t .... 0. The remaining 
contributions to the k th-order constraints can be forced to 
vanish as ( .... ° by imposing equations of the form 
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{~ gae Vb (yhC) _e2tPgbd «(3 -(3 )h(l),O 2 .,;crrg a,b b,a d (3.40) 

- a,a} I t~O = (source)a , 

where 

a = ( - 2,.1, (I) + h (1),1 + 2h (1),0 _ ~ gCdh ~~),o) (3.41) 

and where gab and y"b are defined as in Eq. (3.7). As above, 
"source" stands for an analytic inhomogeneity arising from 
the lower-order perturbations. Equations (3.39) and (3.40) 
are inhomogeneous generalizations of Eqs. (3.5) and (3.6) 
and are necessary and sufficient for the vanishing of the k th­
order constraints in the limit as t-O. 

To show that Eqs. (3.39) and (3.40) are also sufficient 
for the vanishing of the perturbed constraints for t> 0 we 
appeal to the evolution equations (3.2), which represent the 
(contracted) Bianchi identities for our system. Since Eqs. 
(3.2) are linear and homogeneous in {JIl', JIl'3' JIl'a}, the 
k th-order perturbations ofthese equations yield equations of 
precisely the same form for the k th-order perturbed con­
straints (provided, of course, that the constraints up 
through order k - 1 have already been imposed). In fact, 
the surviving (analytic) coefficients of (In t) in the kth-or­
der constraints must separately satisfy these same evolution 
equations since the contributions to the full equations pro­
portional to (In t) cannot be canceled [on any interval of the 
form (O,to)' for example] by the contributions lacking this 
factor. However, when Eqs. (3.39) and (3.40) are imposed 
the contributions proportional to (In t) vanish in the limit as 
t - O. Equations (3.2) imply therefore the vanishing of these 
(analytic) coefficients 'tJ t > 0 just as in the earlier example of 
purely first-order perturbations. 

Thus the k th-order constraints reduce to purely analytic 
expressions (all the logarithmic terms and terms involving 
negative powers of t having been canceled out) that satisfy 
Eqs. (3.2) and that, moreover, vanish as t --+ O. Applying Eqs. 
(3.2) once again we thus find that the k th-order perturbed 
constraints vanish identically (i.e., 'tJ t > 0 within the domain 
of existence of the background solution). 

The only possible obstruction to implementing the 
above scheme for solving the constraints at k th order is the 
possibility that, in fact, Eqs. (3.39) and (3.40) may fail to 
have solutions. We shall now show that this eventuality nev­
er occurs unless the background space-time admits "nontri­
vial" Killing symmetries. 

First of all, Eq. (3.39) is purely algebraic and can al­
ways be solved for (say) (~bh ~b),I) I t ~ 0 in terms of the re­
maining quantities. Thus we shall regard the trace of 
(h ~b),I) It~ 0 as fixed by Eq. (3.39). To solve the first of Eqs. 
(3.40) we decompose the vector field 

va = (2e4tP/N)~bh bl),O)lt~o (3.42) 

into L 2 -orthogonal summands of the form 

(3.43 ) 

where Va vaT = O. This decomposition always exists and is 
unique on the compact Riemannian manifold (K,gab) by 
standard linear elliptic analysis (the "Fredholm alterna-
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tive"). Substituting this decomposition into the first of Eqs. 
(3.40) leads to a Poisson equation for the function X' 

o rn: b 
-("Ii g~ X b) = source. (3.44) oxa ' 

Again by standard linear elliptic theory this equation admits 
a global solution on K if and only if the source satisfies the 
integrability condition 

L (source) = O. (3.45) 

However, from the form of the exact constraint JIl'3 (i.e., the 
fact that it is a divergence) it is easy to see that the source 
term will inevitably have the form of a divergence of some 
vector density constructed from the lower-order perturba­
tions. Therefore the integrability condition (3.45) will auto­
matically be satisfied and thus the "longitudinal part" of V" 
can always be chosen [via Eq. (3.44) ] in such a way that the 
first of Eqs. (3.40) is satisfied. 

Finally we must solve the second ofEqs. (3.40). We first 
decompose r ab (which represents the trace-free part of 
h ~b),I) as in Eq. (3.8) and then substitute this decomposi­
tion into the constraint equation. The result is a second-or­
der linear elliptic equation for the vector field ya 0/ oxa of 
the same form as Eq. (3.10) (but supplemented with the 
"source" term). This equation admits a solution (unique up 
to the addition of a conformal Killing field of gab) if and only 
if the inhomogeneous term is L 2 -orthogonal to every confor­
mal Killing field of gab' This integrability condition takes the 
form 

i {Fge2tPza".bd«(3 -(3 )h (1),0 
~ a,b b,a d 

K 

+ .,;crrgZaa,a + .,;crrgZa(source)an~o = 0, (3.46 ) 

for every za 0/ oxa satisfying Eq. (3.12). Reexpressing this 
somewhat by making use of the background regularity con­
dition (N / e2tP ) I t ~ 0 = 1 and (after integration by parts) the 
first ofEqs. (3.40), one finds the condition 

0= L {- (.,;crrgZa),aa+.,;crrgZa(source)a 

- q za(3a )(source) - !C.t"""Z(3)b vbFg}lr~ 0' 

(3.47) 

where V" %xa is defined as in Eq. (3.42). Decomposing 
(2"'''z(3) a dxa into L 2-orthogonal summands of the form 
[cfEq. (3.43)] 

(3.48 ) 

and substituting this expression into the condition (3.47) 
one finds, after some further manipulation, the equivalent 
condition 

0= L {- (.,;crrgza),aa+ pgZa(source)a 

- qza(3a)(source) _~Fg(Vb)T(2""'z(3)r 

(3.49) 

At this point ( va ) T and a are still completely arbitrary and 
may always be adjusted to satisfy the (finite number of) 
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integrability conditions given by Eq. (3.49) unless their co­
efficients vanish identically. Thus we can always solve the 
k th-order constraint equations without obstruction unless 
both 

( 3.50) 

and 

(3.51 ) 

hold for some conformal Killing field (2) Z = za a I axa of 
gab' Equation (3.50) implies that (2)Zmust be an actual Kill­
ing field of gab' Identifying (2)Z with the vector field (2)]" in 
Eqs. (3.32), setting 

y = - 2.!f",z¢ , 

X3 ,= - Y-20, (3.52) 

andrecallingthatgab = e- 2
"'gab and that (N le2

"') It~O = 1, 
one finds that all of Eqs. (3.32) are satisfied and thus that 
{y, za, X 3,} are initial data for an additional, "nontrivial" 
Killing field of (4)g. 

Thus the integrability conditions for the solution of the 
k th-order perturbed constraints are satisfiable (for arbitrary 
"sources") provided there exist no "nontrivial" Killing 
fields of (4)g. If such Killing fields exist then the source terms 
appearing in the constraints must be subjected to further 
conditions of the form 

L {J2'gZa(source)a + ~(o - zafJa) (source)}lt~O = 0, 

(3.53 ) 

for each za a laxa satisfying Eqs. (3.50) and (3.51). To 
simplify the analysis we may simply assume that the back­
ground metric (4)g has been chosen to have no "nontrivial" 
Killing symmetries (Le., no Killing fields independent of a I 
ax3

'). In this case the integrability conditions (3.49) may 
always be satisfied with suitable restrictions upon (va) T 

and u and the solutions of the perturbed constraints carried 
out to arbitrarily high order. 

IV. CONCLUDING REMARKS 

In subsequent work we plan to show how one can collect 
together the "dominant singular terms" from each order of 
perturbation theory and sum the resultant truncated series 
to determine what is presumably the asymptotic behavior of 
the perturbed Einstein space-times near their singular boun­
daries. A special case of this program has already been car­
ried out for vacuum Gowdy metrics on T3 X R (which have 
two spacelike Killing fields rather than only one as in the 
problem treated here).14.15 For the Gowdy problem we 
found that the asymptotic behavior of the perturbative solu­
tions was governed by certain "geodesic loops" propagating 
in hyperbolic two-space and that the asymptotic behavior of 
(say) the Riemann curvature tensor could be evaluated in 
terms of computations based upon an associated family of 
approximate (and explicitly computable) "geodesic loop 
space-times. " 

The validity of this geodesic loop approximation for 
Gowdy space-times has been rigorously established for the 
special case of polarized Gowdymetrics (on T 3XR,S3 X R, 
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and S2 XS I XR) by Isenberg and the author16 and an infi­
nite-dimensional subfamily of unpolarized Gowdy metrics 
that display the indicated asymptotic behavior has been dis­
covered by Mansfield. 17 An analogous family of vacuum so­
lutions having only one spacelike Killing field was discussed 
by the author Ref. 18. In addition, Mansfield has extended 
the perturbation analysis to the Einstein-Maxwell equations 
for electrovacuum space-times of the Gowdy symmetry type 
on T 3 X R. 15 Chrusciel and the author have made significant 
progress towards a proof of the validity of the geodesic loop 
approximation for general (i.e., unpolarized) Gowdy met­
rics but their analysis is not yet complete. 

It seems likely that the analog of the geodesic loop ap­
proximation, and its implications for the asymptotic behav­
ior of the perturbed generalized Taub-NUT space-times 
considered here, can be derived from the results of the pres­
ent paper by the method suggested above. If so, then the 
asymptotic properties of an extremely large family of singu­
lar vacuum space-times (each having only one spacelike 
Killing field) could be determined by straightforward com­
putations. A powerful check on such an approach would 
then be provided by the rigorously defined family of singular 
solutions discussed in Ref. 18 [just as Mansfield's family (cf. 
Ref. 17) provides a check on the perturbative approach to 
the Gowdy problem]. 

What is more, there is no reason to suppose that the 
methods of the present paper are limited to the study of sym­
metric perturbations. As a model problem for the study of 
completely general (nonsymmetric) perturbations of these 
same (generalized Taub-NUT) backgrounds, the author 
has recently derived the perturbative solutions (to all or­
ders) for the nonlinear wave equation on such back­
grounds. 19 He has shown that one can sum the leading-order 
terms of the full perturbation series for the nonlinear wave 
equation to derive what is presumably the asymptotic behav­
ior of the general solution of this equation near a cosmologi­
cal Cauchy horizon of the Taub-NUT type. He has also 
shown that the asymptotic solutions may be naturally classi­
fied into "Lagrangian submanifolds" of an associated 
asymptotic phase space. This last result is quite analogous to 
the classification of polarized Gowdy solutions into Lagran­
gian submanifolds discussed by Isenberg and the author in 
Ref. 16. A project to extend the results of the present paper 
to the study of completely general (nonsymmetric) pertur­
bative solutions of Einstein's equations is currently under­
way. 

A further exciting possibility, which was suggested to 
the author by Cosgrove, is that, at least for the Gowdy met­
rics problem, one may be able to sum higher-order contribu­
tions to the full perturbation series systematically by apply­
ing something like the "two-timing" method of conventional 
applied analysis.20 Cosgrove has already sketched such a 
treatment of the closely related problem of studying singu­
larities in the solutions of the stationary axisymmetric prob­
lem near an axis of symmetry. If this method generalizes to 
the perturbation problem treated in the present paper it 
promises to yield further significant insights into the nature 
of the singularities of the perturbative solutions described 
herein. 

Vincent Moncrief 2313 



                                                                                                                                    

The present paper, and the references cited herein, have 
only touched the surface of the class of general relativistic 
problems amenable to the higher-order perturbation meth­
ods we have developed. It seems quite conceivable that the 
general solution of Einstein's equations near a cosmological 
singularity is open to study by a further development of these 
methods. 
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An exact general solution of Einstein's equations for spherically symmetric distribution of a 
perfect fluid in N dimensions is presented from which the whole class of spherically symmetric 
solutions may be obtained. As examples, some particular solutions obtainable from a general 
solution are presented. 

I. INTRODUCTION 

In view of the recent emergence of superstring theory as 
the most promising theory developed thus far, having the 
potential to lead us a step closer toward unification of four 
forces, studies in higher dimensions have obtained a new 
importance inspiring a host of workers to enter into this field 
of study. Already a number of important solutions of Ein­
stein's equation in higher dimensions have been obtained. 
Yoshimura's I solutions of higher-dimensional Einstein's 
equations in a vacuum and the work of Koikawa and Y oshi­
mura's2 in the presence of matter and Koikawa's3 solution 
and a Schwarzschild-like exterior solution4 are a few of 
them. We have also worked out a solution of Einstein's equa­
tion in higher dimensions in the presence of matter. 5 In the 
present paper we present an exact general solution of Ein­
stein's equations for spherically symmetric perfect fluids in 
N dimensions, from which the whole class of spherically 
symmetric solutions (both in N as well as four dimensions) 
may be obtained. We present some particular solutions in 
Sec. III. Our work is a higher-dimensional generalization of 
the work of Berger, Hojman, and Santamarina.6 

II. FIELD EQUATIONS AND THEIR SOLUTION 

We consider the line element in the form 

di2 = Fi(x)dt 2 - dx2 
- r dD?, 

where d02 is the line element on a unit (N - 2) sphere. 

(1) 

Einstein's field equations with cosmological constants 
are 

Rf'V - !gf'VR + Agf'V = Tf'v, (2) 

For a perfect fluid with spherical symmetry the energy­
momentum tensor is 

(3) 

where Uf' = (l/g)8'o is a unit vector with the flow lines 
tangent to it. 

lt may be readily seen that the change of variable 

p = P - A, P = p + A (4) 

transforms Eqs. (2) into an equivalent system with A = O. 
Therefore twirls can now be dropped, keeping in mind that 
the A#O case is already included. 

The field equations for the metric (1) are given by 

(N - 2)(r" Ir) - [(N - 2)(N - 3 )/2r] (1 - r'2) = - p, 
(5) 

(N - 2)(g'r'lgr) - [(N - 2)(N - 3)/2r] (I - r'2) = P, 
(6) 

g" + (N - 3)g'r' + (N _ 3{' 
g gr r 

_ (N - 3)(N - 4) (1 _ r'2) = p 
2r ' 

and the equation of hydrostatic equilibrium is 

(p + P)(g'lg) + P' = 0, 

(7) 

(8) 

where the primes denote differentiations with respect to x. 
Multiplying Eq. (5) by rr - 2r' and integrating over x 

one obtains 

r'2 = 1 - 2m(r)lrr- 3, 

where 

dm = prr- 2 

dr (N-2) 

Using Eqs. (8) and (9) in (6) we obtain 

(rr- 3 -2m)[ (N-2)(N-3) 
2rr-1 

(N - 2) dp 1 ] 
rr - 2 dr (p + P) 

=P+ (N-2)(N-3) . 
2r 

We now define a function G as 

G = _ (rr - 3 - 2m) 
P+ (N - 2)(N - 3)/2r 

(9) 

(10) 

(11 ) 

(12) 

Equation ( 11 ), when expressed in terms of G, takes the form 

?G[G(N-2)(N-3) _rr-l]dP +p? 
2 dr 

x[G(N-2)(N-3) rr-J](dG 2rr-
2

) 
2 + dr + N-2 

+ [G(N-2~(N-3) +rr- I ][(N-3)rr- J 

+r(N-2)(N-3) dG -G(N-2)(N-3)] =0. 
2 dr 

(13) 

This equation can be integrated for per) if G(r) is a given 
function, 
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() f [yN-I+G(N-2)(N-3)/2J (dG 2yN-2)d 
P r =exp -+-- r 

G[yN-I-G(N-2)(N-3)/2J dr N-2 

X {K _ f[ {G(N - 2)(N - 3)/2 + yN-I}{(N - 3)yN-1 + r(N - 2)(N - 3)/2(dG /dr) - G(N - 2)(N - 3)} 
G~{G(N - 2)(N - 3)/2 - yN-l} 

f {yN-1 + G(N - 2)(N - 3)/2}[dG /dr + 2yN-2/(N - 2) J d ]d } 
Xexp r r, 

G{G(N - 2) (N - 3)/2 - ,-lV-I} 
(14) 

where K is an integration constant. 
The function per) can be obtained with the help of 

( 10): 

per) = (N - 2) [(N _ 3)yN-4 + G dp + dG p 
2yN- 2 dr dr 

(N - 2)(N - 3)G (N - 2)(N - 3) dG] 
- ~ + 2r d;' 

(15) 

wherep(r) is given by (14). 
The metric coefficient g can be found by direct integra­

tion of ( 8) and using (11) and (12), 

j(x) = ~ exp[ - 2 f dp/dr dr] 
(p +P) 

=~ _1_exp[ -f 2yN-2 dr]. 
yN-3 (N-2)G . 

(16) 

To complete the integration we can recover the link between 
the metric coefficient r and the original variable x from Eq. 
(9), 

f dr 
x= ~1-2m/yN-3. 

III. DERIVATION OF PARTICULAR SOLUTIONS 

A. Schwarzschiid-like exterior solution 

(17) 

To obtain the Schwarzschild-like vacuum solution,4 on 
the basis of the above theory, we choose 

G(r) = - [2r/(N-2)(N-3)](yN-3_2M), 

where M is a constant and K = o. 
Under such conditions we have 

(N _ 3)yN-1 + r(N - 2)(N - 3) dG 
2 dr 

-G(N-2)(N-3) =0 

and consequently 

per) = O. 

Equations (14), (19), and (20) then lead to 

per) = O. 

Comparing Eqs. (12) and (18) we obtain 

mer) =M. 

Equation (17) can thus be written as 

dx2 = ___ d_r __ 
1 - 2M /yN-3 

Finally, from Eq. (16), 

j(r) =~(1-2M/yN-3). 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

Equation (23) represents the Schwarzschild-like exterior 
solution in higher dimensions. 

B. Interior Krori-Borgohain-Das solution 

Now we derive an interior Schwarzschild-like solution 
in N dimensions recently obtained by us. 5 For this we choose 
Gin the form 

2,-lV-1 [Ao~1 - ?/R 2 - Bo(1- r/R 2)] 

G(r) = - (N _ 2)(N - 3) [Ao~1 _ ?/R 2 _ Bo{1 - (N _ 1)r/(N _ 3)R 2}] , 
(24) 

where 

l/R 2 = 2p/(N - I)(N - 2) (25) 

and Ao' Bo, and R are constants. 
Putting K = 0 in the expressions (14) for p ( r), it is 

found after some calculation that r 

per) = (N - 2) [(N - l)Bo~1 - ?/1t2 
- (N - 3)Ao]. 

2R 2 Ao _ Bo~ 1 _ ? / R 2 
(26) 

Also, Eq. (15) gives 

p = (N - I)(N - 2)/2R 2. (27) 

Finally Eqs. (16) and (17) give 

j(r) =~(Ao-Bo~I-?/R2)2 (28) 

and 
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(29) 

This has already been derived directly by Krori, Borgohain, 
and Das (KBD).5 

C. An interior solution 

We now consider a particular interior solution, which 
immediately leads to a simple equation of state. For this we 
choose G in the form 

(30) 

Taking the integration constant K = 0, we obtain from 
(14) and (15), the expressions for pressure and density, re­
spectively, as 
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(r) = (N-3)[(A!2)(N-2)(N-3) + IF (31 
p "z[2A{(A/2)(N-2)(N-3) -l}-{(A!2)(N-2)(N-3) + 1}{[A(N-l)(N-2) +2]/(N-2)}] ) 

and 

p(r) = (N - 2)(N - 3) {~(N _ 2)(N _ 3) + I} 
2"z 2 

x [1 + A{(A !2)(N - 2)(N - 3) + l} ] 
2A{(A /2)(N - 2)(N - 3) -l} - {(A /2)(N - 2)(N - 3) + 1}{[A(N - I)(N - 2) + 2]1(N - 2)} . 

(32) 

The pressure and density are positive when 

A2(1-N)(N-2)2(N-3»4A(N-2)(N-l) +4 

and 

1 +~(N - 2)(N - 3) 
2 

(33) 

- A [1 + (A /2)(N - 2)(N - 3) F 
> [2A{(A /2)(N - 2)(N - 3) - l} - {(A /2)(N - 2)(N - 3) + 1}{[A(N - I)(N - 2) + 2]1(N - 2)}] . 

(34) 

The equation of state is given by p = (r - 1 )p, where 
2{(A !2)(N - 2)(N - 3) + t} + ~ 2(N - 2)2(N - 3) - A(N - 2) - {(A !2)(N - 2)(N - 3) + l}{A(N - l)(N - 2) + 2} 

(35) 
Y= (N- 2)[~2(N - 2)(N - 3) -A - {(A!2)(N- 2)(N- 3) + l}{[A(N-l)(N- 2) +2)1(N- 2)}] 

It can be seen that for suitable values of the parameter A, 
the conditions (33 )-( 35) are satisfied and the solution de­
scribes a physical configuration. A possible range for values 
of A, i.e., - I.;;;A.;;; - 0.34 when N = 4 (that is, the four­
dimensional case). In this case, the values of r = 1.6 for 
A = - 0.4. Finally, Eqs. (16) and (17) give us 

g2(r) = ~r- (N - 3) - 2/A(N- I) 

and 

dx2 = __ d_"z __ 
1 - 2m/~-3 

(36) 

(37) 

and density become zero for all values of r. Hence such a 
solution cannot also be used to describe the outermost layer 
of a composite structure. However, such a solution can form 
an intermediate layer of a composite system. As an illustra­
tion here we consider a composite sphere with a core of radi­
us rl , described by a solution given by us (KBD) in Sec. 
III B, an intermediate layer of internal and external radii rl 

and r2, respectively, given by our solution in Sec. III C, and 
another outer layer of internal and external radii r2 and a, 
respectively, described by a KBD-type solution. 

Continuity of metric coefficien ts at r = r I gives us 

r l
-(N-3)/2-IIA(N-I) = C-D '1- _21/R21 D. A composite solution v r; 

(38) 

The solution obtained in Sec. III C is not free from sin- and 

,-f-I = 2mRi. (39) gularity at the center and hence such a solution cannot form 
the core of a physical structure. Also the condition of vanish­
ing of pressure at the boundary of configuration described by 
our solution in Sec. III C leads to a situation where pressure 

Also, continuity of pressure at the same internal boundary 
gives 

(N-3)[(A/2)(N-2)(N-3) + 1]2 

ri [2A{(A 12)(N - 2)(N - 3) - l} - {(A /2)(N - 2)(N - 3) + 1}{[A(N - I)(N - 2) + 2]1(N - 2)}) 

= (N-2) [(N-l)D~I-rURi - (N-3)C]. 

2Ri C-D~I-ri/Ri 
(40) 

Equations (38)-(40) express the parameters C, D, and R I , respectively, of the core, in terms of parameters of the 
intermediate shell. 

and 

Also at the boundary r = r2 , the continuity of metric coefficients and pressure gives us 

r
2
-(N-3)/2-IIA(N-I) =E-F~I-~/R~ 

';:-1 = 2mR~. 

Also, 
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(42) 
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(N-3)[(A/2)(N-2)(N-3) + 1]2 

~ [2A{(A /2)(N - 2)(N - 3) -l} - {(A /2)(N - 2)(N - 3) + l}{[A(N - l)(N - 2) + 2]!(N - 2)}] 

= (N-2) [(N-l)F~l-~/R~ -(N-3)E], 

2R~ E-F~l-~/R~ 
(43) 

where E, F, and R2 are the counterparts of C, D, and R I, 
respectively, in the outermost layer of the composite struc­
ture. 

Again, at the outermost boundary of the composite 
structure, i.e., at r = a, the continuity of metric coefficients 
gives us 

[ E - F ~ 1 - a2
/ R ~ P = 1 - 2M / aN - 3 ( 44 ) 

and 

aN-I =2MR~. 

The pressure at r = a is zero. Hence we obtain 

FD~1-a2/R~ = [(N- 3)/(N-1)]E. 

The mass of the configuration is given by 

M = aN-I/2R~. 
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(46) 

(47) 
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The generators of Killing vector and tensor geodesic conservation laws are derived. It is shown 
that the generator of a Killing vector conservation law coincides with the Killing field itself. 
For Killing tensors the generators are not space-time vector fields but rather depend on the 
geodesic tangent vector and therefore lie in a jet space of the geodesic equations. By regarding 
the metric as a field on the one-jet space of the geodesic equations, the action of the Killing 
tensor generators on the metric can be defined in a natural way. It is found that the metric is 
not invariant under Killing tensor symmetries. This happens because the Killing tensor 
symmetries, unlike the Killing vector symmetries, are divergence symmetries. 

I. INTRODUCTION 

Killing tensors were for a long time regarded as rather 
mysterious objects. Associated with quadratic geodesic con­
stants of the motion, a geometrical interpretation in terms of 
symmetries, like that for Killing vectors, was lacking until 
recently. Although some authors were aware that Killing 
tensor constants of the motion corresponded to symmetries 
of the geodesic equations (see, e.g., the papers on separation 
of variables by Benenti and Francaviglia I and Kalnins and 
Miller2 and references therein), the first explicit identifica­
tion of the symmetries corresponding to Killing tensors was 
made by Prince and Crampin3

•
4 using a projective action 

formalism. In this paper we use the standard modem ap­
proach to Lie symmetries given in Olver5 to analyze the geo­
desic equations. In that picture little more than elementary 
differential geometry is used, leading to a more transparent 
view of the geodesic symmetries. It then becomes obvious 
that the Killing vector symmetries are point symmetries of 
the geodesic equations while the Killing tensor symmetries 
are generalized symmetries (Lie-Backlund symmetries), 
i.e., they depend on the derivatives of the dependent vari­
ables in a nontrivial way. Furthermore, the Killing vector 
symmetries do not depend on the affine parameter. It is this 
property together with their point character that makes it 
possible to interpret them as space-time symmetries. 

In the projective formalism of Prince and Crampin, the 
projective action of the Killing tensor symmetry on the met­
ric vanishes. We show that there is a natural way to define an 
action of the Killing tensor symmetry on the metric. This 
follows since the Killing tensor symmetries, like the Killing 
vector symmetries, do not involve the affine parameter. 
Therefore the metric can be regarded as a field on the one-jet 
space of the geodesic equations, i.e., the space where the 
(prolonged) geodesic symmetries live. It then turns out that 
the action of the Killing tensor symmetry on the metric does 
not vanish, a result that at first sight would seem to contra­
dict the result of Prince and Crampin. The basic reason for 
this action not to vanish is that the Killing tensor symmetry, 
unlike the Killing vector symmetry, is a divergence symme­
try. However, the action vanishes "on shell," i.e., on solu­
tions of the geodesic equations, a fact that can account for 
the result of Prince and Crampin. 

II. THE GEODESIC EQUATIONS AND KILLING 
CONSTANTS OF THE MOTION 

We shall use Lie's theory of symmetries of differential 
equations in the form given by Olver5 (also see Rosquist6 for 
a discussion in a general relativistic context). The geodesic 
equations constitute a system of ordinary differential equa­
tions given by 

(1) 

where Ua=.x'o are the components of the geodesic tangent 
vector U. The independent variable is A and the four (in four 
space-time dimensions) dependent variables are xa. The 
spaces of independent and dependent variables are denoted 
by J?t? and ~, respectively. Point symmetries involve cou­
pled transformations of the independent and dependent vari­
ables, i.e., transformations of the product space J?t? X ~. To 
handle transformations of the derivatives up to the nth order 
one needs the nth order jet space, J?t? X ~ X ~ I X ... X ~ n' 

where ~ k is the one-dimensional space with coordinate 
d kxl dA k. The general form of a point symmetry of the geo­
desic equations is 

v="'~+(r~, 
aA axa (2) 

where", and (r are functions of A and xa. In general, a sym­
metry v cannot be interpreted as a space-time vector field. 
Such an interpretation is only possible when", = 0 and (r is a 
function only of xa. For generalized symmetries5 

'" and (r 
also depend on the derivatives x,a, x"a, etc. Any symmetry is 
equivalent to its evolutionary representative, v = Qa a laxa, 
where 

(3) 

is the characteristic of the symmetry. 
The geodesic equations can be derived from the Lagran-

gian 

(4) 

The Euler operator is 

a a 
Ea=D;.----, 

ax'a axa (5) 
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where D;. is the total derivative5 given by 

D;. =~+x,a~+x"a~+.... (6) 
aA axa ax'a 

The sum is formally infinite but the total derivative is only 
applied to functions that depend on a finite number of de­
rivatives, so only a finite number of terms are needed in any 
given situation. A short calculation yields the Euler-La­
grange equations 

Ea(L) =gabGb. (7) 

Now let S a be a Killing vector field and V u the covariant 
derivative along the geodesic. Then 

The two terms between the equality signs vanish separately. 
This is the usual relativistic calculation showing that Sa U a is 
a constant of the motion for the geodesic. The corresponding 
(but different) calculation using the total derivative is 

D;. (Sax,a) 

= (D;.Sa )x'a + Sa D;.x,a = Sa.bX,ax'b + Sax"a 

= rCabSCX,ax'b + Sax"a = SaGa = SaEu (L) , (9) 

where we have used the Killing equationS(a.b) = rca.bSc and 
Ga = ~bEb (L) from Eq. (7). Note that the two terms after 
the first equality sign do not vanish separately. The charac­
teristic form of a conservation law is Div P = Q. E (L ) , 
where P is the conserved quantity and Div = D;. since f?C' is 
one dimensional. Hence we conclude that S a is the charac­
teristic corresponding to the constant of the motion Sax'a. 
The symmetry generator is therefore v = S a a I axa and co­
incides with the Killing field itself. Thus the Killing vector 
fields plays two roles. It generates both a space-time symme­
try and a symmetry of the geodesic equations. 

For a geodesic symmetry of the form v = (r a laxa, 
where (r does not depend on A, it is possible to define a 
natural action on the metric by regarding the metric as a field 
on the one-jet space of the geodesic equations according to 

ds2 = gabx,ax'b dA 2 = 2L dA 2 , 

where dA 2 is treated as a constant. Thus the metric coincides 
with the Lagrangian in this interpretation (up to a numerical 
factor). The action of a symmetry on the Lagrangian is given 
by pr veL), where pr v is the (first) prolongation of v, 

a prv=v+¢(l)a_-, (10) 
ax'a 

where ¢(J) is the first prolongation coefficient given by 

¢(lla = D;. ¢a = ¢a.bX'b . (11) 

The prolonged action on the Lagrangian by v = ¢a a I axa is 
then calculated as 

pr veL) 

= ~pr V(gab )X,aX,b + gul7xta pr V(X,b) 

= !(¢Cgab.c + 2gac ¢c.b )X,aX'b =!( £vgab )X,aX,b, (12) 

where £v is the Lie derivative with respect to v. If ¢a are the 
components of a Killing vector field, then £ygab = 0 leading 
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to pr v(L) = O. In general, the criterion for a symmetry 
v=Qaalaxa to be a variational symmetry is prv(L) 
= Div B for some function B on some (finite-order) jet 

space. Symmetries with B #0 are divergence symmetries. 
Thus the Killing vector symmetry is a nondivergence sym­
metry. The action on the metric becomes 

(13) 

which shows that pr v(dr) = 0 for a Killing vector symme­
try. 

It is the nondivergence property that makes the Killing 
vector symmetries especially useful for the solution generat­
ing methods of general relativity. The approach there is to 
look for invariances of a "decoupled" part of the total La­
grangian (see, e.g., Kramer et af1). By restricting attention 
to nondivergence symmetries only the decoupled variables 
come into play. 

The general criterion for a geodesic symmetry (vari­
ational or non variational ) is that pr v ( G a) vanishes on shell. 
Here pr v stands for the second prolongation of v. For a 
symmetry involving derivatives up to the first order, an 
equivalent condition is that 

prv(G a) = (P(O)Ub + p(ll\D). )G b 

for some jet space functions P (O)a band P (I)a b' Prince and 
Crampin only allowed for a right-hand side proportional to 
G a, which seems to be overly restrictive. 

III. KILLING TENSOR SYMMETRIES 

A second rank Killing tensor Sab is symmetric and satis­
fiesS(ab;C) = 0 (KrameretaF). Then Sabx'ax'bis a quadratic 
geodesic constant of the motion. To find its characteristic we 
apply the total derivative, as in Eq. (9), leading to 

(14) 

where we have used the Killing tensor relation S(ab.c) 
= 2rd(abSc)d' It follows that the characteristic is 
Q a = Sb ax'b. Thus unlike the Killing vector case this sym­
metry depends on the derivative x'a and therefore it cannot 
be interpreted as a space-time vector field. A symmetry is a 
point symmetry if the characteristic can be written as 
Q a = ¢a _ x'a¢ for some functions ¢ and ¢ of A and xa. A 
simple calculation shows that a Killing tensor symmetry is a 
point symmetry only in the trivial case when Sab is propor­
tional to the metric. In that case the symmetry is v = a laA, 
reflecting the fact that the geodesic equations do not contain 
the affine parameter explicitly. The corresponding con­
served quantity is the length of the tangent vector. 

As before we can compute the action of the symmetry on 
the metric and on the Lagrangian. The first prolongation 
coefficient of v = Sa bX'b a I axu is given by 

¢(l)a = D;. (SabX'b) = Sb,cX'bXIC + SabX"b. (15) 

The action of the symmetry on the Lagrangian then becomes 

pr veL) = rdabScdX'ax'bx'c + SabX,aX"b , (16) 

where we have used the Killing tensor relation 
S(ab.c) = 2rtabSc)d' It follows that the symmetry is a diver­
gence symmetry or in other words, the action of the Killing 
tensor symmetry on the Lagrangian (and the metric) does 
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not vanish by contrast to the Killing vector case. From the 
general theory we know that pr v(L) = Div B = D;..B for 
some function B. To find B we note that Eq. (16) can be 
written as 

(17) 

Therefore the symmetry action vanishes on-shell. It is this 
fact that lies behind the result of Prince and Crampin.4 Com­
parison with (14) shows that the right-hand side of (17) can 
be written as Div B, where B is the conserved quantity, i.e., 
B = 5abX,ax'b. This simple relation is a consequence of the 
quadratic nature of the constant of the motion. 

IV. CONCLUDING REMARKS 

One might ask whether the Killing vector symmetries 
are the only variational point symmetries of the form 
v = 5 O(x)J /Jx a

• That this is indeed the case can be seen 
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from the following argument. It follows from Eq. (1) that 

pr v(L) = (£.gab )x,ax,b=gabx,ax'b=L. 

Thus v is a variational symmetry if the new Langrangian L is 
a total divergence, i.e., L = D;.. B for some B. This is the case 
if the Euler-Langrange equations of L vanish identically. 5 

But Ea (L) = gab (X"b + rbcdX'CX'd) SO Ea (L) is identically 
zero only ifgab = £.gab = 0, so v is indeed a Killing vector 
symmetry. 
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As a preliminary step in the development of a Hilbert problem (HP) approach to the initial 
value problem (IVP) for colliding gravitational plane waves with noncollinear polarizations, 
the IVP for colliding gravitational plane waves with collinear polarizations is reformulated in 
two different ways as an HP in a complex plane. The solutions of both forms of the HP are 
found and each of these agrees with the solution obtained by another method in the previous 
paper ofthis series [I. Hauser and F. J. Ernst, J. Math. Phys. 30,872 (1989)]. The conditions 
imposed on the initial data of the IVP by the vacuum field equations are discussed in detail. 
Anticipating the next paper of this series, the generalization of one form of the HP to 
noncollinear polarizations is briefly described. 

I. INTRODUCTION 

A. Objective 

This is the second of a series l of papers on the initial 
value problem (lVP) for colliding gravitational plane 
waves, i.e., on the search for systematic methods of comput­
ing the outcoming scattered wave when the two incoming 
plane waves are prescribed. One method that shows some 
promise has been developed by the present authors. It in­
volves replacing the usual formulation of the IVP in terms of 
a nonlinear partial differential equation, viz. the Ernst equa­
tion,2 by an equivalent 2 X 2 matrix homogeneous Hilbert 
problem (HHP) in a complex plane. This HHP will be 
sketched in Sec. V and will be covered in full detail and gen­
eality in a future paper. 

The present paper will be chiefly devoted to a relatively 
simple one-dimensional Hilbert problem which is equivalent 
to the restriction of our matrix HHP to the case when the 
polarizations of the plane waves are collinear. This pursuit of 
the collinear case as opposed to an immediate exposition of 
the generally applicable matrix HHP has good reason. The 
point is that the key ideas of the matrix HHP will be nicely 
illustrated by the Hilbert problem (HP) for the collinear 
case and we shall thereby be able to introduce many concepts 
of value for subsequent papers without having to cope imme­
diately with mathematical difficulties which beset the non­
collinear case. These difficulties are illustrated by the fact 
that there is strong evidence that the general solution of the 
IVP for the noncollinear case is not expressible in a finite 
closed form. Moreover, the practical art of solving the ma­
trix HHP for particular noncollinear cases is still in its in­
fancy. 

In contrast, the IVP for the collinear case requires only 
that one solve a Cauchy problem for a certain linear hyper­
bolic partial differential equation and it so happens that the 
general solution in a finite closed form is known. The first 
complete solution was obtained by Szekeres3 by employing 
the Green's formula method of Riemann (not to be confused 
with the Riemann-Hilbert problem). Another form of the 
general solution for the collinear case was obtained by the 

present authors I by employing a classical method of linear 
superposition. In the present paper, yet another form of the 
general solution will be obtained by the radically different 
method of solving an HP and will be shown to be closely 
related in an instructive way to the solution in Ref. 1. 

To enable us to describe the contents of this paper in 
greater detail, some specifics on the IVP for the collinear 
case, on several important concepts that will be used 
throughout the paper, and on the HP and its solution will 
now be given. 

B.TheIVP 

The line element in the space-time region that is both 
covered by our chart4 and occupied by the scattered wave is, 
in the collinear case, 

dSZ =p[e- 2.p(dxl)2 + e2.p(dx2)2] 

(1.1 ) 

where, p, l/J, and r depend only on the coordinates u and v 
over a simply connected planar domain 

IV: = {(u,v): O<u<uo,O<v<vo,O<p(u,v)}. (1.2) 

Each of the constants Uo and Vo is a real positive number or 
00. The ignorable coordinates Xl and x 2 are scaled so that 
p(O,O) = 1 and l/J(O,O) = O. The vacuum field equations im­
ply that5 

p(u,v) =Hs(v) -r(u)], (1.3) 

where r( u) is a monotonic increasing function over 
0< u < uo, s ( v) is a monotonic decreasing function over 
O<v<vo, and 

r(O) = - 1, s(O) = 1, 

- 1 <ro<l, - l<so< 1, 

where 

ro: = lim r(u), so: = lim s(v). 
V-Vo 

(1.4) 

As was detailed in Ref. 1, the field r(u,v) is simply ex-
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pressed in terms of definite integrals6 once tP( u,v) is known. 
The key problem is to find the solution tP of the hyperbo­

lic field equation 

2ptPuv +PutPv +PvtPu =0, (1.5) 

where tPu: = atPlau, etc., corresponding to the prescribed 
initial data 

r(u), s(v), tP3(U): = tP(u,O), tP2(V): = tP(O,v). 
( 1.6) 

This is the essence of our IVP. 
Some constraints on the initial data that are consistent 

with the existence and vanishing of the Ricci tensor are that 
the initial data functions ( 1.6) be of differentiability class C 1 

and satisfy tP3(0) = tP2(0) = 0, Eqs. (1.4), and 

r(u) >0 if O<u, s(v) <0 if O<v, ( 1.7) 

where r(u): = dr(u)ldu, etc. We shallfollow the precedent 
of Ref 1 and, except in a part of Sec. IV, impose no constraints 
on the initial data other than those just stated. There are, 
however, additional constraints which will be detailed in 
Sec. IV and which are imposed by the requirements that the 
Ricci tensor exist and vanish. By ignoring these constraints, 
we are actually treating a broader class of metrics than those 
that strictly represent colliding gravitational plane waves. 
However, this does not hinder our ability to solve the IVP 
and even turns out to be useful, as we shall discuss in Sec. V. 

c. Definitions of Dlv • 'Y. 'Y3. 'Y2. 93. and 92 

In Ref. 1 we employed rand s to designate functions, as 
we have done above, and to designate coordinate variables.7 

We shall follow the same dual usage here and depend on 
context to distinguish one meaning from the other. 

Note that the mapping (u,v) -+ (r( u) ,s( v») is one-to-one, 
bicontinuous, and maps IV as defined by Eqs. (1.2) and 
(1.3) onto 

DIY: = {(r,s): - l<r<ro,so<s<l,r<s}, (1.8) 

where ro and So are defined by Eqs. (1.4). Henceforth, we 
shall almost everywhere employ DIY instead of IV as a do­
main. The reasons for this are that DIY is easier to visualize 
than IV and the use of DIY leads to simpler expressions. 

Definitions: We shall denote by y, Y3' and Y2 those func­
tions whose domains are DIY, the interval - l<r<ro, and 
the interval So <s< 1, respectively, and whose values y(r,s), 
Y3(r), and Y2(S) are given by 

y(r(u),s(v»): = tP(u,v), 

Y3(r(u»): = tP3(U), 

Y2(S(V»): = tP2(V). 

From Eqs. (1.4) and (1.6), note that 

Y3(r) = y(r,l), Y2(S) = Y( - 1,s). 

( 1.9) 

(1.10) 

Definitions: We shall denote by g3 and g2 those functions 
whose domains are the open intervals - 1 < u < ro and 
So < u < 1, respectively, and whose values are given by 

g3(U): = fa dr 'her) , g2(U): = _ fa ds Y2(S) , 
-I ~u-r )1 ~s-u 

(1.11) 
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where Y3(r): = dY3(r)ldr, etc. 
We employ the Lebesgue definition of an integral as in 

Ref. 1, where the existences and some properties of gj 
(j = 3,2) were established. 8 

D. The spectral potential 4» 

The main ingredient of our HP is a function ¢J (r,s, 1") of a 
complex (spectral) parameter 1" as well as of rand s. The 
definition of ¢J in terms of a given Y will be given in Sec. II, 
where we shall also derive some pertinent properties of ¢J. 
One of these properties is that ¢J(r(u),s(v),1") satisfies the 
same hyperbolic equation (1.5) as tP(u,v). Another proper­
ty is that ¢J is uniquely determined by y. In particular, the 
initial values of ¢J are uniquely determined by the initial data 
as follows: 

¢J3 (r,1"): = ¢J(r, 1,1") 

= - X3(r,~) fT dr' X3(r',1")Y3(r'), 
1"+ -I 

(1.12 ) 
¢J2(S,1"): = ¢J( - 1,s,1") 

= - X2(S'~) (' ds' X2(S',1")Y2(S'), 
1" - )1 

where 
X3(r,1"): = [(1" + 1)/(1" - r)] 112, 

(1.13) 
X2(S,1"): = [(1"-l)/(1"-s)]I12, 

X3( - 1,1") = X2( 1,1"): = 1 and, for fixed r=l= - 1 and s=l= 1, 
we employ those holomorphic branches of X3(r,1") and 
X2(S,1") that have the cuts [- 1,r] and [s,l], respectively, 
on the real axis of the 1" plane and satisfy 
X3 (r, 00 ) = X2(S, 00 ): = 1. The initial values of ¢J can also be 
determined by using 

(1.14) 

if g3 and g2 have already been found. Note that for fixed 
r=l= - 1, ¢J3 ( 1") = ¢J3 (r, 1") is a holomorphic function of 1" 
throughout C - [ - l,r], where C is the extended complex 
plane. Likewise, for fixed s =1= 1, ¢J2 ( 1") is holomorphic on 
C - [s,1]. 

As regards other properties of ¢J that will be obtained in 
Sec. II, consider any fixed (r,s) in DIY' Then the following 
statements hold for ¢J( 1") = ¢J(r,s,1")9: 

¢J( 1") is holomorphic on C - ([ - 1,r] U [s,l]), 

¢J( 1") - X2( 1")¢J3( 1") is holomorphic on [ - 1,r], 

¢J( 1") - X3 (1")¢J2( 1") is holomorphic on [s,l], 

and 

¢J( 00) = 0, [- 1"¢J( 1"))T= 00 = y. 

(1.15) 

(1.16) 

Statements (1.15) and (1.16) will constitute the HP for the 
collinear case. 
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Again consider any fixed (r,s) in Dlv and suppose 
r# -lors#1 (or both). Theremainingpropertiesof¢(7) 
that will be derived in Sec. II concern its boundary values 
a± t/J(u) = a± t/J(r,s,u) , which are defined below for all uon 
the union of the open intervals - 1 < u < rand s < u < 1. 

Definitions: Let h" be any complex number such that 
Imh,,>O if -1<u<r and Imh,,<O if s<u<1. Then 
a +¢(u) and a -t/J(u) are defined bylO 

(1.l7) 

In Sec. II we shall prove that a ± ¢ ( u) exist and satisfy 

a+t/J(u) -a-t/J(u) = 2i&(O')f(O') , (1.18) 

where 

and 

w(u): = ~( 1 - (il)/(r - u) (s - u) 

if - 1 <u<r, 

if s<u< 1. 

(1.19) 

( 1.20) 

Equation (1.18) will be the basis for an alternative useful 
form of the HP for the collinear case. 

E. The HP and its solution 

The HP and its solution will be covered in Sec. III. We 
shall give both here without providing the derivation of the 
solution and other proofs. 

Assume that we have prescribed initial data and have 
used Eqs. (1.12) to compute t/J3 and t/J2' However, since we 
do not yet know y, we cannot compute t/J by using its defini­
tion, in terms of y. So let us lay aside the definition of t/J in 
terms of y and seek an alternative definition, viz. one that 
regards t/J as the solution of a certain HP. 

For any fixed (r,s) in D lv , the HP / / is to find a function 
t/J( 7) which satisfies statements (1.15) and the equation 
t/J( 00)=0. In Sec. III we shall prove that the solution is 
unique and is 

( 1.21 ) 

where r3 and r2 are any positively oriented (simple and 
smooth) contours such that 

[-l,r]Cr3+' [s,I]Cr3-, 

[s,I] crt, [- I,r] crz-, 

'TEC - (r3ur3+ ur2ur2+), 

( 1.22) 

and r/ and r j - are those open subsets of C which are 
bounded and unbounded, respectively, and have rj as their 
common boundary. In descriptive terms, r/ and rj - are 
the open regions inside and outside r j , respectively. Typical 
choices of r 3' r 2' and 7 are shown in Fig. I: 

We define y in terms of the above HP solution by the 
second of Eqs. (1.16), whereupon 
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C~-l ___ r) 8 REAL AXIS 
OF T PLANE 

FIG. I. Illustrative choices orr 3' r 2' and 7 for the contour integrals in the 
solution of the HP adapted to (</J3,</J,). 

(1.23 ) 

In Sec. III we shall prove that Eq. (1.23) solves the IVP for 
the collinear case. Insertion of expressions (1.l2) into Eq. 
( 1.23) and interchange of the order of integration over r' and 
7' yields a Green's function form of the solution obtained in 
Ref. 1 by other means. 12 The same process applied to Eq. 
(1.21) would yield a Green's function form for ¢( 7). 

F. A second form of the HP and Its solution 

If one permits the contours r 3 and r 2 to contract until 
they "collapse onto" the cuts [ - 1 ,r] and [s, 1] they en­
close, then one obtains an expression for t/J( 7) in terms of 
definite integrals on [ - I ,r] and [s, I ]. Another way of ar­
riving at this definite integral expression for t/J( 7) is by solv­
ing an alternative form of our HP, viz. an HP on 

L(r,s): = the pair of oriented arcs - 1 to r 

and 1 to s on the real axis of C. 
(1.24 ) 

Specifically, assume thatg3 andg2 have been computed from 
the initial data by using (for example) Eqs. (l.ll). Then the 
HP on L(r,s) is to find a ¢( 7) which is holomorphic on 
C - L (r,s) such that t/J ( 00 ) = 0, which has a ± t/J (u) existing 
such that Eq. (1.18) holds for all u in the open intervals 
- 1 < u < rand s < u < I and which satisfies the following 

endpoint conditions: 

t/J(7) - X2(7)t/J3(7) is bounded as 7-- - 1 and 7--+r, 

(1.25 ) 
t/J( 7) - b( 7)t/J2( 7) is bounded as 7--+ I and r--s, 

where t/J3 and t/J2 are given by Eqs. (1.14). The solution will 
be proven in Sec. III to be the line integral 

t/J(r)=.!. f duw(O')f(O'). (1.26) 
1T JL(r,s) U - 7 

The second of Eqs. (1.16) then yields 

y =.!. f du &(O')f(u), 
1T JL(r,s) 

( 1.27) 

which is precisely the solution obtained in Ref. 1 by other 
means. 

G. On 93 and 92 

Section IV will cover properties of g3 and g2 which are 
important for calculations :;lnd perhaps for later extensions 
to the generalizations of g3 and gz which occur in the noncol­
linear case. For example, we shall prove that gj obeys a 
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Holder condition of index! on any closed subinterval of its 
(open interval) domain and we shall derive new integral 
expressions which facilitate computations of gj' Also, we 
shall obtain useful implications concerning gj for the 
members of a broad subclass of the class of all initial data sets 
(1.6) which satisfy all constraints imposed by the existence 
and vanishing of the Ricci tensor. 

II. THE SPECTRAL POTENTIAL cfJ 

A. Definitions of the space Dlv , the potential 1', and the 
duality operator * 

There are two preliminary topics that we shall cover in 
Secs. II A and II B, respectively, before we define ¢>. The first 
topic is on the potential y and its domain DIV which were 
introduced in Sec. I C. However, we shall begin Sec. II with­
out presupposing all the concepts and relations that were 
mentioned in Sec. I. The only concepts that we assume to be 
given at this time are the initial data functions r( u), 1/13 (u) 

and s ( v ), 1/12 ( V ) • 

Premises: The initial data functions r( u), 1/13 (u) and 
s(v), 1/12(V) areC1 over their domains O<;u < uoand O<;v < Vo, 
respectively, and satisfy tP3(0) = 1/12(0) = ° and Eqs. (1.7) 
and (1.4). 

Definitions: The set IV is defined by Eqs. (1.2) and 
(1.3). The set DIv is defined by Eqs. (1.4) and (1.8). The 
topologies of IV and DIV will be the sets of all IV n Sand DIv 
ns, respectively, such that S is any set in the usual topology 
of R 2. The boundary of DIv will be 

JDIV:={(r,s)EJ),v:r= -lor s= n. 
Differentiation of any function is defined using only those 
sequences of points that lie in the domain of the function. 

Definitions: We shall denote by l: that one-to-one bicon­
tinuous mapping of DIV onto IV such that 

l:-I(U,V): = (r(u),s(v»). (2.1) 

We assign that atlas to D IV that consists of all charts l:' :DIV 
-+R 2 for which 

(~'ol:-I)(U,v) = (U(u),V(v») = :(u',v'), (2.2) 

where U and Vare any functions with domains O<;u < Uo and 
O<;v < Vo, respectively, such that U and V are ct and have 
positive derivatives throughout their domains. 

Note: The ordered pair that consists of DIv and the atlas 
defined above is not a ct manifold since the atlas is not maxi­
mal. However, many of the concepts and results of manifold 
theory are clearly applicable to this structure and will be 
freely used in Sec. II. 

Definition: We shall denote by y any real-valued func­
tion whose domain is DIv such that the function 1/1: = yo l: - 1 
is C l

, has a continuous mixed second-order partial deriva­
tive, satisfies Eq. (1.5) throughout IV, and satisfies 
l/1(u,O) = 1/13(U) and I/1(O,v) = 1/12(V). 

Definition: The symbol * will denote that duality opera­
tor on one-forms in IV such that 

*du = du, *dv = - dv (2.3 ) 

and will also denote a duality operator on one-forms in Dlv 
such that 

*dr = dr, *ds = - ds. 
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We shall rely on context to avoid confusion between the 
above two uses of the asterisk. 

Note: It is easy to prove that for anyone-forms WI and W2 

in IV (or in Dlv ) 

(2.4 ) 

where (*w l )w2 : = (*W I) 1\ W2' We omit the wedges in all ex­
terior products and exterior derivatives of differential forms. 

Note: Consider anyone-form 

A(U,V) = du a(u,v) + dvfJ(u,v) 

which is defined and continuous on an open set M in IV. 
Here a and fJ need not be C1 to construct a useful definition 
of dA. It is sufficient to assume that au and fJ u exist and are 
continuous, whereupon one way of defining the exterior de­
rivative of A is as follows: 

dA(U,V): = du dv[fJu (u,v) - au(u,v)]. 

Note that the hyperbolic equation (1.5) is expressible as the 
two-form equation 

(2.5) 

Without entering into any specifics, we remark that one 
can define a two-dimensional tangent vector space and its 
dual at each point of Dlv in a manner similar to that used for 
differentiable manifolds. Then differential forms in Dlv can 
be introduced. We shall denote by l: * the pullback operator 
corresponding to the chart l:. The key fact that we use below 
is that foreachp-formJl inDIv such that the domain ofJl is a 
set M in the topology of Dlv , there is exactly one p-form A in 
IV such that the domain of A is l:(M) and Jl = ~*A. 

Definitions: The p-form Jl is continuous if and only if A is 
continuous and dJl exists if and only if dA exists and 

dJl: = l:*(dA). 

Also, an alternative definition for the duality operation on 
anyone-form Jl is 

*Jl: = l:*(*A). 

It is easily proven that the above concepts are indepen­
dent of the choice of the chart l:. As examples of interest to 
us, 

l:*I/1=y, 'i,*(dl/1)=dy, l:*(d*dl/1)=d*dy 

all exist and are continuous on the domain Dlv ' Also, 
'i, * (d 21/1) = d 2y exists and vanishes on Dlv ' Application of 
'i,* to Eq. (2.5) yields 

d(p*dy) = 0, where per,s): = !(s - r) (2.6) 

and where we note thatp is assigned the dual role of denoting 
that function with domain IV for which 
p(u,v) = Hs(v) - r(u)] and that function with domain 
D,v forwhichp(r,s) = !(s - r). The intended meaning ofp 
will be clear from the context in which it appears. 

Equation (2.6) requires a cautionary addendum. Our 
premises on r(u) and s(v) imply that y is continuous, that 
Yr: = JylJr exists and is continuous at all (r,s) in DJV such 
that s=/= 1, and that Y rs exists and is continuous at all (r,s) in 
DJV - JDJV . Consider, for example, Yr' From Eqs. (1.4), 
(1.7), and the relation y(r(u),s(v») = l/1(u,v), 

Yr(r(u),s(v») = l/1u (u,v)lr(u) 
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if u > 0, i.e., if r( u) > - 1. However, since reO) may be zero, 
Yr(r(u),s(v») may not exist at u = 0, i.e., at reO) = - 1. In 
fact, as we demonstrated in Ref 1, the vacuum field equations 
imply that r(O)=$(O)=O and that yJr,s) is unbounded as 
r-+-1 and yJr,s) is unbounded as S-+1.13 

Therefore, although dy exists and is continuous at all 
points of DIV , one must note that the identity mapping of D/V 
onto D/V is not generally a chart in our C 1 atlas and that 

dyer,s) = dr Yr (r,s) + ds Ys (r,s) 

generally applies only to (r,s) in DIV - aDIy . The same res­
ervation holds for 

!drds[2(s-r)yrs -Ys +Yr] =0, (2.7) 

which is the restriction of Eq. (2.6) to DJV - aDIy . 

B. Definitions of X,D, D(r,s) , Dr' and U! 
Our second preliminary topic before we define ¢ con­

cerns a family of complex-valued solutions X of 

d(p*dX) = ° (2.8) 

such that X is a function of r times a function of sand 
(r,s)EDIV ' The reader can verify that a solution of this kind 
is given by 

(2.9) 

where 7 is a complex separation parameter and can be any 
point in C - { - 1, n. For any fixed (r,s) in DIV , definitions 
( 1.13 ) of X 3 and X 2 imply that the domain of 
X( 7) = x(r,s,7) in the 7 plane is 

D(r,s): = C - ([ - l,r] U [s,l]) (2.10) 

and that X( 7) is holomorphic on D(r,s) . The function X thus 
has the domain 

D: = {(r,s,7):(r,s)EDIV ,'TED(r,s)}' (2.11) 

and for any fixed 7 in C - { - l,n the domain of X in the 
(r,s) plane (i.e., the 7 section of D) is 

(2.12) 

where all square roots are positive and (r,s) is any fixed point 
in D,y such that r# - 1 and/or s# 1. (Recall that r<s in 
D,v .) From Eqs. (2.9) and (2.13), we further obtain 

a ±X(O') = +i{;)(O'), (2.14) 

where (;)(O') > ° is defined by Eq. (1.19) for all 0' such that 
- 1 < 0' < r or s < 0' < 1. 

Now let us consider the domains of a ± X ( 0') in the (r,s) 
plane when 0' is a fixed real number such that - 1 < 0' < ro or 
So < 0' < 1. One sees that a +X(O') and a -x(O') both have the 
domain D ~3)UD~2), where 
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(-1,1) (1,1) 

D. 

I---------!'---.}' (u, u) 

- - - - - - - - - - - -r 

(-1,-1) 

FIG. 2. ThesubregionsDu ' Db'), andD~2)ofDIv when ro = l,so = - 1, 
and l' = (T, where - 1 < (T < 1. The vertices of the triangular region DIV are 
(- 1,1), (1,1), and (- 1, -1). 

It is useful to have a mental image of D T • This is supplied by 
the following easily verifiable statements, 

(i) The set DT = DIV if 7 = 00, 1m 7,e;O, or if 7 is real 
and 171> 1. 

(ii) If 7 = 0' is real and 10'1 < I, then D" is the rectangu­
lar region consisting of all (r,s) in DIV such that 
- l<r<O'<s<1. The set D" is illustrated in Fig. 2 for the 

case when ro = 1 and So = - 1 (which are the values chosen 
for ro and So in almost every paper on colliding gravitational 
plane waves). Recall that - 1 < r 0< 1 and - 1 <so < 1 and 
that -1<r<ro andso <s<1 are the ranges of rands. 

Note the triangular regions D ~3) and D ~2) which are 
also subsets of DIV and appear in Fig. 2. The significances of 
these regions will now be explained. The boundary values 
a ± Xj (0') of the holomorphic functions Xj ( 7) (j = 3,2) are 
defined exactly as a ± ¢ (0') were defined in Eq. (1.17). 
[Simply replace ¢(O' + h,,) by Xj (0' + h,,) in that defini­
tion.] From Eqs. (1.13), we obtain 

D~3): = {(r,s)ED,y: - 1 <O'<r<s<n, 

D ~2): = {(r,s)ED,y: - l<r<s<O'< n. 

(2.13 ) 

(2.15 ) 

As a final note concerning a ± X (0'), observe from Eqs. 
(1.19) and (2.14) that a ± X(O') as well as X( 7) are annihi­
lated by the operator dp*d. 

Sinced Ip*dx( 7») = OandsinceD". is simply connected, 
there is a scalar field whose domain is D T and whose gradient 
is p*dX ( 7). In fact, the reader can verify that 

p*dX(7) = -d[(7-Z)X(7)], (2.16) 
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where 

p(r,s): = !(s - r), z(r,s): = !(s + r). (2.17) 

It is useful to note that in a neighborhood of r = 00, 

(r-z)x(r) =r+0(r- 1
). (2.18) 

Note: Although the points (r,s,r) = (r,s, ± 1) are not in the 
domain D of X' observe that X( - l,s,r) = X2(s,r) and is 
(for fixed s) holomorphic at r = - 1 in the sense that it has a 
holomorphic extension which covers r = - 1. In the same 
sense, x(r,l,r) = h(r,r) is (for fixed r) holomorphic at 
r = 1 and X( - 1,I,r) = 1 is holomorphic at r = - 1 and 
r = 1. Similar remarks apply to the functions 'I' and t/J that 
will be defined below. 

C. Definitions of 'II and ~ 

We shall be considering the complex-valued functions 
X' '1', and t/J which each have the domain D. In this subsection 
we shall let X ( r), 'I' ( r), and t/J ( r) denote those functions 
that each have the domain D T such that 
X( r}(r,s): = x(r,s,r), '1'( r)(r,s): = 'I'(r,s,r), and 
t/J(r)(r,s): = t/J(r,s,r). This notational device will not be 
used in the later parts of Sec. II. 

Theorem: There exists a complex-valued function 'I' 
with' domain D such that for any given r in C - {- I,!}, 
d'l' (r) exists, is continuous14 on DT , and satisfies 

(2.19) 

and 

'1'( - 1,I,r) = o. (2.20) 

Proof From Eqs. (2.4), (2.6), and (2.8), 

d [XC r)(p*dy) - r(p*dX( r»)] = 0 

on D T' Substituting from Eq. (2.16) into the above, we ob­
tain 

d [X( r)(p*dy) + yd « r - z)X( r»)] 

= d [X( r) (p*dy) - (r - z)X( r)dy] = 0, 

from which we deduce the existence of a complex-valued 
function F,. with domain D,. such that dF,. exists, is contin­
uous, and satisfies 

(2.21 ) 

From Eqs. (2.18) and (2.21), dF,. is holomorphic in a neigh­
borhood of r = 00 and 

dF,. = dy + 0(r-2). 
r 

Therefore, we can fix the arbitrary additive function of r in 
F,. by specifying that FT ( - 1,1) = O. Now let 'I' denote that 
function whose domain is D and satisfies 'I' (r) = F T , where­
upon the theorem follows. 

Corollary: The function is holomorphic in a neighbor­
hood of r = 00 and in this neighborhood 

'I'(r) =ylr+0(r- 2
). (2.22) 

Also, d 2'1' ( r) exists and vanishes and d *d'I' ( r) exists and is 
continuous (throughout D T ). 

Proof The corollary follows from Eq. (2.19), Eq. 
(2.18), and the facts that dy, dX ( r), and d (*dy) exist and 
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are continuous, while d 2y and d(p*dy) exist and vanish 
throughout D T • 

Definition: 

t/J: = - X'l'· (2.23 ) 

Theorem: (i) The function t/J is uniquely determined by 
y and t/J( r) is holomorphic in a neighborhood of r = 00, 
where it satisfies Eqs. (1.16). 

(ii) The differential dt/J( r) exists and is continuous, 
d 2t/J( r) exists and vanishes, and d *dt/J( r) exists and is con­
tinuous. 14 

(iii) The function t/J ( r) satisfies 

t/J( - 1,I,r) = 0 (2.24) 
and 

(r-z+p*)dt/J(r) -dzt/J(r) = -dy. (2.25) 
Proof Parts (i) and (ii) of the above theorem follow directly 
from definition (2.23) and the preceding theorem and corol­
lary. Equation (2.24) is implied by Eq. (2.20). 

Next, Eqs. (1.13), (2.4), (2.9), and (2.17) imply 

(r - 1) -\ (r - z + p*)( r - z - p*) = [X( r)] -2, 

whereupon Eq. (2.19) is seen to be equivalent to 

X( r)( r - z + p*)d'I' (r) = dy. 

Furthermore, Eq. (2.16) is equivalent to 

(r-z+p*)dx(r) =dzx(r). 

(2.26) 

(2.27) 

Equation (2.25) now derives from Eqs. (2.23), (2.26), and 
(2.27). Q.E.D. 

Corollary: 

d(p*dt/J) = O. (2.28) 

Proof: Take the exterior derivative of both sides of Eq. 
(2.25). 

D. Holomorphy properties of ~ 

To compute t/J(r,s,r) for r in C - { - I,!} and (r,s) in 
D,., we can integrate Eq. (2.19) along any segmentally 
smooth path which lies entirely in DT and which has 
( - 1,1) as its initial point and (r,s) as its final point. Then 
t/J(r,s,r) = - x(r,s,r)'I'(r,s,r). In particular, let us use the 
following two paths, which are each composed of a pair of 
straight line segments on or parallel to the axes of DIY: 

( - 1,1) --+ (r, 1) --+ (r,s), (- 1,1) --+ ( - I,s) --+ (r,s). 

The two integrations are straightforward and yield the two 
expressions 

t/J(r,s,r) = X2 (s,r)t/J3 (r,r) + S2(r,s,r), 

t/J(r,s,r) = X3(r,r)t/J2(s,r) + S3(r,s,r) , 

where t/J3 and t/J2 are given by Eqs. (1.12) and 

S2(r,s,r): = - X2(s,r) r db X2(b,r)Yb (r,b), 
r - 1 )1 

X3(r,r) J' S3(r,s,r): = r + 1 -1 do X3(a,r)Ya (a,s). 

(2.29) 

(2.30) 

From Eqs. (2.30) the expressions for t/J3 and t/J2 in Eqs. 
( 1.12), and the definitions of X 3 and X 2 in Eqs. (1.13), the 
following theorem is evident. 
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Theorem: (i) 

¢J( - l,r) = ¢2(1,r) = SJ( - l,s,r) = S2(r,l,r) = 0. 

(ii) For fixed r# - 1, ¢J(r,r) and 5J(r,s,r) are holomor­
phic on the subset C - [ - l,r] of the r plane. For fixed 
s# 1, ¢2(s,r) and 52 (r,s,r) are holomorphic on C - [s,I]. 

Corollary: Conditions (1.15) hold. 
Proof Use the preceding theorem and Eqs. (2.29). 
It is a striking and easily proven statement that for given 

¢3 and ¢2' the holomorphy conditions ( 1.15) taken together 
with the condition ¢ (r,s, 00 ) = 0 uniquely determine ¢ and, 
therefore, uniquely determine y. This will be the basis for our 
HP. 

E. The boundary values a±c/>(a) 

In this subsection we shall be using definitions ( 1.17) of 
a±¢(a). We shall also be using some theorems on general­
ized Abel transforms which we proved in Ref. 1.8 

Let us begin by recalling the definitions: 

YJ(r): = y(r,I), Y2(S): = Y( - l,s), 

(2.31 ) 
¢3(r,r): = ¢(r,l,r), ¢2(s,r): = ¢( - l,s,r). 

From its definition, ¢3(r,r) is that integral of Eq. (2.25) 
along the path s = 1 in Dr such that ¢3( - l,r) = 0. Like­
wise, ¢2 (s, r) is that integral of Eq. (2.25) along the path 
r = - 1 such that ¢2 ( 1, r) = 0. In other words, as one can 
see with the aid of Eqs. (2.3) and (2.17), defining equations 
for ¢3 and ¢2 are as follows: 

(r-r)d¢3(r) -!dr¢3(r) = -dYJ, ¢3( -1,r) =0, 

(2.32 ) 
(r-s)d¢2(r) -!ds¢2(r) = -dY2' ¢2(1,r) =0. 

In fact, explicit expressions for the integrals of Eqs. (2.32) 
have already been given by Eqs. (1.12). Our current inter­
ests are the alternative expressions for ¢J and ¢2 which are 
given by Eqs. (1.14). 

Theorem: Equations (1.14) hold. 
Proof It is sufficient to prove the first of Eqs. (1.14), 

since the proof of the second equation is similar. For 
- 1 < r< ro and TEC - [ - l,r] and for real a such that 
- 1 < r < 0" < ro, the first of Eqs. (2.32) yields 

d[~a-r¢3(r,r)] =~0"-rd¢3(r,r) _ dr¢3(r,r) 
2~0" - r 

= (0" _ r) d¢3(r,r) _ dY3(r) . 

~O"-r ~O"-r 

Upon integrating the above over r in the interval [ - 1,0"], 

we obtain 

f
a dr (P3(r,r) = g3(0"), for TEC - [ - 1,0"], 
-1 ~O"-r O"-r 

(2.33) 

whereg3(0") is defined by Eq. (1.11). 
Now we refer to the discussion of (generalized) Abel 

transforms8 in Ref. 1. The Abel transform of Y3(r) is g3(0") 
as given by Eq. (1.11). Similarly, the Abel transform of 
(P3(r,r) isg3(0")/(0" - r) as given by Eq. (2.33). A theorem 
in Ref. 1 on the in version of the Abel transform ( 1.11 ) yields 
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Y3(r) =..!..f' dO" g3(0") . 
1T -1 ~r-O" 

The same theorem applied to Eq. (2.33) yields the first of 
Eqs. (1. 14) . Note that the integral in Eq. (1.14) exists since 

according to a theorem in Ref. 1, g3 (0") I ~ r - 0" is an inte­
grable function of 0" over [ - l,r ] and since (0" - r) - 1 is 
bounded and continuous on [ - l,r]. 

Lemma: For any given point (r,s) in D Iv such that 
r# - 1 or s# 1, a±¢3(0") and a±¢2(0") exist and 

a +¢J(O") - a - ¢3(0") 

and 

= {2ig3(0")/~r -: 0", 

0, 

a + ¢2(0") - a - ¢2(0") 

if - 1 <O"<r, 

if s< 0"< 1 

{
a, if - 1 < 0" < r, 

- 2ig2(0")/~0"-s, if S<O"< 1. 

(2.34) 

(2.35) 

Proof' It is sufficient to prove Eq. (2.34). In Ref. 1 we proved 
thatgJ(O") obeys a Holder condition on every closed subin­
terval of its domain - 1 < 0" < ro. Therefore, for given 

r> - 1, g3(0")/~r- 0" obeys a Holder condition on every 
closed subinterval of the open interval - 1 < 0" < r. There­
fore, from a theorem of Plemelj,15 the first of Eqs. (1.14) 
implies that a±¢3(0") exist and satisfy Eq. (2.34) if 
- 1 <O"<r. 

Ifs < 0"< 1, i.e., - 1 < r<s < 0" < 1, then ¢3(r,r) is holo­
morphic at r = 0". Hence, a + ¢3 (r,O") = a - ¢3 (r,O") if 
s < 0" < 1. This completes the proof of Eq. (2.34). 

Theorem: For any given point (r,s) in DIv such that 
r# -lor s#l, a±¢(O") =a±¢(r,s,O") exist and Eqs. 
( 1.18 )-( 1.20) hold. 

Proof: The theorem follows straightforward from the 
preceding lemma, Eqs. (2.13), Eqs. (2.29), and the theorem 
that follows Eqs. (2.30). Use the first of Eqs. (2.29) to prove 
the theorem for values of 0" in the interval - 1 < 0" < rand 
use the second of Eqs. (2.29) for s < 0" < 1. We leave the 
details of the proof to the reader. 

III. THE HP FOR THE COLLINEAR CASE 

A. Definition of the HP adapted to (c/>3. c/>2) 

We shall now set aside the definitions of Y and ¢ which 
were given in Sec. II and define them instead as the results of 
solving a certain HP. The equivalences of the definitions in 
Sec. II and the definitions that we shall give below will be 
proven in Sec. III C. 

Assume that the initial data functions r( u), s( v), "'J (u), 

and "'2(V) have been given and satisfy the premises stated 
after Eqs. (1.6). Also, assume that ¢J(r,r) and ¢2(s,r) have 
been computed from the given initial data by using Eqs. 
(1.12) or any other form of the integrals ofEqs. (2.32). 

Definitions: The HP 11 adapted to (¢J' ¢2) is the search 
for a function ¢ with domain D such that the following r­
plane conditions are satisfied by ¢ (r,s, r) for any given (r,s) 
in DIv [where we suppress (r,s) below]: 
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<p(7) -X2(7)<P3(7) isholomorphiconC- [s,I], 

<p( 7) - X3( 7)<P2( 7) is holomorphic on C - [ - l,r], 

<PC 00) = 0. 

The field Y is defined in terms of the solution <p by 

Y:=[-7<p(7)L.=oo (3.1) 

By using the facts that X 3 ( 7) and <P3 ( 7) are holomor­
phic on C - [ - l,r] and X 2 ( 7) and <P2 ( 7) are holomorphic 
on C - [s, 1 ], one can see that the first pair of conditions and 
in the above definition is equivalent to the triad of conditions 
( 1.15) that were used in the informal statement of the HP in 
Sec. IE. 

B. Solution of the HP 

Theorem: A solution <p of the HP exists, is unique, and 
has the following value for any given (r,s,7) in D: 

<p(r,s,7) = 3<P(r,s,7) + 2<P(r,s,7), 

where 

,1,( ) --1-1 d~' X2(S,7')<P3(r,7') 3'f' r,s,7 = , 
211'i '., 7' - 7 

,1,( ) - 1 i d ' X3(r,7')<P2(S,7') 
2'f' r,S,7 - - -. 7 , , 

211'1 " 7 - 7 

(3.2) 

(3.3 ) 

and r 3' r 2' and 7 satisfy conditions (1.22) as in Fig. 1. Fur­
thermore, 

y(r,s) = 3y(r,s) + 2y(r,s), 

where 

3y(r,s): = - ~ f d7' X2(S,7')<P3(r,7'), 
2m J., 

2y(r,s): = - ~ f d7' X3(r,7')<P2(S,7'). 
2m J., 

(3.4 ) 

(3.5 ) 

Proof" The proof will be given in two parts. (i) Assume 
that a solution <p of the HP exists. Then the first two condi­
tions of the definition in Sec. III A of the HP imply, for any 
given (r,s,7) in D, 

_1_ r d7' <p(7') - b(7')<P3(7') 

211'i J., 7' - 7 

+ _1_ r d7' <p(7') - X3(7')<P2(7') = 0, 
211'i J., 7' - 7 

where we are suppressing (r,s). The above equation is equiv­
alent to 

~ r d7' ~(7') + 3<P( 7) + 2<P( 7) = 0, (3.6) 
2m Jr 7 - 7 

where 3<P and 2<P are defined by Eqs. (3.3) and r is any posi­
tively oriented contour such that 

([ -1,r]U[s,I])Cr+, 1"Er-. 

The third condition of the HP implies that the integral over 
r in Eq. (3.6) equals - <p( 7), which yields Eq. (3.2). The 
application ofEq. (3.1) to Eqs. (3.2) and (3.3) then yields 
Eqs. (3.4) and (3.5). We have thus proven that if a solution 
<p of the HP exists, it is given by Eqs. (3.2) and (3.3) and the 
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corresponding y is given by Eqs. (3.4) and (3.5). This, of 
course, implies the uniqueness of the solution. 

(ii) We shall next establish the existence of a solution by 
showing that <p as defined by Eqs. (3.2) and (3.3) satisfies all 
the conditions of the HP. The arguments (r,s) will be sup­
pressed in the proof. Since X 2 ( 00 ) <P3 ( 00 ) = 0, 

_ X2( 7)<P3( 7) = _1_. r d7' X2( 7:)<P3( 7') . 
211'/ J.,+., 7 - 7 

Upon adding the two sides ofthe above equation to the cor­
responding sides ofEq. (3.2) and using Eqs. (3.3), we ob­
tain 

<p(7) - X2(7)<P3(7) = 52(7), 

where 

By the conventional method of deforming r 2 to accommo­
date any given 7 in C - [s,l] so that 1"Er2-, 52(7) can be 
holomorphically extended to the domain C - [s, 1 ]. There­
fore, <p satisfies the first condition of the HP. 

The second condition of the HP is proven by a similar 
method (which need not be detailed here) and the third 
condition follows directly from Eqs. (3.2) and (3.3). This 
completes our account of the proof. 

Note: In Sec. II we proved that the <p and y defined there 
satisfy Eq. (3.1) and all the conditions of the HP. Therefore, 
we could have used the known existence theorem on the 
solution of any hyperbolic equation such as Eq. (1.5) to 
prove the existence of a solution of the HP. However, we 
opted for the existence proof given above since it illustrates 
the complex plane methods which constitute an important 
part of our formalism. 

Corollary: The solution <p of the HP and the correspond­
ing y satisfy 

<p(r,I,7) = <P3(r,7), y(r,I) = Y3(r), 

<p( - I,S,7) = <P2(S,7), y( - I,s) = Y2(S). 
(3.8) 

Proof" Set s = 1 in Eqs. (3.3) and (3.5) and use the 
relations b( 1,7) = 1, <P2(2,7) = 0, and 

[ - 7<p3(r,7) L= 00 = Y3(r), 

which derives from Eq. (1.12) and the relations 
X3(r,00) = 1 and Y3( -1) =0. Then set r= -1 in Eqs. 
(3.3) and (3.5) and use the relations X3( - 1,7) = 1, 
<P3( - 1,7) = 0, and 

[-7<P2(S,7)]r=00 =Y2(S), 

which derives from Eq. (1.12) and the relations 
X2(S,00) = 1 andY2(1) =0. We thus obtain 

3<P(r,1,7) = <P3(r,7), 3y(r,I) = Y3(r), 

2<P( - 1,s,7) = <P2(S,7), 2Y( - 1,s) = Y2(S), (3.9) 

2<P(r,I,7) = 2y(r,I) = 3<P( - I,S,7) = 3Y( - I,s) = O. 

Substitution of (3.9) into Eqs. (3.2) and (3.4) yields Eqs. 
(3.8). 

Corollary: For any given 7 in C - {- I,I}, the func­
tions [of (r,s)] 
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/p(r), dr/per)], d*dLtP(r)] 

exist and are continuous on D T' The functions 

jr, d(jr), d *d(jr) 

exist and are continuous on DIY and d 2(jr) exists and van­
ishes on DIY' 

Proo!'The proof employs Eqs. (3.3) and (3.5) as well as 
the definitions of continuity and exterior differentiation of 
differential forms in the space DIY given in Sec. II A. 

C. Relation of the HP to the IVP 

We shall next give a theorem and two corollaries which 
establish that the solution of the HP solves the IVP. The z 
and p that appear in the following theorem are defined by 
Eqs. (2.17). 

Theorem: The j tP and j r as defined by Eqs. (3.3) and 
(3.5) satisfy 

Corollary: Forj = 3 andj = 2, 

d [p*d(jtP)] = 0, d [p*dCr)] = O. (3.12) 

Proo!' Take the exterior derivative of both sides of Eq. 
(3.11) to obtain the first of Eqs. (3.12). Then apply the 
operator P* to both sides ofEq. (3.11) and take the exterior 
derivative of the result. The second of Eqs. (3.12) is then 
obtained after using Eqs. (2.4) and the easily proven relation 
*dz= -dp. 

Corollary: The solution tP of the HP and the correspond­
ing r satisfy Eqs. (2.6), (2.24), (2.25), and (2.28). 

Proo!' Sum Eqs. (3.lO)-(3.12) over j and use Eqs. 
(3.2) and (3.4). 

Let us see where we stand. In Sec. II A we defined r as a 
function whose domain is DJV such that t/!( u,v): = r­
(r( u) ,s( v») satisfies the hyperbolic Eq. (1.5) and the initial 
value conditions t/!(u,O) = t/!3(U) and t/!(O,v) = t/!2(V). In 
Sec. II C we defined tP in terms of the given r by Eqs. (2.19), 
(2.20), and (2.23) or, equivalently, by Eqs. (2.24) and 
(2.25). Finally, in Secs. II C and II D we proved that this tP 
satisfies Eq. (3.1) and all of the defining conditions of the HP. 
[See part (i) of the second theorem in Sec. II C, the theorem 
and its corollary in Sec. II D, and the paragraph following 
the definition of the HP in Sec. III A.] 

Conversely, Eqs. (3.8) and the last corollary that we 
proved above establish that the tP and r defined by the HP 
satisfy all the defining equations of the tP and r of Sec. II. 
Thus the tP and r defined by the HP are identical with the tP 
and r which were defined in Sec. 1L Furthermore, from the 
theorem in Sec. III B, the solution of the IVP for the collinear 
case exists, i!; unique, and is t/!( u,v) = r(r( u) ,s( v»), where r is 
given by Eq. (1.23). 

D. The HP adapted to ( 93. 92) 

Here we shall assume thatg3 andg2 have been computed 
from the initial data by using Eqs. (1.11). It is not necessary 
to compute tP3 and tP2 in order to use the HP defined below. It 
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jtP( - 1,I,r) = 0 

and, on the domain D T' 

(3.lO) 

(r - z + p*)d [jtP( r)] - dZ(jtP( r)] = - d (jr]. (3.11) 

Proo!' Equation (3.lO) is implied by Eqs. (3.8). As re­
gards Eq. (3.11), it is sufficient to supply a proof for j = 3. 
From the definition ofX2(s,r) in Eq. (1.13), 

(r - S)dX2(s,r) - ~ ds X2(s,r) = o. 
Upon combining the above equation with Eq. (2.32), we 
obtain, with the aid of Eq. (2.17) and the relations 
*dtP3(r,r) = dtP3(r,r) and *dXz(s,r) = - dX2(s,r), 

(r - Z - P* )d[X2 (r)tP3 (r)] 

- dZ[X2(r)tP3(r)] = - X2(r)dr3' 

Application of the above to 3tP(r) as given by Eq. (3.3) and 
the use of the expression for 3r in Eqs. (3.5) yields 

is only necessary to know that tP3 and tP2 are given in terms of 
g3 and g2 by Eqs. (1.14). Equation (1.17) and Sec. lIB 
should be consulted for the definition of the various symbols 
that appear in the following definition. 

Definitions: The HPadapted to (g3,g2) is the search for a 
function tP with domain D such that the following r-plane 
conditions are satisfied by tP (r,s, r) for any given (r,s) in DIY 

[where we suppress (r,s) below]: 
( i) The function tP ( r) is holomorphic on D (r.s) • 

(ii) lfr# - lor s# 1 (or both), a± tP(o') exist and Eqs. 
( 1.18) hold for all 0' in the open intervals - 1 < 0' < rand 
s<o'<1. 

(iii) The endpoint conditions (1.25) hold. 
(iv) The value of tP( 00) = O. 
Finally, r is defined in terms of tP by Eq. (3.1). 
Theorem: There is not more than one solution of the HP 

adapted to (g3,g2)' 
Proo!' Let g: = tP' - tP, where tP and tP' are any solutions 

of the HP. For any given (r,s) in DIY, condition (ii) of the 
HP implies that 

a ±g(O') exist, a+g(O') =a-g(O') (3.13) 

for all 0' such that - 1 < 0' < r or s < 0' < 1. According to a 
known theorem, a function g( r) that satisfies condition (i) 
of the HP and Eq. (3.13) has an extension [which we shall 
also denote by g( r)] that is holomorphic throughout 
C - {- 1,r,l,s}, i.e., holomorphic throughout C except 
perhaps for poles or isolated essential singularities at - 1, r, 
1, or s. 

Next, note that 

g(r) = [tP'(r) - X2(r)tP3(r)] - [tP(r) - X2(r)tP3(r)] 

= [tP' ( r) - X 3 ( r) tP2 ( r)] - [tP ( r) - X 3 ( r) tP2 ( r) ]. 

Therefore, condition (iii) of the HP taken together with Eq' 
(3.13) implies thatg( r) remains bounded asr-+ - 1, r, 1, or 
sthrough any sequence of points in C - { - l,r,l,s}. There­
fore, g( r) has no singularities at - 1, r, 1, and s and is, 
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according to Liouville's theorem, constant in value through­
out C. Hence tP' (1") = tP( 1") throughout D(r.s)' Q.E.D. 

Lemma: Alternative expressions for the functions 3tP 
and 2tP that were defined by Eqs. (3.3) are 

A.( ) -l..Jr d g3(U)X2(S,U) 3'1' r,s,7 - u , 
'TT -I (u-1")~r-u 

(3.14) 

A.( ) -l.. is d g2(u)X3(r,u) 2'1' r,s,7 - u . 
'TT 1 (u - 7)~U - S 

Proof: We shall only supply a proof of the first of Eqs. 
(3.14). Substitution from the first ofEqs. (1.14) into the 
first of Eqs. (3.3) yields 

3tP(r,s,7) 

= __ 1_ r d7' J' du g3(U)X2(S,7') , 
2ri Jr., -I (u- 7')(7' -7)~r- u 

(3.15 ) 

where we recall that [- l,r] cr3+ and TEr:. Now, 
X2(S,7) is holomorphic on C - [s,l] and is, therefore, holo­
morphic on r 3 u r 3+' Hence, we obtain the first of Eqs. 
(3.14) after interchanging (as is permissible here) the order 
of integrations in Eq. (3.15) and applying the Cauchy 
theorem to the integral over 7'. 

Theorem: The solution of the HP adapted to (g3' g2) 
exists and is equal to the solution of the HP adapted to 
(tP3,tP2)' In other words, it exists and is given by Eqs. (3.2) 
and (3.3) or, equivalently, by Eqs. (3.2) and (3.14). 

Proof: We prove the theorem by showing that tP as de­
fined by Eqs. (3.2) and (3.14) satisfies conditions (i)-(iv) 
of the HP adapted to (g3' g2)' 

We proved in Sec. III B that tP as defined by Eqs. (3.2) 
and (3.3) satisfies the conditions of the HP adapted to 
(tP3,tP2)' These conditions trivially imply conditions (i), 
(iii), and (iv) of the HP adapted to ( g3' gz). Therefore, it 
remains only to prove that tP as defined by Eqs. (3.2) and 
(3.3) also satisfies condition (ii) of the HP adapted to 
(g3,g2)' 

In Ref. 1 we proved that gj (u) obeys a Holder condition 
on any given closed subinterval of its open interval domain. 
Now, for fixed (r,s) in DIv such that r# - 1 and s# 1, 

Xz(s,u)/~r-u, X3(r,u)/~u-s 

are C functions of u over any given closed subintervals of 
the open intervals - I < u < rand s < u < 1, respectively. 
Therefore, the products 

g3XZ(S,U)/~ r - u, gzX3(r,u)/~u - s 

obey Holder conditions on any given closed subintervals of 
the intervals - 1 < u < rand s < u < 1, respectively, where­
upon a theorem of Plemelj declares that tP( 7) as defined by 
Eqs. (3.2) and (3.14) has existing boundary values a± tP(u) 
which satisfyl5 

a + tP(u) - a - tP(u) 

= {2ig3(U)X2(S'U)/~r-u, if -l<u<r, 

2igz(u)X3(r,u)/~u-s, if s<u< 1. 
The above equation is equivalent to Eq. (1.18), as can be 
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seen from Eqs. (1.19) and ( 1.20). Therefore, condition (ii) 
of the HP adapted to (g3' gz) is satisfied. 

Corollary: Here tP and r are also given by Eqs. (1.26) 
and (1.27). 

Proof: Use Eqs. (1.19), (1.20), (3.2), and (3.14). 
Note: The solution of the HP adapted to (g3' g2) could 

have been derived without using the information supplied by 
Sec. III B. Specifically, the same theorem of Plemeljl5 that 
we used to prove the preceding theorem directly tells us that 
Eq. (1.26) satisfies conditions (i), (ii), and (iv) of the HP 
adapted to (g3' gz). It remains only to prove that condition 
(iii) [i.e., the endpoint conditions (1.25) ] is also satisfied by 
Eq. (1.26): This can be done by a direct method that makes 
no use of any results that we proved in Sec. III B. We leave 
the construction of this direct method to the interested read­
er. 

IV. PROPERTIES OF THE INITIAL DATA FUNCTIONS 
AND OF 93 AND 92 

A. Constraints on the initial data due to the vacuum 
condition 

The only premises that have been granted so far con­
cerning the initial data are those given after Eqs. (1.6) in 
Sec. I B. As we stated at the end of Sec. I B these premises do 
not include all constraints imposed on the initial data by the 
requirement that the Ricci tensor exist and vanish through­
out the space-time. 

The topic of constraints on the initial data was covered 
in Ref. 1 for the noncollinear as well as the collinear cases. 
We shall here summarize those conclusions in Ref. 1 that 
pertain to the collinear case. We shall assume that the metri­
cal functions p, ¢, and r that occur in the line element ( 1.1 ) 
satisfy the following conditions throughout their common 
domain IV: 

pis CZ
, ¢, rare C I

, 

¢uv' r uu exist and are continuous. (4.1 ) 

When discussing the vacuum field equations in Ref. 1, we 
also assumed that ¢ is CZ

• However, a reexamination of our 
work in Ref. 1 shows that the set of conditions (4.1) is suffi­
cient for the existence of the Ricci tensor throughout the 
domain of the chart employed in Ref. 1 and is sufficient to 
deduce the conclusions given below. 

Recall that the ignorable coordinates Xl, X
Z are scaled to 

make 

p(O,O) = 1, ¢(O,O) = ° (4.2) 

and that the initial data functions are related to p and ¢ as 
follows: 

r(u) = 1 - 2p(u,0), ¢3(U) = ¢(u,Q), 

s(v) = 2p(0,v) - 1, ¢z(v) = ¢(O,v). 
(4.3) 

The premises (4.1) and Eqs. (4.2) and (4.3) implyl6 

¢3(U), ¢2(V) are C 1
, ¢3(0) = ¢z(O) = 0, (4.4) 

and 

r(u),s(v) areCz, reO) = - 1, s(O) = 1. (4.5) 

Furthermore, we proved in Ref. 1 that the vacuum field 
equations over that space-time region occupied by the two 
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plane waves and the two null hypersurfaces that are the 
fronts of these waves prior to their collision imply 

reO) =s(o) =0, ;(u»O if O<u<uo, 

s(v) <0 if O<v<vo, 

and 

(4.6) 

limu_o {r(u) - 2 [1 - r( u)][ "'3 (u)] 2}/i"C u) exists, 

(4.7) 
limv_o {:S(v) + 2[ 1 + s(v) l[ "'2(V)) 2}/S(V) exists. 

Conversely, if one assumes that the initial data functions are 
given and satisfy the constraining conditions (4.4 )-( 4. 7), 
then the vacuum field equations over the space-time region 
that is occupied by the scattered wave have unique solutions 
p, tP, and r which satisfy conditions (4.1 )-( 4.3). The solu­
tions p and tP are given by Eqs. (1.3) and (1.27), respective­
ly, and the solution r is given in Ref. 1.6 

Observe that conditions (4.4 )-( 4. 7) imply that 

reO) = 4["'3(0) F, s(O) = - 4["'2(0) ]2, (4.8) 

which imply in turn that reO) >0 and s(O) ,;;;0. We shall refer 
to Eqs. (4.8) later. 

Conditions (4.4)-( 4. 7) are formulated in terms of a 
particular choice of null coordinates u and v. However, if u 
and v are subjected to any C2 transformations 

u-+u' with domain O,;;;u < Uo and range O,;;;u' < ub, 

V-+ v' with domain O,;;;v < Vo and range O,;;;v' < vb 

such that du'/du and dv'/dv are positive, then conditions 
(4.4 )-( 4. 7) remain true after replacing u, v, uo, vo, r( u), 

s(v), tP3(U), and tP2(V) by u', v', ub, vb, r'(u'),s'(v'), tP~ (u'), 

and tP~ (v'), respectively, where (of course) 

r'(u') = r(u), s'(v') = s(v), 

tP~ (u') = ¢3(U), ¢~ (v') = ¢z(v). 

Moreover, the numbers ro and So that were defined in Eqs. 
(1.4) and the functions Y3 and Y2 that were defined by Eqs. 
(1.9) are unchanged by the transformation (u,v) -+ (u',v'). 

The above statements are easy to prove, as is the statement 
that the group generated by all such transformations is the 
group of all null coordinate transformations under which 
conditions (4.5) and (4.6) persist and ro and So are un­
changed. Application of any element of this group does not 
change Y3 and Y2 and leaves conditions (4.4)-(4.7) true if 
they are initially true. 

The following theorem supplies another group of trans­
formations under which conditions (4.4)-(4.7) persist. 

Theorem: Let a 3 and a 2 be any real-valued functions 
with domains - l,;;;r<ro and So <s,;;; 1, respectively, such 
that a 3 and a 2 are C I and a:! ( - 1) = a 2 ( 1) = O. Then if 
statements (4.4)-(4.7) are true, they remain true after the 
substitutions 

tP?,(u) -+tP3(U) + a 3(r(u»), r(u) -+r(u), 

tPz(v) -+¢z(v) + az(s(v»), s(v) -+s(v). 

[Note: Ifr(O) = 0, then one can replace the premise that a?, 
is C l by the lighter premise that a3 (r) exists, is continuous 
over - 1 < r < ro, and is bounded in at least one interval 
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- 1 < r < - 1 + £ such that £ > O. A like statement holds 
fora2ifs(0) =0.] 

Proof: Use the relations 

~ [a3(r(u»)] = f(u)a?,(r(u»), 
du 

.!!... [az(s(v»)] = s(v)az(s(v»), 
dv 

whereupon the proof is straightforward. 

B. Special r(u) and s(v) 

In this subsection we shall focus attention on any 
choices of r( u) and s( v) that satisfy the following definition. 

Definition: The functions r( u) and s( v) will be called 
special if they satisfy conditions (4.5) and (4.6), the condi­
tions 

lim[l+r(U)]=lim[I-S(V)]=O (4.9) 
u-o feU) v-o -s(v) , 

and the conditions that 

m 3(0): = lim m 3(u), m 2(0): = lim mz(v) 
u-O v-a 

exist and have the values 

m 3(0) #0, mz(O) #0, 

where 

m3(u): = r(u)[ 1 + r(u) ]lr( u)z, 

mz(v): = - s(v) [1 - s(v) ]/s(v)z 

for 0 < u < Uo and 0 < v < vo, respectively. 

( 4.10) 

(4.11 ) 

( 4.12) 

Examples: The reader will discover by trial that any 
choices of r(u) and s(v) that satisfy conditions (4.5) and 
(4.6) and are deemed palatable for constructing specific col­
liding gravitational plane-wave solutions are special in the 
sense defined above. Examples of special r( u) families are 
given by 

r(u) = 2un - 1, where n>2, uo: = 1, 

r(u) = [2exp( - :n)] -1, where n>O,uo: = 00. 

Similar examples that are C2
, but are not Coo, are easily con­

structed. A family of r(u) choices that satisfy conditions 
(4.5) and (4.6), but are not special is given by 

r(u) = 2(n + 1) (n + 2) i U 

db i b 

da an (Sin ~ r -1, 

where n > 0 and uo: = 1. 
Theorem: If r( u) and s( v) are special, then 

O<mj (O),;;;I(j= 3,2). (4.13 ) 

Furthermore, there exist real £3 and £2 such that 0 < £3 < uo, 
o < Ez < vo, and 

r(u»O, ifO<u<E3 , -s(v»O, ifO<v<Ez.(4.14) 

Proof.' From Eqs. (4.9), (4.10), and (4.12), m3 (u) and 
mz(v) are Clover O,;;;u < uo and O,;;;v < Vo, respectively, 
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~ [1 + r(U)] = 1 _ m (u) 
du r(u) 3, 

!!... [ 1 -.s(v) ] = 1 _ mz(v), 
dv - s(v) 

and the values of the above derivatives at u = 0 and v = 0 are 
given by 

1 - m
3
(0) = lim [ 1 ~ r(u) ], 

u-o ur(u) 

1 _ mz(O) = lim [ 1 - ~(v) ] . 
v-a -vs(v) 

(4.15 ) 

Conditions (4.5) and (4.6) imply that the expressions in 
brackets in Eqs. (4.15) are positive. Therefore, l;;;'m/O). 

Now, suppose m3(0) < O. Then there would exist real E 

such that 0 <E < uoand m 3(u) <Owhen O<u <E. Definition 
(4.12) of m 3 (u) would then imply that r(u) <0 when 
o < u < E: This would contradict the conditions r( 0) = 0 and 
r(u) >0 when u>O. Therefore, m3(0);;;.0. A similar proof 
yields m 2 (0) ;;;.0. 

We have proven above that O<mj(O)<l. Conclusions 
( 4.13) of the theorem now follow from (4.11). The proof of 
conclusions (4.14) of the theorem is straightforward and left 
for the reader, as is the proof of the following corollary, 
which should be compared with Eqs. (4.8). 

Corollary: Ifr(u) and s(v) are special, then 1'(0);;;.0 and 
- s(O)<O. 

A stronger result is given by the following corollary. 
Corollary: If r( u) and s( v) are special, then there exists 

at least one pair of real-valued functions tP3(U) and tP2(V) 
with domains O<u < Uo and O<v < vo, respectively, such that 
r(u), s(v), tP3(U), and tPz(v) obey conditions (4.4)-(4.7). 

Proof Let E3 and E2 be defined by conclusions (4.14) of 
the preceding theorem. Let 

. /, ). _ {f~ da ~2r(a)/[ 1 - r(a)], for 0<U<E3, 
'f'3(u .-

(U-E3 + l)tP3(E3), for E3<U<UO' 

and similarly construct tPz (v). The rest of the proof is 
straightforward. 

Definitions: Let 

p: = ~(1 + r)/2, q: = ~(1 - s)/2, 

Po: = ~ (1 + ro)/2, qo: = ~ (1 - so)/2, (4.16) 

p(u): = ~[ 1 + r(u) ]12, q(u): = ~[ 1 - s(u) ]/2. 

For any given tP3 and tPz, let.B3 and.B2 denote those functions 
whose domains are oq <Po and O<q < qo, respectively, and 
whose values are given by 

.B3(P): = Y3(r), .B2(q): = Yz(s). 

Equivalently, 

.B3(P(U»): = tP3(U), .B2(q(v»): = tP2(V). 

Observe that Eqs. (4.16) and (2.17) yield 

p = 1 _ p2 _ q2, Z = p2 _ q2. 

( 4.17) 

(4.18 ) 

( 4.19) 

Note that P and q are identical with u and v when 
r(u) =2u2 -1ands(v) = 1-2v2,butthisisnotgenerally 
true here. 

From definitions (4.17), .B3(p) and .B2(q) are contin-
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uous over O<P <Po and O<q < qo, respectively. Moreover, 
P3(P): = d.B3(p)/dp and P2(q): = d.B2(q)/dq exist and are 
continuous over 0 <p <Po and 0 < q < qo, respectively. How­
ever, for general r(u), s(v), tP3(U), and tP2(V), the deriva­
tives P3(P) and P2(q) may not be "well behaved" as P--+O 
and q--+O. 

Theorem: Suppose r(u) and s(v) are special and sup­
pose r(u), s(v), tP3(U), and tP2(V) satisfy conditions (4.4)­
( 4. 7). Then [P3 (p) f and [P2 (q) f are continuous over 
O<p <Po and O<q < qo, respectively, and 

[Pj (0)]2=2mj (0). (4.20) 

Equivalently, the set of limit points of Pj as its argument 
approaches the origin is 

{~2mj(0), -~2mj(0)},{~2mj(0)} or {-~2mj(0)}. 

Proof Consider, for example, j = 3. Observe that Eqs. 
(4.16) and (4.18) imply that 

[1 + r( u) ] [ tp3 (u) ] z / r( u) 2 = ! [P3(P (u) )] 2. 

Therefore, by mUltiplying the expression in curly brackets in 
the first of conditions (4.7) by [1 +r(u)]/r(u)2 and by 
using Eqs. (4.9) and (4.12), we obtain 

m3(u) - HI - r(u) ][P3(P(U)W 

and deduce that the above expression is continuous over 
0< u < Uo and vanishes at u = O. The theorem for j = 3 then 
follows from the relation r(O) = - 1. A similar proof is 
used for the case j = 2. 

C. On 93 and 92 

We next cover some properties of the functions g3 and g2 
which were defined by Eqs. (1.11) and have played impor­
tant roles both in this paper and in Ref. 1. The first theorem 
is general. It assumes nothing more than the premises on the 
initial data which are stated following Eqs. (1.6) . 

Theorem: The function gj (0') obeys a Holder condi­
tion l7 of index ! on any given closed subinterval of its (open 
interval) domain. IS 

Proof We need to give a proof only for j = 3 since the 
proofforj = 2 is similar. Let [a,b] be any closed subinterval 
of the domain - 1 <O'<ro ofg3(O'). Let 

c: = a - !(a + 1) 

and let u and u' be any points on [a,b] such that u' > o'. Thus 

- 1 <c<a<u<u'<b<ro' 

From Eq. (1.11), 

(4.21) 

g3(U') -g3(U) = II (o',u') -/2(O',u') -/3(u,u'), (4.22) 

where 

II(u,u'): = fo'dr 1'3(r) , (4.23) 
)a ~u' -r 

5
a 

. [1 1] 12 (u,d): = drY3(r) -,' (4.24) 
C ~u-r ~u -r 

13(u,O"): = JC dr 1'3(r) [ 1 _ 1 ] . 
-I ~u-r ~u'-r 

(4.25) 

Since 'h is continuous on the closed interval [c,b], 
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MI(a,b): = max{lr3(r)I: c<r<b} 

exists and is finite and positive. From Eq. (4.23), 

III(u,u')/<2MI(a,b)~d - u. (4.26) 

From Eqs. (4.21) and (4.24), 

/I2 (u,u')1<2M1(a,b) [Ju-c+../u'-u-../u'-c J 
<2M1(a,b)../u' - u. (4.27) 

For all non-negative real numbers x and y such that x > y, 

IX - ,[y<../x - y. 

Therefore, from Eq. (4.25), 

/I3(u,u')/<../u' - ufc dr Ir3(r)/ 
-I "/(u-r)(d-r) 

2M2 (a) ~ < vu -u, 
a+I 

(4.28) 

where 

M 2(a): = f~ 1 dr/r3(r) / 

and where we have used the inequalities 

u - r>i (a + 1 )u' - r> i(a + I). 

[The integral M2 (a) exists and is finite. Integrals of this type 
were discussed in Ref. 1.] From Eqs. (4.22) and (4.26)­
(4.28), there exists a positive real number M( a,b) such that 

/g3(U') - g3(U) /<M(a,b)~u' - u. Q.E.D. 

The premise in the following corollary contradicts con­
ditions (4.6) and (4.7) since these vacuum conditions im­
ply, as we proved in Ref. I, that r3(r) and r2(S) are un­
bounded as r-+ - 1 and S-+ 1, respectively. However, the 
theorem in Sec. IV A shows that functions that satisfy the 
premise of the corollary have at least one use. (In the 
theorem of Sec. IV A, these functions were denoted by a j • ) 

Corollary; Suppose Y3(r) and Y2(S) are Clover 
- l<r<ro and so<s<l, respectively. Then g3(U) and 

gz(u) have continuous extensions onto - l<u< ro and 
So < u< 1, respectively, and these extensions obey Holder 
conditions of index! on any given closed subinterval of their 
respective domains. [If Y3(r) and Yz(s) are Clover 
- 1 <r<ro and so<s< I, respectively, then g3(U) and g2(U) 

have continuous extensions onto - I <u<ro and so<u< 1, 
respectively, and these extensions obey Holder conditions of 
index! on their respective domains. ] 

The proof of the above corollary is a modified form of 
the proof of the preceding theorem and is left for the reader. 

Finally, we consider alternative forms of the integals 
(1.11) for g3(U) andg2 (u). Upon introducing the new vari­
ables of integration 

x=~(u-r)/(1 +u), y=~(s-u)/(1-u), 

one obtains 

g3(U) =2../1 +uf dxr3(u- (l +u)x2
), 

(4.29) 
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Let us next employ the variables p and q defined by Eqs. 
( 4.16) and the functions /33 ( p) and /32 (q) defined by Eqs. 
( 4.17). Equations (1.11) then become 

1 iTT/2 . [(I+U)I12 ] g3(U) = Jj. 0 de /33 -2- sin e , 

(4.30) 

1 i"'/2 . {(I - U)1/2. } 
gz(u) = - Jj. 0 de/32 -2- sm e , 

after introducing a new variable of integration e. Equations 
(4.30)areespeciallyusejuljorcomputingg3 andgz when r(u) 
and s( v) are special, as defined in Sec. IV B, and r( u), s( v), 
t/J3(U), and t/Jz(v) satisfy conditions (4.4)-f4.7). The reason 
for this can be seen from Eq. (4.20) and the theorem that 
contains this equation. Specifically, if the premises of the 
theorem hold, then the integrals in Eqs. (4.30) are proper 
Riemann integrals and 

g3( - 1) = (1T12Jj.)P3(0) 

: = limit point of g3(U) as U-+ - 1, 

gz( 1) = - (1T!2Jj.)Pz(O) 

: = limit point of g2(U) as u-+l, (4.31) 

where [Pj (0)] 2 is given by Eqs. (4.20) and (4.12). 

V. PERSPECTIVES 

A. The HHP adapted to (f!lJ 3. f!lJ 2) 

If one no longer assumes that the polarizations of the 
plane waves are collinear, then the line element ( 1.1) in the 
scattered wave region is replaced by4 

(5.1) 

where a, b = 1,2; the symmetric matrix Sis positive definite; 
det S = 1; and p, S, and r depend only on u and v. We select 
the ignorable coordinates xl, X Z so that p(O,O) = 1 and 
S(O,O) = l. As in the collinear case, the solution of the vacu­
um field equation for p (u,v) is given by Eq. (1.3) such that 
Eqs. (4.5) and (4.6) hold for the functions r(u) and s(v). 
Also, the solution for r (u,v) is expressed in terms of definite 
integrals with known integrands once S( u,v) is known.6 The 
key problem is to find the solution S of the 2 X 2 matrix 
nonlinear hyperbolic equation 19 

d(pSu2*dS) = 0, 

(U I ,U2,U3: = the usual representation of 

the Pauli spin matrices) (5.2) 

corresponding to the prescribed initial data 

r(u), s(v), S(u,O), S(O,v). (5.3) 

In the collinear case, Xl and x 2 can further be chosen so that 
S(u,v) is diagonal at all (u,v) in IV, whereupon one defines 
t/Jby 

S = exp( - 2u3t/J). 

Equation (5.2) then reduces to the linear equation (2.5) for 
the function t/J. 

The basic ingredient of our HHP for the general case is a 
2X2 matrix spectral potential f!lJ (r,s,'1') which has the same 
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domain D as the spectral potential tP ( r,s, r) defined in Sec. 
II C. In fact, for the collinear case, 9 (r,s,r) is given by20 

(5.4) 

where 

9~ = ~(l- (2)X3 + ~(l + (2)X, (5.5) 

and where we recall that tP: = - X'I1, as discussed in Sec. 
II C. The definition of 9 for the general case and the deriva­
tions of Eq. (5.4) and of various properties of 9 will be 
given in a future paper of this series. Here we shall merely 
summarize those few properties of 9 that we need to de­
scribe the HHP. 

We start by noting that the initial values 

9 3 (r,r): = 9 (r,l,r), 9 2 (s,r): = 9 ( - 1,s,r) (5.6) 

are computed from the initial data functions (5.3) by inte­
grating two separate 2 X 2 matrix ordinary differential equa­
tions 

(5.7) 

which are linear, homogeneous, and of the first order. The 
matrix coefficients rj in Eqs. (5.7) are constructed in a sim­
ple way from the initial data functions and their differentials. 
Here 9 j has exactly the same domain and holomorphy 
properties in the r plane as the function tPj, which is given by 
Eqs. (1.12) and is discussed in Sec. II D. For example, in the 
rplane, 

9 3 (r,r) is holomorphic on C - [ - 1,r], 

9 2 (s,r) is holomorphic on C- [s,l]. (5.8) 

Also, 
9 3 ( - 1,r) = 9 2 (1,r) = 1 (5.9) 

throughout C. 
As regards 9 (r,s,r) = 9 (7), we have the following 

properties in the r plane for any given (r,s) in DIv : 

9 ( r)[ 9 3 ( r)] - 1 is holomorphic on C - [s, I ], 

(5.10) 
9(r)[9 2 (r)]-1 is holomorphic on C- [-l,r]. 

Moreover, 

9(00) =1 (5.11 ) 

and 

1 - p(u,v)S(u,v) 

= Re{2T[1 - 9(r(u),s(v),r)]u2 } T= ",' ( 5.12) 

Definition: The HHP adapted to ( 9 3, 9 2 ) is the search 
for a 2 X 2 matrix function 9 with domain D such that for 
any given (r, s) in DIv , conditions (5.10) and (5.11) hold. 
Once 9 is found, then S is given by Eq. (5.12). 

Our next paper will cover the above HHP in detail. 
There is a close parallel here with the HP adapted to (tP3' tP2) 
defined in Sec. III A. In fact, as we shall demonstrate in the 
next paper, the HP adapted to (tP3' tP2) is equivalent to the 
HHP adapted to (9 3,9 2 ) when the polarizations of the 
plane waves are collinear. There is another form of the HHP 
that similarly generalizes the HP adapted to (g3,g2) as dis­
cused in Sec. III D, but we shall reserve that topic for a later 
paper. 
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We stress that there is no closed form of the solution of 
the HHP for arbitrary (9 3, 9 2 ), However, we have con­
structed a linear integral equation of the Cauchy type which 
will be given in our next paper and which is equivalent to the 
HHP adapted to (9 3, 9 2 ), We are hopeful of eventually 
reducing the IVP in the noncollinear case to that of solving a 
linear Fredholm equation of the second kind. Integral equa­
tions of this type should be effective for discovering proper­
ties of colliding gravitational plane waves. 

The HHP adapted to (9 3,9 2 ) is also a useful starting 
point in the study of methods of generating new colliding 
gravitational plane-wave solutions from already known so­
lutions by employing a group of transformations similar to 
one that the present authors21 used to construct stationary 
axisymmetric gravitational fields and that Ernst et al.22 used 
to construct colliding gravitational plane waves. We shall be 
developing this theme in subsequent papers. 

B. On solutions that violate the colliding wave 
conditions 

In Secs. I-III, we did not employ all the constraints on 
the initial data which are imposed by the vacuum field equa­
tions. Specifically, we ignored the conditions 
reO) = s(O) = o and the existence statements (4.7). In Ref. 
I we derived a generalization of ( 4. 7) which is applicable to 
the non collinear as well as the collinear case.23 The two exis­
tence statements in this generalization of (4.7), taken to­
gether with the conditions that r(u) and s(v) are C2 and 
satisfy reO) = s(O) = 0, will be called (as in Ref. 1) the col­
liding wave conditions. 

In the next paper of this series we shall continue our 
policy of not excluding initial data functions which fail to 
satisfy all or some of the colliding wave conditions. There are 
two good reasons for this policy. One is that spectral poten­
tials corresponding to initial data functions that violate col­
liding wave conditions often enter directly into the construc­
tion of families of spectral potentials which are consistent 
with the colliding wave conditions. For example, consider 
the spectral potential (5.4) for the general collinear case. 
The matrix function 9~, which is given by Eq. (5.5) and 
appears as a function in Eq. (5.4), is the spectral potential 
corresponding to the Kasner metric of index O. For this met­
ric, S = I, i.e., 1/1 = 0 throughout region IV, which implies 
1/13 = 0 and 1/12 = O. The reader can easily verify that the exis­
tence conditions (4.7) are not satisfied if 1/13 = 0, 1/12 = 0, and 
rcO) = s(O) = O. 

The second reason for covering initial data functions 
that do not satisfy all or some of the colliding wave condi­
tions is that we shall have occasion to consider families of 
initial data functions, say 

r(u), s(v), s(n) (u,O), s(n) (O,v), 

where n is a real parameter set; where the colliding wave 
conditions are satisfied only for a certain value no of the 
parameter set; where the corresponding spectral potential 
9 (n) is a uniformly continuous function of n (with respect 
to any compact subset of D); and where it is straightforward 
to determine 9 (n) when n =1= no, but difficult to do so when 
n = no. One can then find 9 (n,,) by first computing 9 (n) 
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for n#no and then letting n-no. We shall have the opportu­
nity to witness this theme in future papers. 
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In two space-time dimensions there are quantum fields cP obeying Ocp = 0, which nevertheless 
have non vanishing higher truncated n-point functions. Such fields show up if one wants to 
adapt the theorem of Greenberg and Robinson to 1 + 1 space-time dimensions. Using the Jost­
Lehmann-Dyson representation, it is shown that if either (a) ip(p) = 0 for spacelike momenta 
or (b) W", + 'P (p) decreases at least like exp( - p2), then the field cP is the sum of two local 
fields A and B, where A is a generalized free field and B satisfies DB = O. 

I. INTRODUCTION 

Let cp(x) be a relativistic quantum field in n + 1 space­
time dimensions. If n> 2 and if we assume ip(p) = 0 for p2 < 0 
(spacelike p), then cp(x) is necessarily a generalized free 
field, i.e., 

[CPi (x),cpj (y)] _ = (.0,[ CPi (x),cpj (y)] _.0), 

for Bose fields, respectively, 

[CPi (x),cpj (y)] + = (.0, [CPi (x),cpj (Y)] +.0) , 

for Fermi fields. 
This theorem proven by Greenbergl and Robinson2 re­

mains true in 1 + 1 space-time dimensions, only if we ex­
clude fields of mass zero. The reason is well known: In two 
dimensions there are fields obeying Ocp i (x) = 0 that are not 
free fields in the above sense. The best known example are 
the Wick products ofj+ = jo + jl' resp.j_ = jo - jl' where 
}~ (x) is a free conserved current (see Ref. 3). In the follow­
ing we shall show that the two-dimensional version of the 
theorem holds true up to a field B(x), which fulfills 
OBex) =0. 

II. RESULTS 

Theorem: Let CPi (x) be the components ofa Wightman 
field in 1 + 1 space-time dimensions. 

(a) If ipi (p) = 0 for - Mi <p2 < - Mf <0 or (b) if 
W + (p)exp(ap2)E.J"'(R2

), a>O for all components 
r.p i C{Ji 

CPu then cP can be written as cp(x) = A(x) + B(x) and we 
have (i) A (x) is a generalized free field, i.e., 

[Ai (x),Aj (Y)] ('I') = (.0, [Ai (x),Aj (Y)] ('I') .0) 

(ii) B(x) = 0, 

(iii) [Ai (x),Bj (y)] ('I') = (.0, [Ai (x),Bj (y)] ('I') .0). 
Remarks: 
(1) Of course B(x) can be a free field too. (2) For the 

proof we do not have to assume that cP transforms covariant­
ly under the Lorentz group. Therefore the theorem is valid 
also for fields cP with infinitely many components. But if cP 
transforms finitely covariantly then it suffices to assume 
ip(p) = 0 for two open sets contained in the right resp. left 
spacelike cone. (3) From our previous work3 we expect that 
the assumption (b) can be weakened to 

(b') W + (p) exp (afJ)T)E.9" (R2), a>O, 
cP j tpj 

but we did not succeed to prove it. Nevertheless the assump­
tion (b) is weaker than the original assumption made by 
Greenberg and Borchers-namely, W'1'+'1'(p) =0 for 
p2>M2. 

III. PROOF OF THE THEOREM 

Depending on the statistics of the field cP either the com­
mutator [cpj(x)'CPj (y)] _ (Bose field) or the anticommuta­
tor [cp i (x) 'CPj (Y) ] + (Fermi field) vanishes for spacelike 
distances because of locality. The proof of the theorem will 
be given in four lemmas. In Lemma 1 we analyze the support 
of [ip(PI ),ip(P2) ].0. Lemma 2 characterizes the commuta­
tor. In Lemma 3 we show that the support of ip is restricted 
to V + U V _. This fact will be used in Lemma 4 to decom­
pose ip according to the theorem. 

For an arbitrary vector 'I' we consider 

F(p,q): = ('1', [q;j (p12 - q),q;j(pI2 + q) ].0). 

From the spectrum condition we know F(p,q) = 0 if pi V +. 

As a first step we show the following lemma. 
Lemma 1: For all '1'1 = (1 - Po)'I' we have 

supp F~{Po = PI>O}X{qo = ql} 

U{Po= -PI>O}X{qo= -qJ 

i.e.,F(p,q) =0 unless pEL + = {P;p2 = O,Po> O} and q paral­
leI to p. 

The proofs for the cases (a) and (b) differ; however, in 
both cases we use the Jost-Lehmann-Dyson representation. 

Proof: Case (aj: F(p,q) is the Fourier transform of 
('I'[cp(x - 5 !2),cp(x + 5/2) ] .0). For fixedpthe distribution 

Jd 2q .• -
G (5): = -- e'Q5F(p,q) 

p 211" 

vanishes if 52 < 0 and we can use the JLD representation (see 
Ref. 4). 

is a solution of the wave equation (a!" 
-a!, -_a~)Gp(q,~) =0, symm~tric in u. For u=O 
we have Gp (q,O) = F(p,q) and (auGp ) (q,O) = O. From our 
assumption (a ~ and for pE V + it follows that. Gp (q,u) = 0 
and therefore F(p,q) =0 as has already been shown by 
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Greenberg l and Robinson? For pEL + we get by the same 
methods 

supp Op ( . ,u) ~ {Ap:AER} U p/2 

+ V+ U -p/2- V+ 

for all u. The Cauchy data of Op (q,u) in the plane qo = 0 are 
concentrated on the line q[ = 0, i.e., 

_ N 

Gp(O,q[,u) = L ~(kl(q.)fdu), 
k=O 

_ N 

(aqoGp)(O,q.,u) = L !5(kl(ql)gdu). 
k=O 

Ifwe expr~s Op (q,OL by its Cauchy data we realize immedi­
ately that Gp (q,O) =.F(p,q) as a function of q is finite covar­
iant with respect to Lorentz transformations. Therefore 
supp F(p,) is given by 0) {qo = ql} if Po = PI> 0, (ii) 
{qo= -q.}ifpo= -p,>O. 

Case (b): In this case we use the same strategy as ex­
plained in our previous paper.3 Therefore we shall be very 
sketchy and refer the reader to Ref. 3 for the details. 

F(p,q) can be written as 

F(p,q) = ('I'1'~i(P/2 - q)~j(p/2 + q)!l) 

(+ )('I'1'~i(pI2+q)~j(pI2-q)0) 

= F + (p,q) ( + ) F _ (p,q) 

and for the supports with respect to q we have for fixed 
pEV+: 

suppF+(p,·)~ - p/2 + V+, 

suppF_(p")~p/2 - V+. 
From assumption (b) W + (p) exp (ap2)E.J'" (R2) for 

q; t 'Pi 

some a> 0 and because ofthe Cauchy-Schwarz inequality 
we have 

F+ (p,q)exp[ (aI2)(pI2 + q)2]EY'(R4) , 

resp. 

F_ (p,q)exp[ (a/2)(p/2 - q)2]EY'(R4). 

Therefore F(p,q)cosh(u-/f1) exists as a distribution in 
Y'(R4) X,@'(R) with respect to (p,q,u). For fixed p the 
Fourier transform with respect to q 

Gp(u,s) = fd
2q 

F(p,q)cosh(u-/f1)eiqS 
21T 

is a solution of the wave equation 
(a ~ + a ~o - aU Gp (u,s) = 0, symmetric in u. Because of 
locality we get for u = 0 Gp (0,5) = 0 ifs2 <0. Asgeirsson's 
lemma implies Gp (u,s) = 0 if S2 < - u2 and because for 

fixedp and u the support of F(p,q) cosh (u-/f1) is contained 
in - p/2 + V + U p/2 - V + we can use Araki's extensions 
ofJLD to show Gp (cz.,s) for all 5 2 < O. From our assumption 
(b) it follows that F(p,q) exp( (al 4) i) defines a tempered 
distribution and can be written as 

F(p,q)exp( fi) 
= _1_ fa:> exp( - u2)F(P,q) cosh (u-/f1)du . 

fii(i - a:> a 
Therefore its Fourier transform 
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Hp (5) = f ~: F(p,q)exp(~ i )e
iSq 

= -I-fGp (u,s)exp( - u2)dU 
fiiQ a 

satisfies locality, i.e., Hp (s) = 0 if 52 < O. 
Furthermore as long as pE V +, 

F(p,q)exp(a/4)i)exp( ± yqo)EY'(R4) 

for some y> 0 and therefore Hp (s) vanishes because it is 
analytic in So' 

Now we consider pEL + , i.e., Po = P. >0 or 
Po = - PI> O. For Po = PI> 0 we have 

F(p,q)exp( (a/4 )i)exp( ± yq _ )EY' (R4) 

forsomey>0, whereq_ = % - q"q+ = % + q. and there­
fore Hp (s) is analytic in S + because 
qs=!{q+s- +q-s+}· Because of locality this implies 
Hp (s) = 0 as long as S _ :;60 and we have the representation 
(for fixed p ) 

N 

Hp(s) = L 8(k)(s_)fk(s+), 
k=O 

therefore F(p,q)exp( (a/4 )q2) is a polynomial in q+ and be­
cause of the support properties we have 
suppF(p,)~{q_ =O} if p_ =0. Starting from 
Po= -P.>O we get supp F(p,q)~{q+ =O} if p+ =0. 
This proves Lemma 1. 

Lemma 2: For the commutator [rpi (x - s /2), 
rpj (x + s /2)] we have (a) Ox [rp(x - s 12), rp(x + s / 
2)] = 0, (b) [rp(x - 5/2), rp(x + s /2)] 
= a(S) + C+ (x+.S) + C_ (x_,S), where C+,C_ are the 

nontrivial parts, and a is the VEV of the commutator. (c) 
!:or the Fouri~ transforms q ± (p,q) we have 
C+(p,q):: ~(p+)C+(p-,ql, supp C+(p_,') ~lq+ = O} 
and C_ (p,q) = ~(p_ )C_ (p+,q), supp C_ (p+,) 
~{q_ = A}. 

Proof (a) [4Ji (p/2 - q),4Jj (p/2 + q)] !l=.0 unless 
p2 = 0 and because of positivity this implies 
p2[4Ji(pI2-q), 4Jj (p/2+q)]!l=0. This proves (a) be­
cause of the Reeh-Schlieder theorem. (b) From 
Ox = a!, - a;, = lax + ax _ it follows 

[rp(x - s /2),rp(x + s /2)] 

= (!l[rp(x - s 12),rp(x + s 12) ]!l) + C+ (x+,s) 

+ C_ (x_,S) with (!l,C ± (x ± ,s)!l)=.O. 

This proves (b), and (c) is an immediate consequence of (b) 
and Lemma 1. 

Lemma 3: (a) ForjEY(R2) and for all momentarwith 
"z:;60 we have 

[rp(j),4J(r)] = (!l,[rp(f),4J(r)J!l). 

(b) supp4J~ V+UV_. 
Proof: (a) Because of Lemma 2, 

[4J(p/2 - q),4J(P/2 + q)] 

- (!l[4J(pI2 - q),4J(pI2 + q) ]0) 

= ~(p+)C+(p_,q) + 8(p_)C_(p+,q) 

=.0 
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unless p + = 0 and q + = 0 or p _ = 0 and q _ = O. But if 
p+ =0, q+ =0 or p_ =0, q_ =0 then r= (pi 
2 + q)2 = O. This proves (a). (b) Take !,geY(R2

) and 
supp g~ {P2 < O} then [tp( !),tp(g)] = 0 because 
(O,[tp(!), tp(g) ]0) vanishes. Therefore tp(g)tp(!N) 
. "tp(f\)O=:O because of the spectrum condition. This 
proves (b). 

Remark: The support properties of iP suggest to write tp 
as a sum of two fields A and B such that 
tp(x) =_A€(x) +B€(x) and B€(p) =0 if p2>~€, respec­
tively, A€ (p) = 0 if p2 < €f2. Normally such a decomposi­
tion will destroy locality, but because of the commutation 
relations given in Lemma 3(a) locality will be preserved. 

With the help of the above three lemmas we can finally 
prove the theorem namely by use of the following lemma. 

Lemma 4: The field tp(x) can be written as tp = A + B 
with (i) A (x) is a generalized free field, i.e., 

[Aj (x),Aj (y)] = (0, [Aj(x),Aj(y)]O). 

(ii) B(x) = 0, 

(iii) [Ai (x),Bj (y)] = (0, [Ai (x),Bj (y)] 0). 

Proof As indicated above we write in momentum space 

iP(p) = X€(p2)iP(p) 

+ [l_X€(p2)]iP(p) =A€(p) +B€(p), 

where O<x€ (s) = X (sl€) EC"" , O<X'(S)E§ (B,~]) and 

{
o s< \ 

Xes) = l' if 2. 
, s>~ 
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Because of Lemma 3 we have the following commutation 
relations: 

and 

[A€(x),A€(y)] = (O,[A€(x),A€(y)]O), 

[A€(x),B€(y)] = (O,[A€(x),B€(y)]O), 

[B€(x),B€(y)] -(O,[B€(x),B€(y)]O) 

= C+(x + y)/2,x - y) + C_(x + Y)12,x - y) 

independent of € and given by 

= [tp(x),tp(y)] - (0, [tp(x),tp(y)]O) . 

Therefore A€ and B€ define fields which fulfill locality. As € 

goes zero the limits of the various commutators exist and 
therefore the limiting fields A(x) and B(x) exist too. Be­
cause of positivity DB(x)O must be zero. This proves 
Lemma 4. 
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The choice of the class E' of generalized functions on space-time in which to formulate general 
relativistic quantum field theory (QFT) is discussed. A first step is to isolate a set of conditions 
on E' that allows a formulation ofQFT in otherwise the same way as the original proposal by 
Wightman [Ark. Fys. 28, 129 (1965)], where E' is the class of tempered distributions. It is 
stressed that the formulation ofQFT in which E' equals the class of Fourier hyperfunctions on 
space-time meets the following requirements: (A) Fourier hyperfunctions generalize tempered 
distributions thus allowing more singular fields as suggested by concrete models; (B) Fourier 
hyperfunction quantum fields are localizable both in space-time and in energy-momentum 
space thus allowing the physically indispensable standard interpretation of Poincare 
covariance, local commutativity, and localization of energy-momentum spectrum; and (C) in 
Fourier hyperfunction quantum field theory almost all the basic structural results of 
"standard" QFT (existence of a PCT operator, spin-statistics theorems, existence of a 
scattering operator, etc.) hold. Finally, a short introduction to that part of Fourier 
hyperfunction theory needed in this context is given. 

I. INTRODUCTION 
A. Some motivation 

A formulation of general relativistic quantum field the­
ory (QFT) always has to start with a decision about the 
choice of the test-function space. For well known reasons the 
traditional choice for the test-function space E is 

E=Y(]R4,V)=Y(R4) ® V, (1.1) 

where V is a finite-dimensional vector space and Y (]R4) is 
the Schwartz space of all C 00 functions on space-time]R4 that 
decay together with all their derivatives faster than any 
(polynomial) - I (see Refs. 1-3). 

Since the early days of QFT, for various reasons, there 
has been some discussion on this choice in the literature. 
Later we will discuss some of these proposals. The main rea­
son for considering other test-function spaces are indications 
coming from model constructions that one has to admit (A) 
that there are more singular than tempered fields, respective­
ly, stronger growth properties of the fields in energy-mo­
mentum space. This requirement is fulfilled by a test-func­
tion space E if the elements of E are "smoother" in 
coordinate space and decay more rapidly in energy-momen­
tum space than those in Y (]R4). If one has a choice for the 
test-function space E that meets requirements (A) one 
usually gets into trouble with (B) an unambiguous and clear 
motion of localization in coordinate and momentum space, 
and accordingly not much is then known about (C) the per­
manence of the basic structural results known in QFT for 
tempered fields (more details follow later). 

In this paper we want to show that there is a test-func­
tion space E that satisfies all three requirements (A)-(C). 
This test-function space 

E = q' (D4
, V) (1.2) 

is defined and described in Sec. II. Elements of its topologi­
cal dual E' are called "Fourier hyperfunctions." 

The suggestion to use a Fourier hyperfunction in quan­
tum field theory has been made by Nagamachi and Mugi­
bayashi in a series of papers.4-7 This first suggestion is, at 
least for nonexperts in (Fourier) hyperfunctions, not always 
very transparent and clear, thus hiding in part its main 
achievements. 

Accordingly one goal of this paper is to give a short but 
clear and complete introduction to QFT in terms of Fourier 
hyperfunctions. In particular, we present a more transparent 
(for nonexperts in hyperfunctions) account of the highly 
nontrivial fact that QFT in terms of Fourier hyperfunctions 
can deal very well in a "good physical understanding" with 
the localization problem in coordinate and momentum 
space [point (B) above] though the underlying space of test 
functions contains no elements of compact support, neither 
in coordinate nor in momentum space. 

An important hint in favor of QFT in terms of Fourier 
hyperfunctions comes from the construction of concrete 
models. This has been discussed in more detail by Wight­
man. 8 

B. Quantum fields and their dependence on the test­
function space 

We begin by recalling the defining assumptions of gen­
eral quantum field theory. For reasons that will become evi­
dent later we present here a variation of the set of assump­
tions proposed by Garding and Wightman. In order to stress 
our point of view that the choice of the space of test functions 
is at one's disposal according to the problems at hand we 
start by isolating a list of conditions on a space E of functions 
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on space-time in order that E be "admissible" as a test-func­
tion space of a relativistic quantum field theory. 

(Ho) The test-function space E: 
(a) The test-function space E is a locally convex topo­

logical vector space of functions on space-time R4. 
(i) E admits the Fourier transformation Y as an iso­

morphism of topological vector spaces. 
(ii) For continuous linear functionals on E and on 

E = Y E the notion of support is available. 
(b) On E and on E continuous involutionsf-f* are 

defined satisfying ( Y f) * = Y ( f*), for allfEE. 
( c) The vector space E has a Z2 grading and is accord­

ingly decomposed into subspaces of "even" and "odd" ele­
ments: 

E=Eo $ E I • 

(d) The universal covering group G = iSL(2,C) of the 
Poincare group acts on E by continuous linear maps a g : 

E - E, gEG, such that, for allfEE and all gEG, 
(i) ag(f)* = ag(f*), 
(ii) g-ag(f) is a differentiable map G-E, 
(iii) a g preserves the grading. 

(HI) Fields over E or fields with test-function space E: A 
field A over such a vector space E with state space JY, do­
main fiJ, and cyclic unit vector CPo is specified in the follow­
ing way. 

(a) The state space is a (separable) complex Hilbert 
spaceJY. 

(b) The domain fiJ is a dense subspace of JY containing 
the cyclic vector CPo. 

(c) The field A is a linear map form E into the algebra 
L (fiJ ,fiJ ) oflinear operators fiJ - fiJ such that the following 
conditions hold. 

(i) For all CP, \IIEfiJ, f-(CP,A (f )\11) is a continuous 
linear map E - C. 

(ii) For eachfEE, the adjoint operator A(f)* of the 
densely defined operator A ( f) in JY is an extension of 
A(f*): 

A(f*) CA(f)*· 

(iii) The linear span 

fiJ 0 = lin span{ CPo,A (fj, )"'A (fjn )CPo\ fj;EE, 

n = 1,2, ... } 

is dense in JY. 
(H2 ) Poincare covariance: A field (A,JY,fiJ ,CPo> over E 

is said to be Poincare covariant if and only ifthere is a unitary 
continuous representation U of G = iSL( 2,C) on the Hilbert 
space JY such that, for all gEG and allfEE, 

U(g)fiJ = fiJ, 

U(g)A(f) U(g)* = A(agj). 

(H3 ) Energy-momentum spectrum l:: The energy-mo­
mentum spectrum ~ of the theory equals the spectrum a(P) 
of the infinitesimal generator P= (P O,p I ,p 2,p 3

) of the 
time-space translations in the representation U, i.e., 

U(a,l) = eiaoP
, aER4. 

It is contained in the closed "forward light cone" 

V+ = {(qO,q)ER4
\ qO>\q\, qER3

} 
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and contains the origin, i.e., OE~ C V +. 

(H4 ) Locality (local commutativity): The restrictions 
Aa of A to Ea , a = 0,1, satisfy, for all a, PE{O,l}, 

supp(Aa,Ap) C K, 

where 

K={(X,y)ER4 XR4 \Y-XEV= V+ U (- V+)} 

and where (A a , Ap): Ea XEp -L(fiJ ,fiJ) is defined by 

(A a , Ap)(faJ/3) = Aa (fa )Ap(fp) 

- aaP Ap (fp)Aa (fa)' 

with a aPd1, - l}, usually aaP = ( - 1 )a/3. 
(H5 ) Uniqueness of the vacuum state: The subspace JYo 

of all translation invariant states in JY, i.e., 

JYo = {\IIEdiY\ U(a,l)\II = \II, for all aER4
}, 

is one dimensional and is generated by the cyclic unit vector 
CPo: 

JYo = C<l>o' 

Conditions (Ho)-(H5 ) characterize a relativistic quantum 
field A over E. 

Remark 1.1: 
(a) For well known reasons the original choice for the 

test-function space E was E = Y (R4
, V), where Vis some 

finite-dimensional vector space depending on the "type of 
fields" under discussion. Here the type of a field is specified 
by its transformation properties with respect to G, i.e., byag , 

gEG. Clearly this test-function space satisfies condition 
(Ho)' 

(b) Notice that by an appropriate choice of the test­
function space E (together with the action a of G on E and 
the involution *) the general case of a finite number of sca­
lar, vector, tensor, and/or spinor fields as well as the case of 
non-Hermitian fields is covered by our formulation. 

(c) Sometimes the spectral assumption (H3 ) is 
strengthened by the requirement that the point p = ° be iso­
lated in~. 

(d) The realization of the locality condition (H4 ) [and 
the spectral condition (H3 )] depends on the test-function 
space E. If E contains functions on space-time with compact 
support this is understood in the obvious way. Otherwise an 
appropriate interpretation of this condition has to be given. 

In any case, (H4 ) says that the bilinear functional 

(j,g) - (\II, (A a , Ap) (j,g)<l» 

on E X E has its "support" in K for any \II, CPEfiJ . 
The value of aap E{l, - l} has to be specified according 

to the type of fields in agreement with the "spin and statis­
tics" theorem. 

(e) It is mainly part (ii) of condition (a) in the charac­
terization (Ho) of an "admissible" test-function space that 
prevents an easy and/or obvious choice of Ebesides the tra­
ditional one [( 1.1 ) ] . 

Clearly one was well aware already at the beginning of 
general QFT that the choice of the underlying space of test 
functions is not only a technical assumption but also has 
implications of physical relevance. 

( 1) The allowed growth properties for a field and its 
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singular behavior depend on the test-function space [i.e., 
point (A)]. 

(2) Accordingly the class of interactions that can be 
controlled depends on the test-function space (distinction 
between "renormalizable" and "nonrenormalizable" inter­
actions). 

(3) The concrete realization of the locality and spectral 
condition depends on the test-function space. 

For further details on points (1) and (2) we refer the 
reader to Refs. 8 and 9. Point (3) will be discussed in consid­
erable detail in a later section. The localization problem in 
connection with the choice of the test-function space is also 
discussed in Sec. 15.5 of Ref. 3. 

As a last but important point we want to recall that for 
the usual choice ( 1.1) of the test-function space E there are 
still no "nontrivial" models of relativistic quantum fields on 
physical space-time. 

These are some reasons for considering QFT over test­
function spaces other than the traditional one. Further rea­
sons are presented in Refs. 8 and 9. Accordingly several at­
tempts have been made in this direction, which we want to 
review briefly. Before doing this, however, we want to stress 
that any interesting modification of the test-function space E 
should still allow us to deduce all the structural results of 
QFT or at least most of them in order to meet requirement 
(C). 

These structural results of QFT we have in mind here 
are ( 1) the existence of a PCT operator, (2) the connection 
between spin and statistics, (3) the existence of a scattering 
operator, and some further important but more technical 
results: (4) the cluster property, (5) analyticity results, (6) 
the global nature of local commutativity, (7) the general 
form of the two-point function, (8) the Borchers class of a 
field, (9) the lost-Schroer theorem, (10) Euclidean refor­
mulation, and (11) dispersion relations. The proofs of these 
results as given in the literature l

-
3 usually seem to rely on the 

assumption of "temperedness" in an essential way. Never­
theless it is possible to prove some of these results also for 
various test-function spaces other than E = Y (]R4, V) as our 
review will show. 

For the test-function space ( 1.2) for Fourier hyperfunc­
tions we will prove the results (1), (2), and (4)-(9). The 
remaining points (3), ( 10), and ( 11 ) will be discussed in the 
last section. 

The main sources of difficulties in proving these state­
ments are (i) that there are no test functions of compact 
support and (ii) that continuous linear functionals on 
q' (D}4, V) we have a "support at infinity." 

c. A short review 

In 1967, laffe lO seems to have been the first to consider 
the choice of test-function spaces for relativistic quantum 
fields systematically. In order to be able to realize the locality 
condition in the traditional way he determined a class of 
function spaces EJ on energy-momentum space]R4 such that 
(i) §(]R4) C EJ C y(]R4), and (ii) YEJ , i.e., the space 
of Fourier transforms of elements in EJ , contains (enough) 
functions of compact support. 
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Somewhat later (1969) Iofa and Fainberg ll proposed 
using a test-function space E[ = E[ (]R4) of entire functions 
that are polynomially decreasing in any strip '1m Zj' < 8, 
8> O. Since such a space does not contain any function on 
space-time of compact support the localization of the fields is 
not possible in the usual sense. Accordingly they are called 
non localizable fields. Clearly the locality condition (H4) 
also cannot be formulated in a natural way for such fields. 
Nevertheless several structural properties [(4) and (5)] 
could be proved and some others [(1) and (2)] were indi­
cated in such a theory. 

In 1971, Constantinescu observed2 that localizability of 
the fields in the above sense and locality of the fields accord­
ing to (H4) are different notions. He explained this on the 
level of two-point functions. However, this is not sufficient 
for the locality of the whole theory. Constantinescu pro­
posed an inductive limit space Ec (]R;) of C 00 functions on 
energy-momentum space such that § (]R4) 
C Ec C y(]R4) andYEc consists of test functionsfholo­
morphic in some strip '1m Zj' < 8, 8 = 8 ( f) > O. He proves 
some structural properties of QFT and discusses some oth­
ers. 

Finally there is a series of papers by Lucke concerning 
the choice of the test-function space and the corresponding 
realization of the locality condition (H4) as well as the struc­
tural properties (1)-(10). A recent source of information 
about this and further references is Ref. 13. 

Lucke proposes to take the Gel'fand spaces yS(]R4), 

O.;;;s < 00, on space-time, defined and studied in Chap. IV of 
Ref. 14 as test-function spaces for QFT. If s> 1, then 
YS(]R4) contains enough C 00 functions of compact support; 
hence localization in the usual sense is possible and thus the 
usual realization of the locality condition (H4). If, however, 
s';;; 1, then the space YS(JR4) consists of holomorphic func­
tions (entire functions for O.;;;s < 1) and hence localizability 
is lost for such test functions. In this case fields are again 
called nonlocalizable fields. 

The locality condition (H4) is accordingly replaced by 
the assumption that the fields are "essentially local" which 
means that "sufficiently many" matrix elements of the 
(anti-) commutator of the field operators [A(x1),A (x2 )] ± 

are locally continuous on K with respect to YS(JR4).15 Since 
permutation symmetry of the Wightman functions can be 
proved for essentially local fields, 16 some of the structural 
properties follow also for this class of fields over yS(]R4), 

s.;;; 1. 13 

However, on one side it can be shown that there is no 
clear and unambiguous notion of support for FEYS(JR4)', 

O.;;;s < 1.13 On the other side we think it to be important that 
in QFT a sensitive mathematical formulation of the locality 
condition (H4 ) has to realize the idea that the (anti-) com­
mutator of the field operators has its "support" only inside 
K. Therefore we think that our point (B) above is really 
indispensable and accordingly explain this point for the test­
function space (1.2) in some detail. In particular, we will 
explain that the notion of support for Fourier hyperfunc­
tions (Sec. liD) used in its realization is a straightforward 
generalization of the notion of support for distributions and 
thus provides a genuine realization of the locality condition. 
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II. FOURIER HYPERFUNCTIONS 

A. Introduction 

This section introduces the notions and explains the re­
sults from Fourier hyperfunction theory that we are going to 
use. For proofs we clearly have to refer to the literature.6

•
17

•
18 

Recall that the main original motivation for introducing 
distributions came from the theory oflinear partial differen­
tial operators with constant coefficients. 19 Similarly hyper­
functions have proved to be an appropriate frame for the 
theory of linear partial differential operators with real ana­
lytic coefficients and those that have "regular singulari­
ties." 20 

Hyperfunctions are finite sums of boundary values of 
certain analytic functions. 21 Thus hyperfunctions generalize 
distributions. They admit the same basic operations (differ­
entiation, integration, and convolution) as distributions. 
Just as distributions do, they have a "good notion" of local­
ization (which agrees with the known localization properties 
of distribution if applied to them). 

In contrast to distributions, hyperfunctions admit a ca­
nonical definition of a product (at least in the simplest case) 
and this may turn out to be of great importance in applica­
tions to QFT. 

However, in general, hyperfunctions do not admit a ca­
nonical definition of Fourier transform as an isomorphism. 
Some "growth restrictions at infinity" are needed for this. A 
way to achieve this is to compactify the underlying space R.n. 
The radial compactijication on of Rn has proved to be very 
useful here. It is defined in a natural way as follows: Let 
S"oo - 1 be the (n - 1 )-dimensional sphere at infinity, which is 
homeomorphic to the unit sphere S n - 1 = {xERnl Ixl = 1} 
by the mapping x ..... x "" , where the point x"" ES"oo - I lies on 
the ray connecting the origin with the point xES n - 1. The set 
Rn U S"oo- 1 equipped with its "natural topology" (a funda­
mental system of the neighborhood of x"" is given by all open 
cones of arbitrary vertex generated by an arbitrary open 
neighborhoods of x 00 in S : - 1) is denoted by on. 17 

A natural extension of hyper functions on Rn to on leads 
to Fourier hyperfunctions. It turns out that Fourier hyper­
functions have all the properties of hyperfunctions and, in 
addition, the Fourier transformation is an isomorphism for . 
them. 

The realization of the idea that hyperfunctions on Rn 

(and on on) are finite sums of boundary values of analytic 
functions is immediate for the case of one variable (n = 1). 
For n>2 variables, however, we have to meet serious compli­
cations as a result of the considerably more complicated the­
ory of analytic functions of more than one variable. New 
phenomena of analytic continuation cause the main compli­
cation in introducing an appropriate notion of boundary val­
ue in the n>2 variable case. The first approach for a "good" 
notion of boundary values of holomorphic functions of sev­
eral variables is due to Sato. 22 He introduced this notion by 
considering sheaves of germs of analytic functions and their 
relative cohomology.23 Later it was realized how to intro­
duce a hyperfunction without using cohomology theo­
ry.24-27 According to Sec. I it is clear in QFT we prefer this 
second approach adapted to Fourier hyperfunctions in 
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which Fourier hyperfunctions are defined as continuous lin­
ear functionals on some space of functions. 

B. The test-function space for Fourier hyperfunctlons 

The spaces of test functions we are going to use later are 

E= ~(lDn,V)=~(Dn) ® V, (2.1) 

with some finite-dimensional vector space V and an induc­
tive limit space of functions on on for n = 4, which we de­
scribe now. By reasons that will become obvious soon we 
introduce and study the spaces 

t! (K), K C on closed. (2.2) 

Let {U m' mEN} be a fundamental sequence of neighbor­
hoods of Kin Qn = lIY + Inn. Then let &:;'(Um) be the Ban­
ach space offunctionsf analytic on U n en and continuous 
on fJ m n en such that m 

Ilfllm = sup If(z) leWm (2.3) 
zeUrn n en 

is finite. The space tJ (K) is now defined as the inductive 
limit of the Banach spaces tJ:;' ( U m ) : 

~(K) =indlim &:;'(Um ). (2.4) 
m_oo 

The following propositions collect some properties of the 
space ~ (K) of a rapidly decreasing analytic function on K 
that are used in QFT. 

Proposition 2.1: (a) ~ (K) is a DFS space (a dual Fre­
chet-Schwartz space). 

(b) ~ (on) is nuclear and barreled. 
'" (c) ® ntJ (D) is dense in tJ (Dn) and ® nt! (D) 

= ~(lDn). - -

And, as a consequence, we have the following proposi­
tion. 

Proposition 2.2: Let Mbe a separately continuous n-lin­
ear form on &(om)n = tJ(Dm) X· .. X &(om). Then the 
following conditions hold: -

(a) M: & (om)n ..... e isjointIy continuous. 
(b) There is a unique continuous linear form F on 

t! (lomn) such that, for all 

.t:E~ (](}m), 

M(f" .. ·,jn) = F(fl ® ... ® fn)' 

For the proofs of these results we refer to Refs. 4 and 5. 
Note that the "kernel theorem" for this space [part (b) of 
Proposition 2.2 J can be proved in an elementary way by 
using the explicit characterization of the topological dual 
~ ( ](}mn) , obtained in Sec. II C. 

The following proposition is concerned with the Fourier 
transformation. 

PropOSition 2.3: The Fourier transformation Y is well 
defined on ~ (Dn) by 

(Yf)(p) = (217') -n12 I eiP"'i(x)dx, (2.5) 

where Y is an isomorphism of the topological vector space 
~(](}n) with inverse 

(Yf)(x) = (217') -n12 I e-iP·"j(p)dp. (2.6) 

E. BrUning and S. Nagamachi 2343 



                                                                                                                                    

Proof" Clearly it suffices to consider the case n = 1. Here 
/Ed(O) meansjEd:,"(Um )==l1m for some m. where Um 

=-O+i( -lIm.lIm). Thenforal1k=p+ iqECn Um + 1 

we obtain. from (2.S). 

I (Yf)(k) I<Cmllfllm· 

Now. if b is real. Ib I < 112m. then the functionfb defined by 
fb (z) = fez + ib). belongs to d 2m and satisfies 

Ilfblbm<Cmllfllm. bEl -1I2m.1I2m]. 

By analyticity. decay properties. and Cauchy's theorem one 
proves 

(Yfb )(k) = e~ ik'(fb) (Yf)(k). 

so that the above estimates implY. for all Ib I < 112m. 

lekb(Yf)(k) I<Cm IIfllm; 
hence Y fEd 2m + 1 and 

II Yfll2m+ 1 <Cmllfllm' 

This proves Y: d (lO") -+ d (lon) to be a well defined contin-
uous linear map: -

Clearly the map Y has the same properties. And as 
usual one proves that ff Y is the identity on 11 (0"). Hence 
Y is an isomorphism. 

c. Fourier hyperfunctions 

In our approach a Fourier hyperfunction on 0" is by 
definition an element of the topological dual ~ (0")' of the 
space ~ (Dn). In order to give an explicit characterization of 
d (on)' and to relate this notion of Fourier hyperfunctions 
with its heuristic definition in Sec. II A as a finite sum of 
boundary values of hoi om orphic functions let us introduce 
the sheaf &' of slowly increasing holomorphic functions on Q". 

For an open subset n C Q" denote by & (n) the set of 
all analytic functions F on 0 n cn such that, for every € > 0 
and every compact set Ken, 

IIFIIK,E= sup e~ElzIIF(z)1 (2.7) 
z£K n en 

is finite. Here & (0) is called the (C-vector) space of slowly 
increasing analytic functions on O. 

If 0' is another open set contained in n we obviously 
have a wel1 defined restriction map 

Pfl'fl: &(0) ..... &(0'), Po'o(F)='F1fl" FE&(O), 

such that 

Po-fl' "Po'o = Po-fl and POfl = id, 

for all open sets Olt C 0' C fl. 

(2.8) 

Thus with these restriction maps {& (n) 10 C Q" 
open} is a presheaf on Q". This presheaf actually is a sheaf 
since furthermore the following localization properties are 
satisfied. 

(L1 ) If an open set n is covered by open sets fla , 

o ~ U a na , and if all the restrictions F loa of a function 
FEd (0) vanish then the function F itself vanishes. 

(L2 ) If any collection {Oe,} of open sets in Q" is given 
together with a collection offunctions Fa Ed (Ou ) satisfying 
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Falfla n fill = F{3If1a n fl", 

for all a and p, then there exists a function FE& (U u Oa) 
such that Fioa = Fa' for all a. 

For j = 1,00', n, let us introduce the open subsets Jfj 
= {ZEQ" I 1m Zj ~O}. The intersection 

II 

W= n w 
j=1 J 

of all these sets consists of 2" open connected components 
separated by the "real points," Then 

A II 

Wk = n W 
j= 1 J 

Nk 

includes the real points in the k th variable, 
In an obvious way we can consider 

i &(Wk ) 

k=1 

as a subspace of & ( W). Thus the factor space 

§l =~enn) = &(W)/Ctl &(Wk ») (2.9) 

consists of equivalence classes [F] of functions fEd (W) 
where two functions F and F' define the same class if and 
only if 

n 

F' -F= I Fk • FkE&(Wk ). (2.10) 
k=1 

The topological dual of tJ (D") is now characterized in terms 
of this factor space as fOilows. 

Proposition 2.4: The topological dual of d (0") and the 
factor space (2.9) are isomorphic: -

§lenn
) "'" ~ (0")'. 

This isomorphism and its inverse are given explicitly by the 
following formulas: For f.lEt! (0")'. define a function,u on W 
by 

(2.1l) 

then ,uE& (W) and thus [,u] E~. Conversely every equiv­
alence class [ F ]E~ defines an element IL[ F lEt! (on)' by 

f.l[ F 1 (j) = f 00' f F(z! .... , Z,,) f(zl'"'' ZII) Jr, Jrn 

Xdz!' oodzlI == L ... r F(z)f(z)dz. (2.12) 
, n 

where FE& ( W) is any representative of [ F] and where the 
paths r I,. ... r " are chosen according to fEd;;' ( U m ) for some 
m such that 

r 1 x··· r ll C Um n W n C'. for instance, 

rj = r/ + rj~' 
r± = {z·lz. = +x·+ib ,- oo<x.<oo} ) ) J - J- m 1 

with sufficiently small bm > O. 
Proof~' The first part clearly relies on properties of the 

collection of functions hz, ZE W. Those that are relevant here 
are contained in the following elementary lemma. 
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Lemma 2.5: (a) For every ZEW n en, there is 
mo = mo(z) such that hz belongs to &'~( Urn) and 

11hz 11m <const eWrnID(z) , Mz) = dist(z,Rn), 

for all m>mo' 
(b) For every ZOEW n en there is a polycirc1e 

9 = {z = (ZI"'" Zn ) I IZj - zJ\ < 'j' } = 1, ... , n} 

around ZO such that "9 C Wand there are functions Aj : 9 
-+ 1! (on),j = 1, ... , n such that, for all zE9, 

n 

hz -hi' = I (Zj - ij)A/z), 
j~1 

with 

Aj(z)-Aj(zo) in 1!(lon) forz_zo. 

Now take any ,uE&' (on)'. Part (a) of the lemma implies 
immediately that z-+p(h z ) is a well defined function on 
W n en and, according to part (b), this function has com­
plex derivatives; hence jl is analytic on W n en. 

we see that this integral vanishes according to Cauchy's 
theorem and the growth restriction on F and f 

Therefore all elements F I in the equivalence class [ F 1 
of FE& ( W) define the same continuous linear functional on 
1! (Jon), that is, by (2.12), .en (on) is mapped linearly into 
1! (]I)"),. 

Another application of Cauchy's theorem together with 
the growth restrictions on F and / shows, by appropriate 
choice of the integration path: If ,u[ F ) (/) = 0, for all 
/E1! ([Y), then 

FE i &(Wk ), 

k= I 

i.e., [ F 1 = O. Hence the mapping (2.12) .en (]I)") -1! (]I)n)' 
is injective. 

Since hz ( • ) is a modified Cauchy kernel with appropri­
ate decay properties, one knows, for all/E1!(]I)n) in a suit-

o able complex neighborhood of ]I)", 

L'X'Xfm/(Z)hz dz=/(-). 

If jlE1! (]I)n)' is applied to this equation one deduces 

,u[fi.J(/) =,u(/); 

hence the mapping (2.12) is an inverse of the mapping 
(2.11) and the proposition follows. 

Via the isomorphism of Proposition 2.4 the heuristic 
definition of a Fourier hyperfunction as a finite sum of 
boundary values of slowly increasing holomorphic functions 
is easily given a precise meaning: The 2n connected compo­
nents of W can be described as 

W(a l , ... , an) = {zEQ"laj 1m Zj > 0, } = 1, ... , n}, 

ajE{l, -l}. 

Now define, for a = (a I'''', a" )E{l, - l}", 
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Suppose a compact subset K C Wand a number € > 0 to 
be given. Then 15 = dist(K n en, Rn) > O. There is mo 
= moCK) such that €> limo and dist( Urn n en, Kn en) 
<Dl2, for all m>mo' Then, for fixed m>mo, the collection of 
functions hz, ZEK n en, belongs to &'~( Urn) and the esti­
mate of part (a) yields 

II jlIIK.E<Cm supp IIhzl!e- E'z, < 00; 
ZEK n en 

hence jl is slowly increasing and therefore jlE& ( W). 
The growth restriction (2.7) for a function FE& ( W) 

implies that the integral in Eq. (2.12) is well defined for all 
/E1!(lIY); more precisely, for every mEN, there is Cm 

= Cm (F) such that, for all /E&'~( Urn)' this integral is 
bounded in absolute value by 

Cmll/llm· 
A function FkE& (Wd is, in particular, analytic in ZkEIC. 
Hence if we rewrite the integral in (2.12) in the form 

n 

u(a) = II aj , 
j= I 

and then, for FE& (W), 

Fa = u(a)F on Weal and Fa = 0 elsewhere. 

The boundary value of FE& (W) with respect to the cone 
W( a) is then defined by 

oW(a)(F)=[FaJ. (2.13) 

Clearly it follows that 

[ F] = I ci(a)ow(a) ( F), (2.14 ) 
aE{I.-I}" 

and hence, by Proposition 2.4, ,u is the corresponding finite 
sum of boundary values of jlE& ( W). 

Next we establish the traditional view of boundary val­
ues as limits [in &' (on)'] of slowly increasing functions. To 
this end we define, for 0 < Dj < 11m, a path rj (apDj ), 
a j E{1, - l}, in the complex Zj plane by 

r/aj,Dj ) = {z = ajxj + iajDj I - 00 <Xj < oo}, 

so that 

r(a,o) = r l (al,o]) X .. · X r" (a",o,,) 

C Urn n Weal. 

Then, for all/E&'~( Urn) and all FE& (W), 

( F(z)/(z)dz = I(a,o) 
Jf(a.8) 

is independent of 15, 0 < OJ < 11m, and thus equals the limit 
OJ -O,} = 1, ... , n, of this integral denoted by 

(Fa (XI + ia]O, ... , Xn + ianO), 

/(x] + ia]O, ... , X" + ia"O», 

where the duality &' (0")" &' (]I)") is used. Ifwe sum over all 
adl, - l}", we obtain -
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r I(a,B) = r F(z)/(z)dz. 
ae{l. _ I}n Jr(/J) 

Thus, by Proposition 2.4, every JlEt' (lI>"), is a finite sum of 
boundary values of slowly increasing functions. 

D. Support of Fourier hyperfunctlons 

If K C nn is any closed subset, then relations (2.3) and 
(2.4) easily imply that I! (Dn) is contained in I! (K). For a 
Fourier hyperfunction Jt on nn, denote by C( Jt) the class of 
all closed subsets K C on such that there is a continuous 
extension Jl K of Jl to I! (K) : 

JtKEI!(K)', JtKIt'iWn) =Jl. (2.15) 

Any such subsetKEC( Jl) is called a "carrier" of the Fourier 
hyperfunction Jt. In contrast to a general analytic functional 
a Fourier hyperfunction Jt has a smallest carrier, called the 
support of Jl: 

supp Jl = n K. (2.16) 
KeC( It) 

This definition really works since one can prove6 the 
following proposition. 

Proposition 2.6: If K I,K2EC( Jl), then KI n K 2EC( Jl). 
This result is by no means trivial. We give some hints. 

Having KjEC( Jl) means that there are Jtj =JlKjEt!(Kj )' 
satisfying (2.15). Also, we have to define an extension to 
t'(KI n K 2). Given/Et'(KI n K 2 ) there exist by the Mit­
tag-Leffler theorem for rapidly decreasing functions6 Jj 
Et! (Kj ) such that 

/=/I-/; on K l nK2• (2.17) 

Now define a function Jl: 

Jl(j) =JlI(/I) -Jl2(/;)' (2.18) 

The right-hand side ofEq. (2.18) is independent ofthe spe­
cial choice of the decomposition (2.17). Hence Jl is well de­
fined, and obviously Jl is linear. One can prove continuity of 
Jt by some general arguments.6 

According to definition (2.16) the topological dual of 
t'(K), K C D n closed, is the set of Fourier hyperfunctions 
O'n On with support contained in K. With this interpretation 
in mind the space of Fourier hyper/unctions on an open subset 
VofD n is naturally defined as the factor space of the space of 
all Fourier hyperfunctions on nn with respect to the sub­
space of those Fourier hyperfunctions having support in the 
complement V C = ][)n - V of V: 

(2.19) 

It is known from the following proposition 17 that ~ ( V) is 
isomorphic to 

~(V)=t!(V)'/t!(V- V)'. 

Proposition 2. 7: Let K = Uf = I Ki be the union of p com­
pact sets in on. SuppOSeJlEt! (K)'; then there are Jl; Et! (Ki )' 

such thatJl = l:f= I Jli' 
Proof: Since the mapping t! (K) -+ IIf = p t! (Ki ), name­

ly,j .... tliK,}f = I' is injective and of closed range, the map­
ping IIf=1 t'(K;)' .... t'(K)', namely, {JlJf=I-+l:f=1 Jli> 
is accordingly surjective. 

If Vand Ware open subsets in ][)n with W contained in 
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V, then we have t! (VC)' C t! (WC)' and thus we get a re­
striction map 

Pwv: ~(V) = t!(Dn)'/t!( Vcr .... ~( W) 

(2.20) 

in a canonical way. 
For our purposes it turns out to be important to have the 

following result. 
Theorem 2.8: The assignment of the factor spaces ~ ( V) 

with open subsets Vof][)n according to (2.19) together with 
the canonical restriction maps P wv: ~ ( V) -+ ~ (W) for 
open subsets we Vaccording to (2.20) is a flabby sheaf on 
][)n, called the shea/ ~ 0/ Fourier hyper/unctions on nn. 

This means in particular that Fourier hyperfunctions 
have the following localization properties (L I) and (L2 ): 

(LI) if V = U Va' Va C ][)" open, JlE~( V), 
a 

thenJlwu = 0, for all Va' impliesJl = 0; (2.21) 

(L2 ) if Va C n" open and 

ifJlaE~(Va) satisfies Jlalv n v =JlPlv n v a {3 a (3 

then there is JlE~ (V), such that Jlwu = Jla' (2.22) 

Furthermore, since ~ is flabby, any Fourier hyperfunc­
tion Jl v on any open subset V C ][)" is the restriction of a 
Fourier hyperfunction JlE t! (][)")' to V: Jl v = JlI V· 

Because of the localization properties of a sheaf the no­
tion of support 0/ a Fourier hyper/unction JlEt! (on)' can also 
be defined as the smallest closed subset K C 0" such that 
JlIKe = O. From (2.19) and (2.20) it is obvious that this no­
tion of support agrees with the notion introduced previously 
in (2.15) and (2.16). 

Pro%/ Theorem 2.8: First we assume V = U aei Va' 
JlE~ (V). Let fiEt! (][)")' be a representative of Jl. Then 

pvJJn(fi) =PVuV'pvon(fi) =Pvuv(Jl) =0 

implies supp fi n Va = 0, for all aEl, and hence supp fi 
n V = 0, which implies Jl = O. Thus (LI) is proved. 

To prove (L2 ) we begiQ. with the case of just two open 
sets VI and V2• Let fia Et' (Va)' be representatives ofJla' for 
a = 1,2. The support of JlI - Jl2 is contained in 

(VIUV2) - (Vl nV2 ) = (V~ nV2)U(Vl nV2); 

thus Proposition 2.7 gives a decomposition 

fil - fi2 = VI - V2, 

VIEt!(V~ nV2)', V2Et!(VlnV~ )'. 

Let 

Jl =fil - VI =fi2 - V2Et!(Vl nV2 )'. 

Then we have Jlwu = Jla because supp(Jl - Jla) n Va = 0. 
In the general case (L2 ) is proved by using some topo­

logical argument (see Theorem 4.17 of Ref. 6). 
The existence of the representative fiEt' (][)n)' of 

JlE~ ( V) implies the flabbiness of ~ . -
Remark 2.1: The restriction of a Fourier hyperfunction 

to Rn gives a hyperfunction. Since the sheaf ~ of a Fourier 
hyperfunction is flabby any hyperfunction on Rn can be ex­
tended to nn as a Fourier hyperfunction. This extension, 
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however, is not unique since there are Fourier hyperfunc­
tions with support at "infinity" (supportCS:' - 1).28 

Remark 2.2: For any /Eq'(Dn) we have .t;RnEY(R") 
by definition, and this injection of d (Dn) into Y (Rn) is 
continuous. Hence Fourier hyperfun""ctions generalize tem­
pered distributions. Thus for a tempered distribution we 
have defined the notion of support in the sense of Fourier 
hyperfunctions also. We now show that this notion of sup­
port agrees with that in the sense of distributions. 

Suppose that the support of T in the sense of distribu­
tions is contained in some closed set K C IIr. Let {U m} be a 
fundamental system of neighborhoods ofK in Qn, the closure 
of K in JI)"; then for any Urn there exists a C "" - function X 
such that supp XC Urn nR" and X = 1 on K. Since 
r/EY (JRn) for /Ed';'( Urn) and T'X(0) = T(0), for a 
0EY (R"), T defines an element of d (K)'. Hence the sup­
port of Tin the sense of Fourier hyperfunctions is contained 
inK. 

Now consider the tempered distribution T as a Fourier 
hyperfunction and suppose that this Fourier hyperfunction 
has its support in a closed set K ofJI)n, that is, TEd (K)'. Let 
0ECO'(R") with supp0CK c

; then 0Ed(K) ~nd T(0) 
= O. This shows that the support of T in the sense of distri­

butions is contained in K. 
Remark 2.3: Let n = n l + n2 • Note that D"#JI)n, X JI)II" 

but 

and 

q' (JI)") = q' (D'" X JI)"'). 

Let Kj (j = 1,2) be closed sets in R"j, Kj be the closure of Kj 

in JI)"j, and KI XK2 be the closure of KI XK2 in JI)n. Then we 
have 

q'(lInCq'( K 1 XK2)Cq'(K1 XK2)· 

Thus we have 

q' (JI)n)'::J q' ( KI XK2)'::J q' (K1 XK2)" 

i.e., the elements of d (K1 X K2 )' can be considered to be 
Fourier hyperfunctions. 

E. Fourier, Fourier-Laplace transformation, and edge of 
the wedge theorem for (Fourier) hyperfunctions 

According to Proposition 2.3 the Fourier transforma­
tion is an isomorphism of d (JI)n). Hence by duality we have 
the Fourier transform as an isomorphism for Fourier hyper­
functions: 

(.Yf-l)(j) =f-l(.Y/), 

for all /Eq'(JI)"), f-lEq' (JI)I!) '. (2.23) 

As in distribution theory, if appropriate support properties 
are available, the Fourier transformation has an extension to 
complex arguments to yield the "Fourier-Laplace transfor­
mation." 

Proposition 2. 9 (Paley-Wiener theorem for Fourier hy­
perfunctions): Let r be a closed and strictly convex cone in 
R" with its vertex at the ongm such that 
rC{xER"lx'e>O}U{O} for some unit vector eER". Let 
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I' = {S IX's> 0, forallxEr} be the polar setofr andletf-l be 
a Fourier hyperfunction on Dn. 

(a) IfsuPPf-lCf = closure ofr in 0", then the Four­
ier-Laplace transform of f-l, 

(o?f-l)(;) =f-l(et ), et = (21T) -1I/2eit ·z, (2.24) 

is well defined for ;ER" + if and is a holomorphic function 
of its argument satisfying the following growth condition: 
For every relatively compact open cone rocf and every 
0< f' < f'o( r 0) there is a constant C = C( f',r 0) such that, for 
all ;ERn + ir 0, 

I (o?f-l) (;) I<CeEIRetl +X.(Im~), 

where 

XE(1J) = sup {f'lxl-x·1J}. 
XEr ~ Ee 

(2.25) 

(b) Conversely if a holomorphic function F on R" + if 
satisfies the above growth condition then it is the Fourier­
Laplace transform of a Fourier hyperfunction f-l on 0" with 
support in f. 

This is proved in Ref. 17. And as for distributions there 
is an immediate connection with the Fourier transformation. 

Corollary 2.10: If f-lEd (1")" then the Fourier-Laplace 
transform o? f-l is holomOl'-phic in R" + if and its boundary 
value with respect to the open cone I' equals the Fourier 
transform of W 

(2.26) 

The proof is obvious from Proposition 2.9 and the defi­
nitions. 

Finally we will use the edge 0/ the wedge theorem for 
hyper/unctions as proved in Ref. 29 which generalizes Ep­
stein's version of this result for distributions. 

Proposition 2.11: Let r I and r 2 be two open convex 
cones in Rn. For any open set U in RI! and its complex neigh­
borhood V there exists a complex neighborhood Wof U such 
that WC Vand the following holds: If the boundary values 
Dr, (FI ) and Dr, (F2 ) of two functions Fj holomorphic in 
vn T(rj ), Tcrj) = R" + irj , j = 1,2, agree on U in the 
sense of hyperfunctions then there exists a function F holo­
morphic in wn T(ch(r 1 U r 2») such that 

F=Fj on WnT(rj ), j= 1,2, 

where ch A denotes the convex hull of a subset A in JRn. 
An immediate consequence is the following corollary. 
Corollary 3.11: Let r be some open convex cone in R" 

and F some holomorphic function on the tube T( r) = R" 
+ IT. If the boundary value Dr (F) of Fin the sense ofhy­
perfunctions vanishes in some open nonempty subset U C R" 
then the function F itself vanishes. 

III. QFT IN TERMS OF FOURIER HYPERFUNCTIONS 

A. The test-function space 

A QFT over a test-function space 

E= q'(D4,V), dim V < 00, (3.1) 

as introduced in Sec. II, is called a Fourier hyper/unction 
quantum field theory (FHQFT). If a QFT is formulated 
over a test-function space F such that the space q' (04

, V) is 
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densely and continuously embedded into F we call such a 
theory a special FHQFT since then continuous linear func­
tionals on F are special Fourier hyperfunctions. 

However, according to Sec. I, a function space E has to 
meet several requirements in order to be "admissible" as a 
test-function space of a QFT. SO we show here that 
E = & (04, V) indeed is "admissible." For convenience we 
do this explicitly only for E = & (D4), e.g., dim V = 1. 

Since -

with a fundamental sequence of neighborhoods U m of 0 4 in 
Q4 = 0 4 + IR4 such that U m is invariant under complex 
conjugation z-"z, a continuous involution f-+I" on & (04) 
is well defined by -

f'(z) = fez), (3.2) 

since on each &~(Um) we have IIf'llm = IIfllm· 
The action of the group G = iSL(2,C) on & (04) is de-

fined as usual by -

(a(a,AJ) (z) =f(A(a) -I(Z - a»), (3.3) 

where aER4, AESL(2,C), A(A)EL 1+ , and thus 

ag(f') =ag(f)' (3.4) 

follows easily. The differentiability of the map G -+ t! (04
), 

g-+ag (f), 

for each fixed fEd (04
), is proved in Sec. V where it is actu­

ally used to prove the cluster property. 
According to Sec. II the function space & (04

) admits 
the Fourier transformation as an isomorphlsm. Further­
more, for elements in &(04n)', n = 1,2, ... , a "good" notion 
of support is available: expressing the intuitive meaning of 
support in this mathematical frame. Hence we get an ade­
quate formulation of the locality condition (H4 ) if the no­
tion of support is understood in the sense of Fourier hyper­
functions: 

- 8 
SUPPHF (Aa,A/3) CK = closure of Kin O. (3.5) 

With these specifications of the test-function space a scalar 
relativistic quantum field in terms of Fourier hyperfunctions 
is a field over 

E = {t!(D4),*,ag, gEG=iSL(2,C)} 

satisfying (HI)-(Hs)' 

B. HFQFT in terms of its n-point functions 

In this subsection we briefly recall the description of a 
field in terms of the sequence of its n-point functions I and 
indicate, where necessary, the differences with respect to the 
"standard" approach as a result of the particularities of the 
test-function space E = & (04

). 

Given a scalar field A over E = & (04
) satisfying (Ho) 

and (HI) we can consider the sequence of separately contin­
uousn-linearfunctionalsonE" = EX'" XE (ntimes) de­
fined by 

(fl""/" ) -+ (<I>o,A (fl)" . A (in )<1>0)' 

where <1>0 denotes the cyclic unit vector. By Proposition 2.2 
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these functionals uniquely determine Fourier hyperfunc­
tions rrn = rr~Et! CD4n)' such that 

rrn (fl ® ... ®fn) = (<I>o,A(,/;)' .. A (in )<1>0)' (3.6) 

for all fjEt! (04
) and all n = 1,2, .... 

The sequence 

(3.7) 

of these n-point functions rr~ of the field A is a state on the 
complete tensor algebra, 

E = Gl E(n) (locally convex direct sum), 
- n=O 

E(O) = C, E(n) = t! (D4n) = ® nt! (D4), n> 1, 
(3.8) 

that is a continuous linear functional on E, which is normal-
ized according to -

rr(!) = 1, ! = {1,0,0, .. .} 

and non-negative according to 

rr([,[»o, for all fElJ., (3.9) 

where the involution * on E is given by canonical extension 
of the involution on E and the product is the usual product of 
tensor algebras. Conversely according to the well known re­
construction theorem 1-3 such a state rr on E determines 
uniquely up to unitary equivalence a field A over E = & (04

) 

satisfying (HI) and (3.6). -
If the field A is covariant in the sense of condition (H2 ) 

then the associated state rr = rrA on .§ is easily seen to be 
invariant under the action 

(3.10) 

of G = iSL(2,C) on E. 
Conversely if a state rr on E is invariant under the 

action (3.10) of G it determines as above a field A over E and 
a continuous unitary representation U of G satisfying (HI) 
and (Hz). 

Next we translate the locality condition (H4 ) into prop­
erties of the n-point functions 'II'" n' This condition says 

SUPPHF (<I>, [A ('),A ( .) L ¢) CK, for all <I>,if'Efifl 0' 

where [A (f),A(g)]" = A (f)A(g) - aA (g)A(f), for all 
J,gEE, a = ( - 1) a, a = Oor 1, that is, we assume A = Aain 
(H4 ). Hence if we introduce, for O<j<,n and n = 0,1,2, ... , 
Fourier hyperfunctions rr nJEt! (l[}4(n + 2)' by 

rrnJ (xl,· .. ,xj,x,y,xj + I , ... ,xn) 

= rrn+z (xl, .. ·,xj,x,y,xj + I , ... ,xn) 

- arrn + 2 (XI, .. ·,xj,y,x,xj + 1 ,,,,,Xn)' (3.11 ) 

we easily see that by definition of fIfl 0 the locality condition 
(H4 ) is equivalent to 

SUPPHF rrnJCKnJ (3.12) 

~ rrnJEt!(KnJ )', for all O<j<,n and all n = 0,1,2, ... , where 
KnJ is the closure of KnJ = R4j XK XR4

(n -j) in 04(n + 2). 

In Sec. V the "cluster property" is proved to be equiva­
lent to condition (Hs) (uniqueness of the vacuum state <1>0)' 

Thus we are left with expressing the spectral condition 
(H3 ) in terms of properties of the n-point functions. How-
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ever, in HFQFT this is considerably more complicated than 
for the tempered field since also in energy-momentum space 
there are no test functions of compact support. Hence this 
point needs some additional arguments. 

Suppose that (Ho)-(H2 ) are satisfied. Then according 
to Proposition 2.2 there are continuous linear maps 

<P,,: E(n).-:Jr", E(n) = q'(04,,) 

satisfying, for all jjEE( 1) = q' (04), 

<P,.(/l® ... ®I,,) =A(/I)"'A(In)<PO' n = 1,2, .... 
(3.13 ) 

The covariance of the field under G = iSL(2,C) implies in 
particular the following transformation law for these maps 
<P" under translations: 

U(a)<P" (In) = <P" (/".a), 
(3.14) 

I".a (X1, .. ·,Xn ) = In (Xl - a'''''Xn - a). 

The consequences of these transformation properties on the 
Fourier hyperfunctions <P n with values in the Hilbert space 
:Jr" are most conveniently analyzed if in its Fourier trans­
form <1>'1 the following variables are introduced: 

Zn = <Pn 'Xn' 
(3.15 ) 

Denote by P the generator ofthe translations U(a), i.e., 

U(a) = eiaP = f eiakE(dk). (3.16) 

The spectrum}; = a(P) of the operator P is given by the 
support of the projection-valued measure E: 

}; = a(P) = supp E. (3.17 ) 

For any continuous bounded function h we know 

h(P) = f h(k)E(dk) = f da h(a) U(a) (3.18 ) 

to be a bounded operator. 
The transformation property (3.14) can now be ex­

pressed in the following way: For every lEE(1) == & (04), 
every gEE (n - 1) = q' ( 0 4 

(n - 1), and every function h in the 
multiplicator space of E( 1), one has 

( 3.19) 

This equation can be used to extend Zn in its first argument 
f For every mEN, define functions Pm and tPm by 

3 (q) 
Pm (q) = ;Do cosh ~ and tPm (q) = Pm (q) -I. 

(3.20) 

It follows, for m = 1,2, ... , 

tPmEq'(04), and IPm(q)I<Celql/m. 

So we can rewrite Eq. (3.19) as 

Zn (/®g) = (Pm 'f)(P)Zn (tPm ®g), (3.21 ) 

and thus I.- Z n ( I ® g) can be extended to all those I for 
which (Pm 'f) (P) is a bounded operator on :Jr", i.e., for 
which 

suplPm (q)I(q) I <C lflm.l: ==Csupelql/mlf(q) 1< 00 
~z ~l: 
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is finite. This is in particular the case for all continuous func­
tions I of compact support Kin R4: 

IIlm.z<CKml/loo,Km =CKnz sup II(q)l<oo. 
~KnI. 

Hence we have proved the first part of the following proposi­
tion. 

Proposition 3.1: (a) The vector-valued Fourier hyper­
functions Zn ofEq. (3.15) can be extended to continuous 
linear maps 

C
O

(R4) X & (04(n - I) .-:Jr", 

that is, Zn is a Radon measure in ql and a Fourier hyperfunc­
tionin 

q2, ... ,q,., n = 2,3, .... 

(b) For every gEE(n - 1) the measure h'-Zn (h ®g) is 
slowly increasing and has its support};n (g) contained in};. 

(c) The energy-momentum spectrum}; of the theory is 
given by 

}; = cl({O}U U };n), };n = U };,. (g), (3.22) 
n = 1 gEE( n - I) 

where cl(A) denotes the closure of A in Rn. 
To complete the proof note that by Eq. (3.21) 

Z n (h ® g) extends to all functions 

hEF= ind limFm' 

where F m is the Banach space of continuous functions on Rn 

such that Ih Im,I. is finite. Hence this measure is slowly in­
creasing and has its support };n contained in };. 

Finally part (c) follows from the fact that 

{<Po}, {Zn(/®g)I/EE(1), gEE(n -1), n = 1,2, ... } 

is a total set of vectors in the representation space :Jr" of the 
unitary representation U. 

The connection of the vector-valued Fourier hyperfunc­
tions Zn with the n-point functions of the theory is described 
by the following proposition. 

Proposition 3.3: (a) Define Fourier hyperfunctions 
Wn _ 1 , n = 2,3, ... , by 

Wn _ 1 (j) = (<Po,Zn (tPm ®/»), 
(3.23) 

where mEN is arbitrary; then the Fourier transform 'lrn of 
the n-point function 'lr n satisfies 

'lrn 'X,. (ql,· .. ,qn) =D(ql)W,,_1 (q2, ... ,q,,). (3.24) 

(b) These Fourier hyperfunctions Wn _ 1 allow the fol­
lowing decompositions: 

(Zj(jj ® •.• ®/1),Zj+ I (fj+ 1 ® ••. ®In») 

= Wn - I (II ® ... ® J; - I ® J; 'fj + I ® fj + 2 ® ... ® In ), 
(3.25) 

for all.t;E& (04), 1 <J<n - 1, n = 2,3, .... 
Proof: (a) Define Wn _ 1 by Eq. (3.23) with m = 1. 

Then for arbitrary mEN we use Eq. (3.21) to get 

Zn(tPl ®/) = (Pm ·tPl)(P)Zn(tPm ®/), 

and thus, since the cyclic unit vector <Po is translation invar­
iant and 
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(Pm tPI )(0) = 1, 

(<I>o,Zn (tPI ®/») = (Pm tPI)(O)(<I>O,Zn (tPm ®/») 

= (<I>o,Zn (tPm ®/»). 

Hence the definition (3.23) is independent of mEN. 
Similarly we have, for all hEO' (JI)4) , according to Eqs. 

(3.6), (3.15), and (3.21), 

Jrn 'Xn (II ® ... ®In) 

= (<I>o,Zn c.fJ ® ... ®In )) 

= (Pm II) (0) (<I>o,Zn (tPm ® ... ®In») 

=.t;(0) Wn_ d/2 ® ... ®In), 

and this proves Eq. (3.24). Finally part (b) follows by 
straightforward calculations directly from the definitions. 

Remark 3.1: Together with Proposition 3.1, Eq. (3.25) 
says that the Fourier hyperfunctions Wn _ I can always be 
considered in one of its variables as slowly increasing Radon 
measure with support in ~. In particular we have, for all 
hEE(1),gEE(n - 1), n = 1,2, ... , 

W2n _ tCg" ® h'h ®g) = (Zn (h ®g),Zn (h ®g»), (3.26) 

exhibiting positivity properties of these measures. 
Finally we derive support properties of the Fourier hy­

perf unctions Wn _ I' n = 2,3, ... , in all variables. 
Denote by ~ the closure of ~ in j[))4 and introduce for 

j = 1, ... ,n - 1 the closed set 

~ = {(ql, ... ,qn-I )E[j[))4](n-1)IqjE~). 

Then Eq. (3.25) and Proposition 3.1 imply 

supp Wn _ 1 cUj, (3.27) 

that is, 

Wn-IIV; = 0, (3.27') 

for Vj = Ii; = [j[))4] (n - I) - Uj andj = 1,2, ... ,n - 1. 
The localization property (L I) of the sheaf of Fourier 

hyperfunctions on energy-momentum space implies 

W IIU"-'V =0 n - j= I j 

or 

(

n -I )C n - I 
suppWn_IC U Vj = n Iij=~n-I. 

j= I j= I 
(3.28) 

Here we consider that Wn _ I is defined on [j[))4] n - I. Since 

O'(~n-I)::JO'( ~n-I),wehavesupp Wn _ 1 C ~n-I,ifwe 
consider that it is defined on j[))4( n - I) (see Remark 2.3). By 
Proposition 3.2 this proves the following corollary. 

Corollary 3. 3: In a relativistic quantum field theory over 
E = & (j[))4) [only (HI )-(H3) have to be assumed] the 
Fourier transform 'lr n of the n-point function Jr n has its 
support contained in the closure of 

{ (PI ... ,Pn )ElR4ni.± Pj = 0, 
J=I 

(± Pj, .f Pj,· .. ,Pn-1 + Pn,Pn) E~(n-I)} 
J=2 J=3 

in j[))4n. 

Therefore also in HFQFT a field A can be characterized 
in the usual way in terms of its n-point functions Jrn = Jr~ 
if the relevant support conditions (in .:;oordinate and energy­
momentum space) are interpreted in the sense ofhyperfunc-

tions. From (2.26) we havesupp Zn C~n or supp Zn C ~n. 
The support properties of the Fourier transforms 'lrn of the 
n-point function Jr n together with the Paley-Wiener 
theorem for Fourier hyperfunctions (Proposition 2.8) allow 
us to derive the basic analyticity properties of the Wightman 
functions as easily as for tempered fields. 1-3 

Theorem 3.4: The n-point functions Jr n of a relativistic 
quantum field over E = & (JI)4) [only (H I )-(H3) have to be 
assumed] are boundary values of L + (C) -invariant holo-

A 

morphic functions Jr n' 
A 

Wn (ZI - ZO,Z2 - ZI"'" 

Zn-Zn_I), 

(3.29) 

where Wn is holomorphic and L + (IC) invariant on the ex­
tended tube 

y~ = U AY~ and Yn+ = r(V n+) 
AeL +(C) n 

is the forward tube. 
(b) The restriction of Wn to Yn+ is the Fourier-La­

place transform of the Fourier hyperfunction W defined in 
Proposition 3.2. As an identity for Fourier hyperfunctions 
we have, for fixedYjEV +' 

Jrn+ I (xO'xl, ... ,X I) 

= lim Wn (XI - Xo + iEYI"",Xn - Xn _ I + iEYn)' 
e- +0 

( 3.30) 

C. Characterization of locality, existence of PCT 
operator, and global nature of local commutativity 

The locality condition (3.11) and (3.12) saysthatthen­
point functions 

Jrn + 2 (xl,···,x,y,xj + I , ••• ,xn) 

and 

- (-1)af3Jrn+2(xI, ... ,x,y,Xj+I,,,,,xn) 

agree as Fourier hyperfunctions in particular on the subset 

In+2 = {(XI"",X,y,Xj+I,,,,,Xn)ElR4(n+2)I(Xi _X)2<0 (i#j), 

(x - y)2 <0, (Xj - X)2 <0, (Xj - y)2 <0, j = l, ... ,n}, 

which is open in lR4(n + 2). 

By Jost's characterization of the real points of the extended tube Y~ + I (see Ref. 2) it follows from Theorem 3.4 that 
In + 2 consists of real points of analyticity of the associated Wightman functions Jrn + 2 (xl,· .. ,x,y,Xj+ I '''''Xn ) and Jrn + 2 

(x\, ... ,y,x,xj+ I , ... ,xn )· 
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However, if two analytic functions agree, in the sense of Fourier hyperfunctions, on an open set of real points of 
analyticity they do so as analytic functions (Corollary 2.11). This implies now that we can argue as in the case of tempered 
fields and arrive at the following theorem. A-

Theorem 3.5: Consider the Wightman functions lrn of a relativistic quantum field over E = tJ (04) [satisfying only 
(HI )-(H3 )] as given by Theorem 3.4. Then the locality condition (H4 ) holds if and only ifthe lrn are analytic in 

S: = {(ZI, ... ,zn ) I (Z1T(2) - Z1T( I) , .. ·,z1T(n) - Z1T(n _ 1) )EY~ _ I' for some permutation 1r of (l, ... ,n)}, 

and are permutation symmetric there: 
A A-

Wn (ZI, ... ,zn) = lrn (Z1T(\) ,,,,,Z1T(n», n = 2,3, .... 

Remark 3.2: Without giving further details it should be clear from the above discussion on analyticity results that the PCT 
theorem l

- 3 continues to hold in HFQFT. 
Later we will have to use the following technical result that relies in an essential way on the analyticity properties of the 

Wightman functions. 
Proposition 3.6: If A = (AI, ... .AM ) is a relativistic quantum field over E = tJ (JI)4, V), dim V = M, then 

Ajo (f)4:>o = 0, for all fet! (][)4) and somejoe{l, ... ,M}, implies Ajn = 0 (4:>0 denotes the cyclic vacuum vector). 
Proof: Since A is supposed to be local, the components {Aj}- of A are local relative to each other, that is, 

supp[A;(·).Aj(·)]"ijCK, i,j= 1, ... ,M. 

At all points (xI"",X,xk + I , ... ,xn) such that 

(x2 - XI'''''X - Xk,Xk + I - X'''''Xn - Xn _ I) = (51,· .. ,5n) 

is a Jost point we have, by repeated application of the locality condition as an identity for Fourier hyperfunctions, 

Wn (51"",5n) = (ct>o.Aj, (XI)' . 'Ajk (xk )Aj" (x)Ajk + 1 (Xk + I ) .. 'Ajn (Xn )ct>ol 

= ± (ct>o.Aj, (XI)" ·Aj• (Xn )Aj" (x)ct>ol = O. 

Thus Theorem 3.4 implies that the Wightman functions Wne '& (Y~) vanish on the open subset I n of R4n. Hence by 
Corollary 2.11 Wn vanishes identically. Therefore again by Theorem 3.4 the boundary value 

(ct>o.Aj, (XI)" 'Ah (xk )Aj" (x)Ah + 1 (Xk + I)" ·Aj • (Xn )ct>ol 

vanishes identically. And this holds for allj;e{l, ... ,M}, all 
l<k<n, and all n = 1,2, .... 

Thus Aj" (f) vanishes for all fed (][)4) on the minimal 
domain fiJ 0' and we are done, since by cyclicity of ct>o the 
minimal domain is dense in the Hilbert space. 

Remark 3.3: The proof of the "global nature of local 
commutativity" (Chap. 4.1 of Ref. 1) for tempered fields 
relies on analyticity properties of the Wightman functions 
and on arguments about analytic completion for special tube 
domains. The basic analyticity properties are provided by 
Theorem 3.4. The proofs of Theorem 3.5, Proposition 3.6, 
and Theorem 6.1 show that also in HFQFT the appropriate 
tools are available to imitate the proof given for tempered 
fields. Hence we conclude the following. 

Theorem 3.7: Let A be a relativistic quantum field over 
E = t! (04, V), dim V < 00, satisfying (Ho)-(H5) but the 
locality condition (H4) only in the weaker form 

supp(Aa,A{3) CM, 

with some closed subset Me R4 X R4 satisfying 

KCM and M C =l=0. 

Then A satisfies supp(Aa.A{3) CK, i.e., A satisfies the local­
ity condition (84 ), 

IV. CLUSTER PROPERTY 

The proof of the cluster property as given by Jost and 
Hepp30 applies whenever the minimal domain fiJ 0 of the 
field, spanned by 
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{ct>o.A(fj, )"'A(fj)ct>olfj,eE, n = 1,2, ... }, 

is invariant under the infinitesimal generators of 
G = iSL(2,C) in the given representation U [see (H2 )]. By 
the definition of the minimal domain and the action of U(g), 
geG, on it this follows immediately from the invariance of 
the underlying space E of test functions under the infinitesi­
mal generators of the action a of G on E according to (Ho). 
We give an explicit proof of this latter invariance for the test­
function space E = tJ (J)4) of rapidly decreasing holomor­
phic functions on ][)4 and prepare it by a sequence oflemmas. 
The technical details are given only for the more complicat­
ed case of the subgroup SL(2,C) of G. The corresponding 
proof for the subgroup of translations is left as an exercise. 

Let t - At be a function on R with values in the space of 
n X n matrices such that 

(i) Ao = I = identity matrix, 

(ii) A, = 1+ t.1: + oU), for It 1-0, 
with some n X n matrix .1:, 
i.e., t-A, is differentiable at t = O. 

For xeRn we introduce 

Yt =Atx-x and y=.1:x 

and get immediately, with some constant CeR+, 

IYt -,-tyl =oU)lxl, IYtl<ltIClxl· 

Now let U m be a neighborhood of ][)n, e.g., 

Urn = {x + iyeQnlllmyl < 11m}. 
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Take some fixed IEtJ';' = tJ';'( Um), and apply Taylor's 
theorem for fixed x and It 1-0: 

n 

I(Atx) - I(x) = L y{ ajl(x) 
j= 1 

n 

+ L y{y~(ajaJ) (x + 0tYt)' 
j,k= 1 

(4.4) 

wherey{ is thejthcomponentofYt and Ot = Ot (x) some real 
number between 0 and 1. The terms on the right-hand side of 
this equation will be controlled by some lemmas. 

Lemma 4.1: For lEt!';' and {3 = ({3P'",{3 n )EZn+ , we 

have a,detJ';" for all m' > m. 
Prool: For m' > m there is 8 > 0 such that the polycircles 

C(z) =CIX"'XCn , Cj = {;jl I;j -Zjl =8}, 

Ilmzl<lIm', 

are contained in {; 111m; I < 11m}. Hence, for;EC(z) and 
m' > m, we know 

Izl/m' -I; I/m<OIm'. 

By Cauchy's integral formula, a{3 I (z) is easily dominated 
according to 

latJ(z) I = (21T) -" I L(z) 1(;) ill (;1 - Zj) - 1 - {3 jd;} I 
<Klll/lime-I~l/m, 

and thus 

lIa{3/llm' = sup eWm'la{3 I(z) I sKlllfllmde.5lm'. 
IImzl,,; 11m' 

Lemma 4.2: For fixed gEtJ';' and all m' > n., 

(lit) y{g converges for It 1-0 in tJ';" to yjg. 

Proof By (4.3), given € > 0, there is 8> 0 such that, for 
all x and all 0 < I t I < 8, 

IYt - tYI<€lt Ilxl· 

Hence, for all m' > m and all 0 < It I < 8, we have, for 
j= 1,,,.,n, 

II ( lit) y{g - yjgll m' 

sup I (lIt)y{ - yjlg(x) leWm' 
IIrnxl<l/m' 

< sup €lxlllgllme,X'(l/m'-lIm) =€llgllmCm' 
IIrnxl<lIm' 

This implies the statement of the lemma. 
Lemma 4.3: For fixed gEtJ';' and all m' > m, 

(lIt)y{ y~g(' + Ot (. )Yt)-O in tJ';" as It 1-0. 
Proof Choose 8 = (1 - mlm')/C, where the positive 

constant Cis given by (4.3). Then we have by (4.3), for all 
0<ltl<8, 

lOt (x)Yt 1<IYt 1<lxl, 

and thus 

Furthermore, for all 0 < I f I < 012, 
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1 l-ltlC <~(_1 __ ~)<0 
m 2 m' m m' 

is known. This implies, for 0 < I t I < 8/2, 

I (llt)y{y~g(x + 0/ (. )Yt 1I <C 2 1t I Ix l211gllme - Ix + 8,(x)y,l/m 

<It IC 211gllm IxI 2e- lxl (l- Cltl)lm 

and 

<It IC211glim sup Ixl 2elxl [1Im' - (1- Cltl)lmJ 
IImxl<lIm 

<It IlIgllmCm' 

for all 0 < I t I < 012, follows easily. 
Proposition 4.4: The space tJ (on) is invariant under the 

infinitesimal generators of the induced action of (4.1) on 
tJ (on), that is, for fixed IEtJ (on), one has 

lim {/(At ·)-/(·)}=21 in tJ(O"), 
Itl~O 

(4.5) 

where 

(2/)(x) = i (~x)j(a/)(x). 
j=1 

Prool: Since tJ (0") is the inductive limit of the Banach 
spaces tJ';' = tJ';'(O") for m - 00 it suffices to show that, for 
fixed IEtJ';', there is some m' > m such that the above limit 

relation holds in tJ';". According to Eq. (4.4), 

(lIt){/(Atx) - I(x)} - (2/)(x) 

~ (1. .) 
= i~1 t y{ - yl a/ex) 

~ 1 . k + j,~ 1 t y{y,(ajaJ)(x + °tY,)· 

Lemmas 4.1 and 4.2 imply that the first term of the right­

hand side tends to zero in tJ';" for It 1-0 for all m' > m + 1. 

Similarly the second term converges to zero in tJ ,;,' for It 1-0 
forallm' > m + 2byLemmas4.1 and 4.3. This proves (4.5). 

Corollary 4.5: A test-function space of the form 
E = tJ(04, V) with action a ofG = iSL(2,C) on Especified 
by Eq. (3.3) is invariant under the infinitesimal generators 
of this action; i.e., E is invariant under the generators of the 
translations and the generators of the Lorentz transforma­
tions on E. 

Proof If t-A, is a one-parameter subgroup of the Lie 
group SL(2,C), we take, in Proposition 4.4, 

At = A(A _ t)' fER, 

where A is the canonical homomorphism from SL(2,C) 
ontoL 1+ • Since t-S(A _ t) is easily seen to be differentiable 
(compare Sec. III A), Proposition 4.4 implies that 

lim (lIt){a(OA) I-I} 
Itl~O ' , 

= lim (lIt) {S(A _, )/(At ') - I(')} 
Itl~O 

exists in E and thus proves the invariance of this test-func­
tion space under the generators of the "Lorentz transforma­
tions" on E. The case of translations is even simpler. Consid-
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er the translation group in direction 

eElR4
, lei = 1: a(,e.n/(x) =/(x - tel, tER. 

If we identify y, = - te and y = - e we have, instead of 
(4.3), 

y,-ty=o and ly,l = Itl, (4.3') 

and thus the proof of Proposition 4.4 simplifies considerably. 
Finally this implies the invariance of E under the generators 
of the translations on E. 

Theorem 4.6: In a relativistic quantum field theory over 
a test-function space E = (J ([)4, V), where the pointp = ° is 
isolated in the energy momentum spectrum ~, the following 
identity holds for arbitrary but fixed a, a2 < ° [only (Ho)­
(H3 ) are assumed]: 

w-lim U(Aa,l) = Qo=E({O}), (4.6) 
A- 00 

where Qo is the projection operator onto the subspace of 
translation invariant states. 

Hence the theory has a unique vacuum state [i.e., condi­
tion (H5 ) holds] if and only if the cluster property 

P(£'!!,<J) -+ peg) P( [), for ..1,-+ 00, 

for all £, [El}, ( 4. 7) 

is satisfied. 
Proof Corollary 4.5 assures that all assumptions for the 

"Jost-Hepp proof" of this statemeneo are satisfied. Thus 
we are finished. 

v. CONNECTION BETWEEN SPIN AND STATISTICS 

There is a set of results in QFf usually referred to as the 
spin-statistics theorem by which the form of the commuta­
tion relation for the field (used in the formulation of the 
locality condition) is related to the type of field (spinor or 
tensor). 1-3 

The main results in this respect are the theorem of 
Burgoyne, Liiders, and Zumino on one side and the theorem 
of Dell' Antonio on the other side. The proof of the result 
mentioned first relies on properties of the Lorentz group and 
its representations and on analyticity properties of the 
Wightman functions [analyticity and L + (C) covariance in 
the extended tubes, existence ofJost points, and the fact that 
- 14EL + (C) ]. Since these properties are also available in 
HFQFf (see Sec. III) the theorem of Burgoyne, Liiders, 
and Zumino still holds in HFQFf. Dell' Antonio's theorem 
reads in its HFQFf version as follows: 

Theroem 5.1: If a relativistic quantum field 
A = (A1, ... ,AM) over E = (?,([)4,V), dim V = M, satisfies 

supp[Adx),Aj(y)]_CK (5.1) 

and 

(5.2) 

then either Aj = 0 or Ak = 0. 
The same conclusion holds if in (5.l) and (5.2) the 

signs + and - are exchanged. 
Compared to the situation in "standard" QFf this re­

sult is considerably harder to prove in HFQFf. 
The starting point for a proof is the following elemen-
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tary identity which holds for all test functions j,gEt?' ([)4) 
and all ..1,>0: 

"Aj (/)A k (gA )ct>01/2 

+ (Adg)*A k (g)ct>o,U(Aa)Aj (/)*Aj (/)ct>o) 

= (Ak (gA )ct>o,Aj (f) * [Aj (f).AdgA ) ] + ct>ol 

+ (Ak (gA )ct>o, [Ak (gA ),Aj (/) *] _Aj (f )ct>ol 

=!A + IIA, (5.3) 

where 

U(Aa)Aj(g)U(Aa)-1 =A/gA)' gA =gAa' 

with some spacelike vector a = (O,a), a2 = 1. 
If test functions f and g of compact support were avail­

able one could choose A sufficiently large so that the func­
tions f and gA would have spacelike separated supports. 
Then the assumptions (5.1) and (5.2) would easily imply 
that the right-hand side of Eq. (5.3) vanishes, and by the 
cluster property one would easily conclude the proof. In our 
case ofHFQFf the control over the rhs ofEq. (5.3) needs 
considerably more preparation relating geometrical facts 
about a product of Minkowski spaces with the topology of 
the underlying test-function space t?' ([)4) as well as the pre­
cise formulation of the "locality conditions" (5.1) and 
(5.2). 

Denote by V + the closed forward light cone 
{t 3,t)ER4 It o>ltl}andby V= V+UV_, V_ = - V+ the 
closed light cone. 

The set K of (5.1) and (5.2) decomposes into 
K=K 4 UK-, where 

K ± = {z = (x,y )ElR4 XlR4 lx - YEV ±}. 

The following lemma establishes some facts about the 
separation ofthe set K from "spacelike" points. It is proved 
in the Appendix. 

Lemma 5.2: For a = (0,a)ER4, a2 = 1, denote 
a = (O,a )ER4 X R4 - K. Then the following hold. 

(a) The dist(K,Aa) = A 12, ..1,>0, is attained at 

Aa± =..1,« + l,a),( ± 1,3a)lEK. 

(b) Denote by e± = a± - a; then z'e+>O, for all 
zEK +, and z'e->O, for all zEK -. Hence, for all zEK± , 

IZ-Aal>lz-Aa± I. 

(c) Given /)0> 0, define ..1,0 = ..1,0 (/)0) by 

..1,0 = [161a ± 1/(21a ± I - 1)] /)0' la ± I = .J3/2; 

then, for all ..1,>..1,0 and all zEK, 

Iz - Aal>Eolzl + /)0 + A 14, 

where Eo-
1 = 81a ± 1= 4.j3. 

Lemma 5.3: There exist a positive constant Lo and a 
symmetric neighborhood U = - U of K (the closure of Kin 
[)8) in [)8 + IR8 such that 

dist( UnC8,Aa) >..1, 14, for all A>Lo. 

Proof Let B(z,r) be the open ball of radius r and center 
zER8. For 0< E, 0 < h, introduce the real neighborhood 

K E.{; = U B(z,Elzl + /» 
ZEK 
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of K and then the complex neighborhood 

Wf •6 = {zEC8IRezEK"e.6' IImzl <8}. 

If we choose now 0 < €';;;€o and 80.;;;28 and apply part (c) of 
Lemma 5.2 we see easily that Iz - Aol >A /4 holds for all 
ZEWe6 and all A>Ao(80). 

By definition of 0 8 there exists a neighborhood U of Kin 
0 8 + zR8 such that UU C8 = WE,6 holds. 

Lemma 5.4: For any lEt! (08), define!'l for ,,1,>0 by 

IA (z) =/(z + ,,1,0), ZE08, 

where 0 is defined in Lemma 5.2. Then 

IA ->0, for ,,1,-> 00 in t!(K). 

Proof The space t! (X) is defined to be the inductive 
limit ofa sequence of Banach spaces &~( Um ), mEN, where 
{Um ImEN} is a fundamental system of neighborhoods ofK 
in Q8 = 0 8 + zR8; hence we have to show that, for some m, 

h ...... O for A ...... 00 in &~( Um ). 

Since lEt! (l[)8) there exist positive numbers 8 and C such 
that 

I/(z)I.;;;Ce- 6Iz1 in {zIIImzl.;;;8}. 

With this 8 > 0, do the construction of Lemma 5.3 to obtain a 
neighborhood Uof K in Q8 such that 

UnC8c{zllImzl <8}, 

and, for sufficiently large A, 

dist( unC8,Ao) >,,1, /4. 

Then there is MEN such that, for all m>M, 

Um C U and m8>4. 

Next observe that 

Z - At2EUnC8 implies Izi >,,1, /4, 

since then S = ,,1,0 - ZEUnC8 and Z = AO - s; thus, by 
Lemma 5.3, 

Izi >dist( unC8,Ao) >,,1, /4, 

if A>Lo. 
Now fix m>M and choose A>Lo. Then the following 

chain of inequalities holds: 

.;;;C sup e - 61zlelz - Aill/m 
z-...taeumncK 

.;;;C sup e- (6-l/mJlzl +Alm.;;;Ce- 8A18. 
Izl>A/4 

Thus we conclude the proof of Lemma 5.4. 
ProololTheorem 5.1: Since IIAk (gA )<1>011 = IIAk (g) <1>011 

is known, the first term IA in Eq. (5.3) is dominated by 

IIA 1<IIAk (g)<I>oIlIIAj(/)* [Aj(/),A k (gA)] +<1>011· 

Assumption (5.2) means that for any <I>,IIJEi:1J the func­
tional 

hi X h2 ...... (Aj (I )<1>, [Ak (hi ),Aj (h2) ] + IIJ) 

belongs to t! (K)'. Since t! (K) is barreled it follows that 

h I Xh2->IIAj(/)*[Ak (h l ),Aj (h2)] + IIJII 
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= SUP I(Aj(/)<I>,[Ak (h l ),Aj(h2)] +IIJ)I 
<i>E9l .11$11 = I 

is a continuous seminorm on this space. By Lemma 5.4 we 
know IXgA --+0 for ,,1,--+ 00 in t!(K), for every f,gEt!(D4). 
This implies IA --+0 for ,,1,--+ 00. Similarly assumption (5.1), 
barreledness of t! (K), and Lemma 5.4 are used to conclude 
IIA --+0 for A --+ 00. 

Thus the right-hand side of Eq. (5.3) has a vanishing 
limit for A --+ 00. By the cluster property (Theorem 4.6) the 
second term on the left-hand side ofEq. (5.3) has the limit 

IIAk (g)<I>oWIIAj (/)<1>0112, 

for A --+ 00. Hence IIAj (I )Ak (gA )<1>011 2 also has a limit for 
A --+ 00 and this limit is 

- IIAk (g)<I>oI121IAj (I )<1>011 2. 

We conclude IIAk (g)<I>oI12I1Aj (/)<1>011 2 = 0 and obtain ei­
ther 

Adg)<I>o=O or Aj(/)<I>o=O, forall g,JEt!(04). 

If, for instance, Aj (. )<1>0 = 0, then, by Proposition 3.6, 
A j = 0 follows. 

VI. SOME CHARACTERIZATIONS OF TRIVIAL 
QUANTUM FIELDS 

A. Characterization of generalized free fields 

Our first result here assures us that the well known char­
acterization of generalized free fields in terms of commuta­
tor properties for the field operators still holds in HFQFT. 

Theorem 6.1: For a relativistic quantum field A over 
E = t! (04

) with cyclic vacuum vector <1>0 the following 
conditions are equivalent: 

[A(/),A(g)] CW2 (/®g - g®/)1, 

for allf,gEE, (6.1) 

[A(j),A(g) ]<1>0 = W 2(/®g - g®/)<I>o, 

for all f,gEE. ( 6.2 ) 

Proof (a) We only have to show that condition (6.2) 
implies (6.1). And by cyclicity of the vacuum state this fol­
lows from 

Wn+m+2 (II ® .•. ®In ®I®g®gl ® ... ®gm) 

- Wn+m+2 (J; ® ... ®In ®g®l®gl ® ... ®gm) 

= W2([f,g])Wn + m (J; ® ... ®In ®gl ® ... ®gm)' 
(6.3) 

for all f,gJj,gjEE and n,m = 0,1,2, ... , with [f,g] =I®g 
- g ® f By Theorem 3.4 the hyperfunctions W N, 

N = 2,3, ... , are boundary values of analytic functions W N' 

SO we study the analytic functions W ± on tubes T( r ± ) 

defined by 

and 

A 

W+ (;;n ,Z,W'/Ym) = W n + m + 2 (;;n ,Z,W'/Ym ) 
A A 

- W 2 (Z,W)Wn+ m(;;n'/Ym)' 

r + = {(Sn,S,1],Ym) ISH 1 - SjEV +, j<n - 1, 

S-Sn EV+, 1]-SEV+, 1]1-1]EV+, 

1]Hl-1]j EV+, J<m-l} (6.4) 
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A A 

W- (~n ,Z,W,lYm ) = W n + m + 2 (~n ,W,Z,lYm ) 
A A 

- W2(W,Z)Wn+m(~n,lYm)' 

r _ = {(Sn,S,1],'Ym) ISH I - SjEV+, j<;.n - 1, 

-1] + SEV +' 1] - Sn EV +' 1]1 - SEV +' 

1]HI -1]jEV+, j<;.m-l}. 
A 

(6.5) 

(b) By Theorem 3.4 these analytic functions W ± have 
boundary values W+ = Dr + W+ (resp. W- = Dc W-) in 
the sense of hyperfunctions. By locality (H4) and our as­
sumption (6.2) these boundary values agree on the open 
subset UofR4(n+m+21, 

U = {(-!n,x,Y,l'm) I (x - y)2 <0, 

(Y_Yj)2<0, j=I, ... ,m}. 

Hence by the edge ofthe wedge theorem for hyperfunctions 
(Proposition 2.10) there exist a complex neighborhood Vof 
U and a function 

A _ 

WE&'( VnT(ch(r +ur _») 

such that 
A A 

W = W ± on vn T( r ± ). 

(c) Observe now that the complex cone 

r O ={(€n,S,1],!lm)ISH I -SjEV+, j<;.n-l, 

XS-SnEV+, 

1] = S, 1]1 -1]EV+, 

(6.6) 

X1]H I -1]j EV+, j<;.m -l} (6.7) 

is contained in the convex hull ch (r + u r _) of r + u r _. 
To prove this, suppose (€n,S,1]'!l~ )Ero to be given. 

Then there are ~jEV + such that ~I + ~3 - ~2EV +' 

S - Sn = ~I + ~~3 and 1]1 - 1] = ~2 + ~~3' 
Write €n = (SI,€ ~) and define 

~ + = (€ n+ ,S + ,1]+ ,1]1+ ,!l:" + ) 

and 

Then ~ ±Er ± and 

(€n,S,1],!lm) = (~+ + ~ - )/2Ech(r + ur _). 
A A 

(d) By (6.6) and (6.7) we conclude that W+ and w-
are analytically continued with respect to the variables (z,w) 

to Im(z - w) = 0. Therefore W± (-!n,x,Y,Ym) can be con­
sidered to be hyperfunctions in the variables ~n , Y m with real 
analytic parameters x, y. And these hyperfunctions are 
boundary values of functions W ± (x, Y;~n ,lYm ) analytic in 
the tube T( r), 

r={(€n,!lm)ISHI -SjEV+, j<;.n-l, SnEV+, 

1]IEV+, 1]H I -1]j EV+, j<;.m -l}, 

hence 

W(X, Y'~n,lYm) = W+ (x,Y;~n,lYm) - W- (x, Y;~n,lYm) 
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is analytic in T( r). 
(e) If UI is some open bounded nonempty set in RH 

there exists an open set U2 in R4m such that all 
(x, Y'~m )EUI X U2 satisfy 

(X_y)2<0 and (Y_Yj)2<0, for j= l, ... ,m. 

For all (x, Y)EUI consider the boundary values 

W (x, Y;-!n' l'm ) = Dr W (x, Y;~n ,lYm ) 

in R4n X U2 in the sense ofhyperfunctions. As we have shown 
above in (b) all the boundary values vanish 
(R4n X UI X U2 C U). Hence by Corollary 2.11 all the 
analytic functions W(x,y; ... ) on T(r), x,yEUI , vanish. 
Since Y(x,y; ... ) is real analytic in x, Y, this function vanish­
es identically. 

By definitions (6.4) and (6.5) this proves Eq. (6.3) and 
thus we have the theorem. 

A relativistic quantum field A over t! (Jl))4) that satisfies 
condition (6.1) or (6.2) iscalledageneralizedlreefieldover 
t! (Jl))4). Such fields have been studied in some detail by Ro­
berts.31 Clearly as in the case of tempered fields relation 
(6.1) determines easily all n-point functions of the theory. 
The relevant formulas are given in the following corollary. 

Corollary 6.2: If a relativistic quantum field A over 
E = t! (Jl))4) has a vanishing one-point function WI and sat­
isfies (6.1) or (6.2) its n-point functions are 

W2n + 1 =0, for n=O,I,2, ... , 

W2n = wt =®nw2, for n = 1,2, ... , 

where W~n are recursively defined by 

W~(n+ I) (II ® ... ®hn+2) 
2n + 2 

(6.8) 

= I W~ (II ® 1; ) W~n (II ® ... ®}j ® ... ® hn + 2 ). 
j~ 2 

(6.9) 

B. Jost-Schroer theorem 

According to Theorem 6.1 and Corollary 6.2 the four­
point function can be used to decide whether a field over 
E = t! ( Jl))4) is a generalized free field or not. In the case of 
tempered fields Jost and Schroer32 have observed that this 
result can be used to determine a scalar relativistic quantum 
field completely if its two-point function is known to have a 
special form (that of a free scalar field). For hyperfunction 
quantum fields this characterization continues to hold if we 
add a technical assumption on the support of the four-point 
function. 

Theorem 6.3 (Jost-Schroer theorem for HFQFT): If 
the two-point function W 2 of a relativistic quantum field A 
over E = t! (Jl))4) with cyclic vacuum <1>0 equals that ofa free 
field of mass m > ° and if the four-point function has no 
"pathological support" (see Remark 6.1) in energy momen­
tum space, then A is a free field of mass m. 

Remark 6.1: According to the results of Sec. III B, 

g- W3 (h ®~ ®g) (6.10) 

is a well defined Fourier hyperfunction with support in "f 
(the closure of "}; in Jl))4) for arbitrary hEt! (Jl))4) and 
ijl E9J (R4). Then we say that W 4 has no "pathological sup-
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port" ifthe support of the Fourier hyperfunction (6.10) has 
no connected component contained in S:, . 

Remark 6.2: This technical assumption is actually 
known to be satisfied in some cases. If the theory is formulat­
ed over a certain slightly bigger test-function space EI :::) E 
or if the four-point function has a continuous extension to 
this space then this support property can be shown to hold. 
A concrete example of such a space EI is described in Ref. 7. 

Proof of Theorem 6.3: (a) By assumption we have, for 
all fEE, 

IIA «0 + m2)f)<I>oIl2 

=c{8:(p),( _p2+m2)2If(p)12) =0. 

Hence the field B defined by B = (0 + m2 )A satisfies 
B( f )<1>0' for allfEE. Since the local field B clearly is relative­
ly local to the field A Proposition 3.6 implies B = 0, that is 
the field A solves the linear differential equation 

(0 + m2)A (x)<I> = 0, for <l>Eg, 

and this implies, for the Fourier transform A<I> of A <1>, 

suppA<I>CRm , (6.11) 

where H m is the mass hyperboloid 

Hm =H:UH;;;, H~ = {(Po,p)lpo= ±~p2+m2}, 

and Rm denotes its closure in ][)4. 
For such a field one obtains more refined support prop­

erties for the Fourier hyperfunction Z2 introduced by Eqs. 
(3.13) and (3.15): 

supp Z2C (U (P}X T+ (p»), 
pE::i. 

T+(p)= H:n (p-Hm) 

= [H:n(p-Hm)]U H: ns:, 

by Proposition 3.2 and Corollary 3.3. 
(b) In order to complete the proof it suffices, according 

to (6.11) and Theorem 6.1, to show Eq. (6.2). To this end 
we study the Fourier hyperfunction [A (x I),A (X2) ] <1>0 in the 
coordinates 

x = (XI + x2)/2, S = X2 - XI' '1'+ (x,S) 

= A (x l )A(x2)<I>o, 

'1'- (x,S) = A(x2)A (xl)<I>o = '1'+ (x, - s)· 
The Fourier transform of '1'+ satisfies 

\{i+ (p,q) = Z2(P,(q + p)/2), 

\{i+(p,(q - p)/2) = Z2( p,q), 

and it follows, for \{i = \{i+ - \{i-, 

sup \{i C ( U {p} X S + ( p) ), 
pE::i. 

( 6.12) 

(6.13 ) 

s(p) =S+(p)US-(p), S-(p) = -S+(p), 

S+(p)= (-p/2+H:)n (p/2-Hm) 

= [( -p/2+H:)n(p/2-Hm)] (6.14) 

xU H: ns:,. 
Elementary geometry shows 
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(i) S + (0) = R: , 
(ii) if BC!' is compact in R4 and OEB, (6.15) 

then (U {P}XS( p»)CB x (BURm ns:,) 
pEB 

A 

with some compact set BCR4. 

(c) In the same way as in Proposition 3.1 we can show 
that \{i( p,q) is a Radon measure inp and a Fourier hyper­
function in q. Thus we may choose fEg (R4), suppf = B 
with OEB C !, and know by Proposition 3.1 that g --+ \{i ( f ® g) 
is a well defined Fourier hyperfunction, ~~ (:04). Relations 
(6.12) show 

Iii(f®g) = ([A(x l ),A(X2) ]<1>0' 

( 6.16) 

therefore by locality the Fourier transform of Iii ( ];q) van­
ishes for S 2 < O. According to statement (6.15) the support 
of the Fourier hyperfunction Iii ( ];q) is contained in 
BURmnS:'. Now apply Eq. (3.26) for fEg(R4) and 
fl,g,gIE~ (:04) to get 

(Z2(Z ®gl)' Iii(f®g») = W3(gl ®~f® (g - k»), 

wherek(q) =g( - q). This is a Fourierhyperfunction with 
respect to g with support in BUR m ns:, and its support is 
contained in B by Remark 6.1. Sincefl,gIE~ (][)4) are arbi­
trary, the support of Iii ( ];q) is contained in 11. Hence its 
Fourier Laplace transform with respect to q is an entire ana­
lytic function of; that vanishes on the open subset S 2 < O. 
Thus Iii ( ];q) vanishes and we deduce by choice off 

supp 'l'C{O}xS(O) = {O}XHm • (6.17) 

( d) Denote by X ~ the characteristic function of a ball of 
radius E> 0 and center p = O. Proposition 3.1 and relation 
(6.17) imply that X ~ Iii ( p,q) is well defined and that, for all 
£>0, 

X~ Iii = Iii 
holds. Thus we get for 

X~ (P)[A (f),A (g) ]<1>0 = [A (f),A (g)] <1>0' 

[A (f),A(g) ]<1>0 = {Iii ( p,q),f( p/2 - q)g( p/2 + q». 

But by uniqueness of the vacuum state (Hs) we know that 

X~ (P) = J X~ (p)dE( p) 

converges strongly for £--+0 to the projection operator 
1<1>0)(<1>01. This then proves Eq. (6.2). 

c. Borchers classes 

As with the result about the existence of a PCT operator 
for a QFT in terms of Fourier hyperfunctions we only indi­
cate in this subsection that also for quantum fields over, 
E = t! (][)\ V) the concept of the "Borchers class" of some 
field is available since the possibility for this concept relies 
exclusively on analyticity properties of the n-point functions 
and the existence of a PCT operator. These analyticity prop­
erties are provided by Theorem 3.4, and the techniques of the 
proof are very similar to those explained in detail in Secs. 
III C and VI A. 

However, as expected, compared to the case of tem­
pered fields the Borchers class of a field in HFQFT is consid­
erably bigger. In order to see this recall that for tempered 
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fields the Borchers class of a free massive field consists of all 
Wick polynomials including derivatives of that field. 33 

In Ref. 34 it has been shown that all power series 

00 (x) 
B(x) = L en :A n: -, ' lim [len 12/n!] lin = 0, 

n=O n. n~ 00 

( 6.18) 

define a relativistic quantum field over E = t2 (JI}4) and that 
the associated sequence of Wick polynomials 

N (x) 
BN(x) = L en :A n: -, N = 1,2, ... , (6.19) 

n=O n! 
converges in the relevant topology to B(x). Since all the 
B N (x) are known to be relatively local with respect to A it 
follows that B, too, is relatively local with respect to A. 

Hence all entire function of A as described in (6.18) 
belong to the Borchers class of A. 

VII. CONCLUSIONS 

In order to give a comprehensive picture about QFr in 
terms of Fourier hyperfunctions we discuss here the status of 
the remaining points of the basic structural results of QFr 
mentioned in Sec. I. The existence of a scattering operator 
[point (3)] in HFQFr has been proved in Ref. 7; however, 
it has been proved only for a special class of Fourier hyper­
functions, that is, for a somewhat larger test-function space 
than t2 (JI}4). Though this is already quite a satisfactory re­
sult it would be preferable to have a scattering operator also 
for fields over t2 (JI}4). This point is under consideration. 

In general form of the two-point function [point (7)] 
can also be determined in HFQFr. The result is the obvious 
generalization of the form given by Kallen and Lehmann. If 
we combine the information provided by Propositions 3.1 
and 3.2 with Eq. (3.26) for n = 2 we get immediately that 
the two-point function of a scalar field over t2 (JI}4) has the 
following general form: 

W 2 (!®g) = ji(dP)j( - p)g( p), 

with some L T+ -invariant positive Radon measure t with 
support ~, which is slowly increasing in the sense of Propos i­
tion 3.1 (b). The structures of such measures are known35

: 

with some positive slowly increasing measure p on (0,00) 
that is not necessarily polynomially bounded as for tempered 
fields. 

The possibility of a Euclidean reformulation [point 
(10) ] of relativistic QFr in terms of Fourier hyperfunctions 
has been indicated to exist by Nagamachi and Mugibayashi 
in Ref. 5 shortly after Osterwalder and Schrader's solution of 
this problem in terms of distribution. At the price of intro­
ducing an even smaller test-function space d (JI}4) C t2 (JI}4), 

Nagamachi and Mugibayashi6 could actua1ly prove a com­
plete symmetry between the Euclidean and relativistic for­
mulation of "HFQFr" without any additional growth re­
strictions as in the distributional setting. 

However, the space d (JI}4) has some disadvantages as a 
space of test functions for"'QFr. So one might reconsider this 
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problem for the test-function space t2 (D4
). Admitting even­

tually similar additional growth restrictions as in the distri­
butional setting the proof of equivalence between the Euclid­
ean and relativistic formulation of HFQFr seems to be 
possible. 

We have not tried to prove dispersion relations, which is 
quite an involved matter. However, we expect that it is possi­
ble to prove the necessary analyticity properties for the 2-2-
particle scattering amplitude but not the necessary growth 
restrictions in order to be able to write a dispersion relation 
with a finite number of subtractions. 

Finally we sum up the main points of this paper and give 
an outlook for further applications ofHFQFr. 

Since there is no a priori choice for the test-function 
space in relativistic quantum field theory we have isolated 
conditions on a space E of functions on space-time in order 
that Ebe "admissible" as the test-function space of a relativ­
istic QFr [condition (Ho) in Sec. I]. As our short review 
shows it has been known since the early days of general QFr 
and has emerged more clearly later by considering model 
constructions that the traditional choice E = Y (]R4, V) has 
to be modified for various important reasons. And accord­
ingly several attempts have been made in the past to genera­
lize the notion of a "tempered relativistic quantum field." 
Most of these suggestions have considerable difficulties with 
an appropriate notion of localization in coordinate and/or 
momentum space. Though it might not have been so clear 
from the beginning, the only suggestion that has a precise 
notion of localization in both spaces has been that of Naga­
machi and Mugibayashi.4 

In this paper we have stressed the point of view that a 
sensible generalization of the notion of a tempered quantum 
field should not only have these localization properties but 
should also allow us to derive (hopefully) all the basic struc­
tural results of QFr known for tempered fields. 

And accordingly in this paper we have presented a short 
introduction to QFr in terms of Fourier hyperfunctions and 
have shown that indeed most of the structural results ofQFr 
continue to hold in this more general approach. We mention 
some further results of HFQFr that we think to be impor­
tant for future applications. 

The existence of entire functions of a free massive field 
A, for instance, 

can be used in the construction of concrete models. 
For instance, the transformation 

A(x) -+:eigA(X): 

can be used for an easy "decoupling" of the interaction of the 
"derivative coupling model" and thus to obtain a solution of 
this model. 34 We expect that a renormalization theory based 
on Fourier hyperfunctions would admit a clearer and more 
powerful notion of "renormalizable interactions" than in the 
traditional approach based on (tempered) distributions. An 
example has been treated in Ref. 34. 

One important reason for the great success of Euclidean 
methods in the construction of models in lower-dimensional 
space-time clearly is the fact that these methods allow us to 
take into account in a natural and powerful way the relevant 
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positivity condition. Since the test-function space 
E = t! (][)", V) of HFQFf is a nuclear DFS space its topo­
logical dual E I has a well developed theory of Radon proba­
bility measures on it as for the standard case Y I or 9) I. This 
might tum out to be important for the construction of 
HFQFf models with nontrivial interactions according to 
the "functional integral point of view." 

Thus we think that our paper clearly shows that the test­
function space (1.2) of Fourier hyperfunctions provides 
quite a comprehensive realization of the requirements (A)­
(C) of the Introduction. In any case this approach is much 
more natural with respect to the realization of the localiza­
tion problems [requirement (B)] and is considerably more 
powerful in the realization of the structural results of QFT 
[requirement (C)] than any other approach. Furthermore 
as indicated above there are convincing prospects of further 
successful applications in model constructions. 
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APPENDIX: PROOF OF LEMMA 5.2 

( a ) For yE V" = ]R4 - V the distance to the light cone V 
is easily calculated to be 

dist(V,y) = (IYI-IYol>/~ (AI) 

and it is attained at a point e( y) of the boundary av 

e( y) = (I Yol + Iyl) (sgnYo,y)/2, Y = y/lyl· (A2) 

The points of K are parametrized by 

K = {z = (Y - S, y) lyE]R4, SEV}. 

We calculate 

dist(K,Aa) = inflz - Aal 
ZEK 

in two steps using (A 1) : The first step is simply 

inf I (y - S,y) - Aal = infl y - Aal = A /2, (A3) 
~~~V' ~v 

and for the second we note 

inf I ( y - S,y) - Aal 2 

SEV, ~VC 

= inf{inf[ I y - SI2 + I y - AaI 2]}. 
~V' SEV 

For S = e ( y) this equals, according to (A 1) and (A2), 

inf{ (Iyl - I Yo I> 2 /2 + I y - Aa1 2} 
~V' 

= inf {(lyl-IYol)2/2+y~ + (lyl-A)2}, 
IYI>I Yol . 
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The last infimum is attained at 

I Yol = A /4 and Iyl = 3...1. /4 

and equals A 2/4; hence 

inf inf I ( Y - S, Y) - Aa I = A /2 
SEV~V' 

and this is attained at 

yf = ...1.( ± 1,3a)/4, S = e( yf ), 

or at Aa ± = (yf - e( yf ),yf I, i.e., 

Aa± =...1.(+ 1,3a),( ± 1,3a») 

and we conclude 

dist(K,Aa) = IAa ± - Aal = A Ie ± I = A /2, 

where 

(A4) 

(A5) 

e±=a±-a=(-a±,a±), a±=(±I,-a)/4. 
(A6) 

This proves part (a). 
(b) For zEK± , that is, S = y - XEV± , we get 

z'e± =S-a± = (±so-S'a)/4>( ±so-lsl)/4; 

hence 

z'e+>O, for zEK+, 
(A7) 

z'e->O, for zEK-. 

It follows that 

Iz - Aal > Iz - Aa+ I, for zEK +, 

(A8) 
Iz - Aal > Iz - ...la-I, for zEK -. 

Thus (b) follows. 
(c) In order to prove part (c) we distinguish two cases. 
If Izl < (A /4 - 8)Eo- t, then, by part (a), 

...1./4 + 8 + Eolzi <A /4 + 8 + A /4 - 8 = A /2 

= dist(K,..-la) « Iz - Aal, 
if z also belongs to K. 

If, however, Izl«(A/4 - 8)8Ia± l,zEK, we use (A8) to 
obtain 

Iz - Aa I> Iz - Aa ± I> I Izl - A I a ± I I> Izl - A I a Of I 

>Eolzi +8+A/4+A(2Ia±l-l)/2-8Ia±18 

>Eolzi + 8 + A /4, 

since ...1.>...1.0 (8) is equivalent to A(2Ia± 1- 1)/2 
- 81a± 18>0. 
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A complete analysis of the free-field massless spin-s equations (s = 0, !,1) in Kerr geometry is 
given. It is shown that in each case the separation constants occurring in the solutions obtained 
from a potential function can be characterized in an invariant way. This invariant 
characterization is given in terms of the Killing-Yano tensor admitted by Kerr geometry. 

I. INTRODUCTION AND MATHEMATICAL 
PRELIMINARIES 

A complete understanding of the characterization of so­
lutions of spin-s free-field equations in Kerr geometry has 
yet to be achieved. Interest in these equations originated 
with the investigations of Teukolsky, I who showed that in 
the Newman-Penrose2 formalism separable solutions were 
possible for certain Maxwell and W ey 1 scalars in Kerr geom­
etry.3 (Kerr geometry is the space-time geometry of the 
gravitational background due to a rotating black hole.) 

Chandrasekhar4 has shown that these results can be ex­
tended to the Dirac equation. These results have been 
further extended5

•
6 and shown to hold for more general 

classes of space-time. In the original work of Carter7 it was 
established that the Hamilton-Jacobi and Schrodinger equa­
tions admitted a solution for the Kerr geometry via standard 
separation of variables techniques. Because of this property, 
Kerr space-time admits a quadratic constant of the motion 
in addition to the already known two Killing vector fields. 
However, the key property at the heart of the solution of the 
equations for spin-s (O,P) is the existence of a Killing­
Yano tensor. s The role played by such a tensor for the solu­
tions of the Dirac equation has been explained in Refs. 9 and 
10. In this paper we indicate how this characterization works 
for massless particles with spins O,!, and 1 and massive parti­
cles with spins-O, !. In so doing we clarify the role of the 
Killing-Yano tensor. The results for spin-l are new and the 
treatment ofspins-O,!, while not new, is presented in a uni­
fied way. 

Once this work is extended we expect to better under­
stand the methods by which a theory of "variable separa­
tion" can be constructed for general spin-s equations. Earlier 
work by the authors,11 although not incorrect, did not suc­
ceed in giving an intrinsic characterization of the separation 
parameters appearing in the solution of Maxwell's equa­
tions. What was in fact achieved in Ref. 11 was a characteri­
zation of a particular choice of gauge. The contents of the 
present paper are arranged as follows. In Sec. I we outline 
the conventions and notations used, together with the rel­
evant definitions and properties of Killing-Yano tensors. In 

Secs. II and III we deal with the zero-mass equations of spin-
0, !, and 1, respectively. 

In this paper we consistently use the spinor notation of 
Penrose and Rindler. 12 In addition, we employ the null tet­
rad formalism as described by Chandrasekhar.4 Specifically, 
we restrict ourselves to the Kinnersley null tetrad of vectors 
with the components 

Ii = (l/a)(r + a2,a,0,a), 

ni = (1I2p2) (r + a2, - a,O,a), 

mi = (ll-/2p) Cia sin B,O, l,i csc B), 

iiii = (ll-/2p*)( - ia sin B,O, 1, - i csc B), 

where 

a = r + a2 - 2Mr, p2 = r + a2 cos2 B, 

p = (r + ia cos B). 

(1.1 ) 

The Kerr solution of the Einstein equations has the line 
element 

ds2 = (1 _ 2Mr) dt2 _ p2 dr _ p2 dB2 
p2 a 

+ 4aMr ~in2 B dt d¢ 
p 

_(r+a2) + 2a2M;2sin2B) sin2 Bd¢2. (1.2) 

A Killing-Yano tensor K AA 'BB' is a (skew symmetric) 
tensor satisfying 

V(CC'KAA')BB' =0, KAA'BB' +KBB'AA' =0, (1.3) 

The Killing-Yano tensor can also be equivalently represent­
ed in terms of the pair of symmetric Killing spinors 
K AB " [(A'B' via 

KAA'BB' = !(EA'B,KAB + EAB[(A'B')' 

Conditions (1,3) are then equivalent to 

(1.4 ) 

( 1.5) 
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We, have the following result: In Kerr space-time the 
equations for a Killing-Yano tensor have only one solution. 
The nonzero components of this tensor in the null tetrad 
formalism using the Kinnersley tetrad are 

Koo',,' = ia cos (), Ko,'w' = r. (1.6) 

The Klein-Gordon equation for a spin-O free-field is 

D <P = (V AA' VAA ')<p = m2<p. (1.7) 

In Newman-Penrose notation (1.7) has the form 

D <p = [(D - P - P*).&. + (.&. - y - y* + J.l + fl*)D 

- (15* - a + f3 * - 7* + 1T)c5 

- (15 + f3 - a* - 7 + 1T*)c5* l<p = m2<p. (1.8) 

In terms of the coordinates used to describe the line ele­
ment (1.2) this equation reads 

D <p = ( - 1I2p2) {a (9' 19' 0+ + 9' t 9'0) 

+ (.!/ I.!/ 0+ + .!/ t .!/ o)}<p = m2<p. 

Equation (1.9) admits a separable solution 

<p = Ro(r)So( ()eim4> + iCTt, 

where the separation equations are 

( 1.9) 

( 1.10) 

[a(9' 19'0+ + 9' t 9'0) + 2m2r + A ]Ro = 0, 
(1.11) 

[.!/ I.!/ 0+ + .!/ 0+ .!/ 0 + 2m2a2 cos2 () - A ]So = O. 

The directional derivatives in expression (1.11) are de­
fined by 

9' n = a, + iK la + 2n(r- M)/a, 

9' n+ = a, - iK la + 2n(r - M)/a, 

.!/ n = a() + Q + n cot (), 

.!/ n+ = a() - Q + n cot (), 

( 1.12) 

where K = (r + a2)0' + am and Q = aO'sin () + m esc (). 
From the theory of separation of variables for the 

Klein-Gordon equation it follows that there exists a second­
order symmetry operator U such that 

U<p = A<p (1.13) 

for a separable solution <p. (We say that U is a symmetry 
operator if it commutes with D: [D, Ul = 0.) 

In terms of the Killing-Yano tensor, 

U = (K AA 'BB'V BB' ) (KAA , cC'V cC' ) - K AA 'BB'MBB' V AA' 

= (1I2p2) [a2 cos2 () [a(9' 19' 0+ + 9' t 9'0) 1 

- r[.!/I.!/o+ +.!/t .!/01], (1.14) 

where 
BA' MAB , = jV KBB'AA" 

We also note here that the symmetric tensor 
%AA'CC' = KAA'BB,KBB'CC' (1.15 ) 

is a second-order Killing tensor satisfying the Killing equa­
tion 

V(AA'%BB'CC') =0. (1.16) 

This fact is crucial in the separability of the corresponding 
Hamilton-Jacobi and Schrodinger equations. 
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II. THE DIRAC EQUATION 

In spinor notation the Dirac equation has the form 

VAX'XX' = (ime,fi)<pA' VAX'<pA = - (imel,fi)xX'. 
(2.1 ) 

Equations (2.1), when written in Newman-Penrose nota­
tion, are 

(D - P*)XI' - (15 + 1T* - a*)xo' = (imJ,fi)<po, 

(0* + f3 * - 7*) XI' - (.&. + fl* - y*)Xo' = (imel,fi)<pI' 

(D-p)<p,- (15* +1T-a)<po= - (imJJ2)xo', (2.2) 

(15 + f3 - 7)<PI - (.&. + fl - Y)<Po = - (imel,fi)XI" 

Chandrasekhar4 found solutions of the form 

<PI = (lIp*)R_,/2S_,/2eiuI+im4>, 

<Po = - RI/2S1/2eiUI+ im4>, 

XI' = - (lIp)R_,/2S,/2eial+im4>, 

XO' = -RI/2S_1/2eial+im4>. 

The second-order separation equations are 

{a9' 1~29'0 - [imel(A + imer) ]a9'o 

- (A 2 + m;r)}R_ 1Iz = 0, 

{a9' 1/29'0+ + [imel(A - imer) ]a9'o+ 

- (A2+m;r)}aI/2RI/Z=0, 

{2' I /2.!/ 1~2 + [ame sin () I (A. + ame cos () ] 2' IJ2 

+ (A 2 - a2m; cos2 ()}S-1/2 = 0, 

{2' IJ2 2' 1/2 - [ame sin () I(A. - ame cos ()] 2' 1/2 

+ (A Z - a2m; cosz () }S1/2 = o . 

(2.3 ) 

(2.4 ) 

The separated solutions satisfy the eigenvalue equations 

From (2.5) we can construct the operator 

A= [ 
0 

N~, 
(2.7) 

acting on the Dirac spinors 

The operator (2.7) anticommutes with the Dirac Hamilto­
nian 

(2.8) 

The proof of relations (2.6) is instructive; we now prove the 
first of these relations. Consider the operator 

QA'C' =NAA,VAC' -VAA·LAC' 

using 

Kalnins, Miller, Jr., and Williams 

(2.9) 
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VAA,KBC = €ABMcA ' + €ACMBA" 

VAA,KB,c' = - €A'B,MAC' - €A'c,MAB ,· 

We find that 

QA'C' =HKA~BA,VAC' +KA,B'VAB,VAC' 

K ~A V -K B'VA V 
- A l' A' BC' - C' A' AB' 

+ (€A'c,M AB' + €A,B'MAC' )VAB ' 

+ 3M
B

A ,V BC' ] 

(2.10) 

+MAA,VAC' +MAC'VAA' + (VAA,MAC')' (2.11) 

Noting that 

KABVBA,VAC' =KABVAA,VBC' 

since K AB is symmetric, 

KA,B'VAB,VA 
C' - K c 'B'VAA' V AB ' 

(2.12) 

- B' A A [ A] = !KA' (VAB'V C' + V C'VAB' + VAB"V C' ) 

- B' AD' AD' 
=!€A'c,KD, (VAB'V + V V AB ') 

+!KA,B'[VAB"VAC'] +!KC'B'[VAB"V
A

A,] 

- B'[ A] - B'[ A 
= !KA' V AB"V C' + !KC' VAB"V A']' 

€A,C'MAB'VAB , =MAC'VAA , -MAA,VAC', 

we can write 

QA'C' =!KA,B'[VAB"VAC'] 

(2.13 ) 

(2.14 ) 

+ !KC' B' [V AB' ,VA A' ] + (VA A ,MAC' ). (2.15) 

Now consider 

V AA,MBB , = jVAA' V cB,K
c

B 

= j(VCB'VAA , + [VAA"VCB '] )K
C

B 

= ~(VAB,MBA' + €AB V cB,M
c

A, 

+ €A'B' IJIABCDKcD), (2.16) 

from which the following results can be obtained: 
AA' 

V(A(A,MB)B') =0, VAA,M =0, 
A' CD (2,17) 

V(AA ,MB) =!IJI ABCDK = W AB , defining W AB · 

Note that we can also write VAA,MBB , 

= - ~ V AA ' V BC' K C' B' and proceed in a similar manner as 
before to obtain the additional result 

V M A \if K- C'D' 
A(A' B') = -!,.., A'B'C'D' 

- WA'B" defining WA'B" (2.18) 

Now since (by reducing to symmetric spinors) we can write 
for any TABA'B" 

TABA'B' = T(AB)(A'B') + !€A'B' T(ABlK,K' 

+ !€ABTKK(A'B') + !€AB€A'B' TKKK,K' (2.19) 

it follows that 

(2.20) 

We also note in passing that V AA ,M BB' is a skew-symmetric 
tensor, i. e., Ma satisfies 

(2.21) 
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i.e., Ma is a Killing vector. 
Returning to the operator QA 'C" we can now write 

QA'C' =!KA,B'[VAB"VAC'] 

- B' -
+!Kc' [VAB"VA,.d + WA'C" (2.22) 

from which its action on a spinor ¢C' is as follows: 
C' - B' A- C' M' 

QA'C'¢ =!KA' €A IJIB,C' M'¢ 

(2.23 ) 

Thus 

(2.24) 

If we consider only the neutrino equation V AA '¢ A = 0 
for the case in which me = 0 (massless spin-!), then the sep­
aration constant A 2 stems from the eigenvalue equation 

LBA'NAA'¢A = (A 2/2)¢B' (2.25) 

III. THE MAXWELL EQUATIONS 

For the case of the Maxwell equations corresponding to 
mass-zero spin-I the characterization of separation param­
eters in terms of the components of the Killing-Y ano tensor 
can also be achieved. Maxwell's equations are commonly 
formulated in terms of the skew-symmetric energy momen­
tum tensor FAA'BB" which satisfies 

VAA,FBB,cC' +VcC'FAA'BB' +VBB,FcC'AA' =0, 
(3.1 ) 

VAA'FAA'BB' =0, FAA'BB' +FBB'AA' =0. 

As with the case of Killing-Yano tensor, FAA 'BB' can be 
realized via the symmetric spinors ¢ AB' ¢ A' B' according to 

FAA'BB' = €AB¢A'B' + €A'B'¢AB' (3.2) 

In terms of these symmetric spinors, Maxwell's equations 
have the form 

VAA'¢AB = 0, 

VA C'¢C'B' = O. 

(3.3a) 

(3.3b) 

In Ref. 4 Chandrasekhar has obtained explicit solutions for 
these equations: viz. 

(D - 2p)¢0. - (8* + 1T - 2a)¢oo = 0, 

(D - P )¢II - (8* + 21T)¢01 = 0, 

(8 - 2r)¢01 - (& + f1. - 2y)¢oo = 0, 

(8 - r + 2{3)¢1I - (.& + 2jl)¢01 = O. 

From the crucial observation that 

(3.4 ) 

p(8-2r)(D-2p) = (D-2p)p(8-2r), (3.5) 

Teukolsky· deduced that if ¢oo = tPooeiut + imtf>, then the func­
tion tPoo satisfies 

(3.6) 

This function admits a separable solution tPoo = R .S., where 
the separation equations are 

(ilfiY.fiY 1+ - 2iur - A)R. = 0, 

(2"0+ 2". + 2aucos () +A)S. = o. 
If Eqs, (3,4) are analyzed further and we write 

Kalnins, Miller, Jr., and Williams 

(3.7) 
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<PII = (2(p*)2)-l tPlleiat+ im¢, 

we find that the function tPII satisfies 

[ tl.~ 0+ ~ 0 + .!f o.!f t + 2iup] tPll = 0, (3.8) 

which admits a separable solution tPll = R _ IS -I with the 
separation equations 

[ tl.~ 0+ ~ 0 + 2iur + A. ] R _ I = 0, (3.9) 
[ .!f o.!f t - 2au cos B - A. ] S _ I = O. 

Equations (3.7) and (3.9) were first derived by Teukolsky.1 
The functions R ± I' S ± I are called Teukolsky functions by 
Chandrasekhar. If instead of R ± I we choose the function 
P _ I = R _ I' P + I = tl.R + I' then the functions exhibit inter­
esting properties, which are summarized in the Appendix. 
Chandrasekhar proceeded further and showed that <POI can 
be written in the form 

tPOI = (1/~p*~ )[~o.!f 1- (1/,0*) 

X (.!f 1+ ia sin B~ o)]P -IS+ I' (3.10) , 

[(1 - pI2)('&' + J1- - y + (1 - 2p)y* - pJ1-*)(D + (1 - p)p*) 

where ~ is as in (AI). 
We now seek the invariant characterization of the pa­

rameters A. and ~. To determine this we draw on the results 
of Cohen and Kegeles,12 who showed how to obtain solu­
tions of (3.3) via the use of a Debye potential pry' and a 
gauge degree of freedom G ;r. If these functions satisfy 

(3.11 ) 

then 

(3.12) 

is a solution of (3.3). More specifically, if one chooses 
W' -A'W' GA = - UAA,P ,where 

then P A' W' satisfies the decoupled equation 

- (1 - p12)(8 + f3 - l' + (1 - 2p)a* - p1T*)(8* + 2(1 - p)f3* + (1 - p)1'*) 

- (p/2)(8* + 1T - a + (3 - 2p)f3* + (2 - p)1'*)(8 + 2(1- p)a* - (p - 1)1T*) 

+ (pI2)(D - P + (2 - p)p*)(A + 2(1 - p)y* - (p - 1 )J1-*)]PA 'W' = 0, (3.13) 

where p is the number of "ones" appearing in the indices of 
pA'W'. 

The choice of G ::r made above is particularly interest­
ing since it yields three equivalent representations for the 
same function, viz. 

(i) p = 0, pO'o' = P _ISleiat + im¢: 

<Poo = ~ ofiJ ;p 0'0', 

tPOI = (lI~p*)[~o.!f1 - (11,0*) 

X (.!f I + ia sin B~ 0) ]PO'O', 

tPll = [1I2(p*)2].!f0.!f IPo'0'. 

(ii) p = 2, P 1'1' = (p)2tl. -Ip + IS_leiut + im¢: 

+ +-1'1' tPoo = .!f 0 X I P , 

tPOI = - (tl./~p*) [~t X t - (11,0*) 

X (.!f t + ia sin B~ 1+ )]P 1'1', 

tPll = [tl.2/2(p*)2]~t ~tPl'l'. 

(3.14) 

(3.15 ) 

From the identities given in the Appendix it is straightfor­
ward to establish that (3.14) and (3.15) are representations 
of the same functions tP AB . 
(iii) p = 1; in this case pO'!' satisfies 

[ tl.( ~ t - ;) (~o + ;) + ( X t + ia ~n B) 

( 
U7 ia sin B)] 1 -pO'I' _ 0 X .z 0 - --_- -=- -. 

p p 
An examination of this equation shows that P 0' I' satisfies the 
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Isame equation as PtPo'!' . Hence a solution may be taken to be 

pO,!,= (1/~~)[~oXt - (1lp)(.!ft -iasinB~o)] 

xP _IS_leiut + im¢. 

With this choice the components of <P AB can be written as 

tPoo = (~/p) iiJ oX 0+ pO'I', 

tPOI = -=+ [tl. (iiJ I - ~) iiJ 0+ + tl. (iiJ 1+ -~) iiJ 0 
4p p* p* 

+ (X t - ia ~n B).!f 0] 
( 3.16) 

(
.!f + ia sin B) .!f + ]pO'l' + I _ 0 , 

P 
tPII = (tl./~p2p*)~0+ .!f ;P0'I'. 

Again, using the identities in the Appendix it can be verified 
that expression (3.16) for <P AB is identical to those given 
when p = 0 or 2. 

These representations (and the corresponding ones for 
<P A' B' ) are invaluable for the proof of our principal result. 

Theorem: If the functions tP AB are the solutions of 
VA A 'tPAB = 0 as represented by, say, (3.14), then the param­
eters A. and ~ are intrinsically defined via the relations 

C
AB

A 'B'tPAB 

= (KA(A' CC'K B
B,) DD'V CC' V DD' 

+ 4M A(A,K B
B,) DD'V DD' + 2MA(A,M B

B,) )tPAB 

(3.17) 
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A(AB¢JC)B = (KAA'EE'VEE , -MAA') 

X (KBA,DD'V DD' + 2M B
A, )¢JBC 

= (J..12)¢JAc· (3.18 ) 

The proof of relations (3.17) and (3.18) is (in princi­
pie) straightforward. The use of the algebraic computing 
language MACSYMA has been particularly useful in this re-

spect. For relations (3.17) the given result can simply be 
verified using identities (A4) of the Appendix. 

Relation (3.18) is somewhat more difficult. For the 
cases when A = C = ° or 1 the result is relatively straightfor­
ward to establish. However, the result when A = 0, C = 1 
requires extensive computation. In particular, the verifica­
tion of the identity 

a
2 

cos
2 

Oll. (r,;r r,;r + r,;r + r,;r ) -u r (U' U? + U' + U' ) -*,/.. 
2 =1=0 +=1 =0 P 'f'1O-~ oZ l oZ 0 oZ I oZ 0 P 'f'1O 

4p p* 4p p* 

. Ma2 cos2 ¢J iar cos OCp* + 5p) a2 ia sin 0 ia sin 0 J.. 
+ 4(p*)3 ¢JIO - 4p 2p * ¢JIO - (p*)2¢J1O - 2(p*)3 ¢Joo + 2(p*) ¢Jll = "2 ¢J0l ( 3.19) 

is nontrivial. 
It can also be verified that the following holds. 
(i) If ¢JAB is a solution of (3.3a), then so is 

¢J~B = A(A c¢JB)c' 
In fact, 

VCe'A(c A¢JB)A 

[
A e' e'EE' C' A = ABEA, -(KB VEE,-MB )M A, 

+MBC'(KAA,DD'VDD' +2MA
A,) 

e' A e' A DD' CA ' 
- 2MB M A' + ~V B K A' MDD,]V ¢JAC' 

(3.20) 

(ii) If ¢JA'B' is a solution of (3.3b), then 
¢J~B = GA 'B'AB¢JA 'B' is a solution of (3.3a). Moreover, 

, C ABCA'B' A'B',/.. 
¢Je'D' = C'D' AB¢JA'B' = iCC'D' 'f'A'B' 

is a solution of (3.3b) if ¢JA'B' is a solution as well. 
(iii) If ¢JAB is a solution of (3.3a) then 

AcFiCFD KL¢JKL + AD FiCFC KL¢JKL 

= iCCD AB [AA E¢JEB + AB E¢JEA]' 

The operator C~~B' is essentially the operator introduced by 
Torres del Castillo. 13 

We take the opportunity here to give a more complete 
discussion of the vector potential A BB' which gives rise to the 
corresponding FAA' BB' : 

(3.21 ) 

As is well known, the choice of vector potential is not unique. 
A derivative of a gauge function can always be added accord­
ing to Ace' ---Ace' + V Ce' ¢J, As in Ref. 11, we choose the 
gauge in which the components Ace' are divergenceless; 
then these functions satisfy 

(3.22) 

There are two independent solutions for the above equation 
which correspond to the same FAA 'BB" These solutions are 
the analogs of electric and magnetic multi poles, 14 

Aoo, = [P + I (!t' IS+ I - !t't S_I)ll. -I] eiat + imcf>, 

All' = [P_I(!t'tS_I- !t'IS+I) (2p2)-I]ei<TI+ imcf>, 

Aol ' = - (Pfl 0+ P + I + Pfl oF-I )S+ I (/ip) -Ieiat+ imcf>, 
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A 10' = (Pfl 0+ P + I + Pfl oF _I)S_I (/ip*) -lei<TI+ imcf>; (3.23a) 

Aoo' = [P + I (ia cos O!t'I+ + ia sin O)S_Ill. -I] eiat + imcf>, 

All' = [P -I (ia cos O!t'l + ia sin O)S+ I (2p2) -I ]eiat + imcf>, 

Aol ' = - (rPflo-l)P_IS+leiat+im9l, 

A IO, = - (rPflo+ _1)P+IS_Ieiat+im9l. (3.23b) 

Indeed, the (3.23a) corresponds to electric multipoles and 
(3.23b) corresponds to magnetic multipoles. In establishing 
(3.23a) use was made of the identity 

'if} [(!t'l - ia sin OPflo+)P +IS+I 

+ (!t't -iasinOPflo)P_IS+d 

= iup[p* Pfl o!t' 1 - (!t'l + ia OPfl o)]P _IS+ 1. 

It should be noted that the method of Cohen and Ke­
geles 12 also gives expressions for the vector potential. More 
specifically, the vector 

Ace' = (V CE,pE'e' - 2Gce' ) + complex conjugate 

is such that A Ce' is a solution of the Maxwell equations. 
However, the choice off unctions pX'Y' and G~' given pre­
viously does not lead to solutions in the divergence-free 
gauge. 

IV. CONCLUSION 

In this paper we have explicitly shown how the separa­
tion parameters that occur for spin-s = 0, ~, 1 equations can 
be intrinsically characterized in terms of covariant operators 
whose coefficients can be written in terms of the Killing­
Yano tensor and its covariant derivatives. In Minkowski 
space we subsequently show that these characterizations and 
their natural generalizations hold true for any s. There are 
well-known difficulties with the generalizations of equations 
of type (3.3).15 In this respect it is our intention to examine 
the nature of the intrinsic operator characterization of the 
functions A CC' and their generalizations for higher spin. All 
these results provide a nontrivial example of solutions to 
spin-s equations. Ideally, a suitable theory of such solutions 
to this type of equation would enable us to derive the exis­
tence of such solutions from intrinsic properties only. 
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APPENDIX: SUMMARY OF THE CHANDRASEKHAR4 
RESULTS 

Chandrasekhar,4 in his treatment of electromagnetic 
waves in Kerr geometry, has thoroughly developed the prop­
erties of the Teukolskyl functions. We summarize his results 
in the following theorems. 

Theorem AI: For a suitable choice of the relative norma­
lization of the functions P ± 1 it is possible to arrange that 

fl§o§oF -I = '1{i P +1' fl§o+ §o+ P +1 = '1{i P -I' 
(AI) 

where 

'1{i2 = A 2 _ 4(a2c? + ama). 

Theorem A2: If the functions S ± 1 are normalized to 
unity,4 then it is possible to arrange that 

2'o2' IS+1 = '1{iS_I' 2'O+2'tS_1 = CG'S+I' (A2) 

with '1{i as in Theorem AI. 
Corollary: The derivatives of the functions P ± I and 

S ± 1 can again be expressed as combinations of the same 
functions: 

§ 0+ P + 1 = ( - i/2K) [(A + 2iar)P + 1 - '1{i P -I], § oF-I = (i12K) [(A - 2iar)P -I - CG' P + I]' 
(A3) 

2' 1+ S_I = ( - 1/2Q) [(A - 2aacos O)S_I + '1{i S+I]' 2' IS+ 1 = (1/2Q)[ (A + 2aacos O)S+I + '1{i S_d· 

In addition to identities (A3) the following relations are instrumental in the establishment of (3.17): 

§o+ 2'0+ = (CG'lfl)¢2 + 2'0+ (11.0*) [ - tfl + ia sin O( 1/fl)tf2]' 

§ 02' Otfl = CG' ¢o - 2'0(11.0*)( tf, + ia sin Otfo), 

2' t 2' Otfl = '1{i¢1 + (1/.0)(2' ,+ - ia sin O§ 0)tf2 - 2' t (1/.0*)( tf2 + ia sin 0tfl)' 

fl§ I§O+ tfl = - '1{i ¢I - (1/.0)(2' t - ia sin 0§0)tf2 - §o(1lp*)(fltfl - ia sin 0tf2), 

fl§ 1+ §Otfl = - '1{i ¢, + (1/.0)(2' 1 - ia sin O§o+ )fltfo - §o+ (fllp*)(tfl + ia sin 0tfo), 

2' 12' 0+ tf' = CG'¢I - (1/.0) (2'1 - ia sin O§o+ )fltfo + 2' ,( 1/.0*) (fltfo - ia sin 0tfl)' 

fl§ t 2' 'tfo = - CG' ¢, + (1/.0) (2' 1 - ia sin O§o+ )fltfo, 

(A4) 

§02'ttf2 = CG'¢I + (11.0)(2',+ - ia sin 0§0)tf2' 

where 
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It is here shown that the chiral anomaly is related to the topological properties of a fermion. 
The quantization procedure of a relativistic particle requires that the particle be an extended 
one, and to quantize a Fermi field, it is necessary to introduce an anisotropic feature in the 
internal space of the particle so that it gives rise to two internal helicities corresponding to a 
particle and an antiparticle. This specific quantum geometry of a Dirac particle gives rise to the 
solitonic feature as envisaged by Skyrme and the Skyrme term appears as an effect of 
quantization. When in the Lagrangian formulation the effect of this topological property is 
taken into account, it is found that the anomaly vanishes. 

I. INTRODUCTION 

In recent times, the old idea of the topological origin of 
the baryon number proposed by Skyrme1 and Finkelstein 
and Rubinstein2 has been revived. These authors put for­
ward the idea that conserved quantum numbers arise as a 
consequence of the topological properties and that particles 
that carry conserved quantum numbers are built up from 
classical fields of nontrivial topology. In this picture baryons 
appear as solitons, commonly known as skyrmions. In a re­
cent paper3 it has been shown that the Skyrme term, which is 
necessary for the stability of a soliton, may appear as a conse­
quence of the anisotropic feature of the internal space-time, 
where we have assumed that there is a fixed axis correspond­
ing to a "direction vector" and this property of internal 
space-time helps us to have a consistent quantization of a 
Fermi field. In this scheme all fermions appear as solitons 
and the Skyrme term may be considered as an effect of quan­
tization. 

It may be added that Sternberg4 has studied in detail the 
operation of charge conjugation and has argued that geomet­
rically charged conjugation is induced by the Hodge star 
operator acting on a twistor space. It has been pointed out 
elsewhere5 that the geometrical formulation of conformal 
inversion, which is induced by a charge conjugation acting 
on a spinor, in effect, corresponds to the inversion of the 
internal helicity for a spinor. This internal helicity may be 
taken to correspond to a fixed direction vector in the internal 
space of a massive spinor or a direction vector (vortex line) 
attached to the space-time point of a massless or massive 
spinor in a composite system of hadrons. The Hodge star 
operation in twistor space eventually inverts the orientation 
of the direction vector. In view of this, the internal helicity 
may be taken to represent the fermion number and can be 
taken to be of topological origin. 

Jackiw6 first pointed out the significance of topological 
effects in gauge field theories and its relationship with anom­
alies in quantum field theory. In a very elegant way he has 
shown how anomalies arise due to quantum mechanical 
symmetry breaking. Alvarez-Gaume and Ginsparg7 studied 
non-Abelian anomalies from topological considerations. In 
this paper we shall show that the topological aspect of the 
stochastic quantization procedure of a Fermi field, where a 

direction vector is attached to a space-time point corre­
sponding to the anisotropic feature of the internal space giv­
ing rise to the fermion number, helps us to find out the origin 
of the chiral anomaly in quantum field theory. This anomaly 
is avoided when we take into account this quantum geome­
try to study interactions involving gauge fields. 

II. CONFORMAL GEOMETRY, TWISTOR SPACE, AND 
TOPOLOGICAL ASPECTS OF A FERMION 

It is well known that the wave function of the form 
'I' (Xp ' Y

lt 
), where Y

lt 
is an attached vector that extends the 

Lorentz group SO(3,1) to the de Sitter group SOC 4,1). Now 
in the stochastic quantization procedure for a fermion, it has 
been shown that a massive fermion is characterized by a 
fixed direction vector in the internal space that helps us to 
derive the fermionic propagator in Minkowski space from 
the two-point correlation of the stochastic fields 
rp(Zp) = rp(Xp ) + irp( Yp )' where the coordinate is given 
by Zit = X

It 
+ iYp in a complex manifold. 8 This indicates 

that the internal space of a massive fermion is disconnected 
in nature. This disconnectedness of the internal space gives 
rise to an internal helicity of the particle that corresponds to 
the fermion number. This follows from the fact that since the 
group structure is now given by SO ( 4, 1 ), the irreducible 
representations of SO ( 4 ), the maximal compact subgroup of 
SO(4,1), are characterized by two numbers (k,n), where k 
is an integer or half-integer and n is a natural number. These 
two numbers are related to the eigenvalues of the Casimir 
operators by 

!saPSaP = k 2 + (Ik 1+ n)2 - 1, 
(1) 

k €"Pr6SapSr6 = k(lk 1+ n), 

where SaP' a,/3 = 1,2,3,4, are the generators of the group. 
Barut and Bohm9 have shown that the representations of 
SOC 4,1) given by S = ~ and k = ±! can be fully extended to 
two inequivalent representations of the conformal group 
SO ( 4,2). In fact these values actually correspond to the 
eigenvalues of the operator K = ! (a+ a - b + b) in the oscil­
lator representation of the SO(3) I X SOC 3)2 basis ofSO( 4). 
The value of k as well as its signature is an SO ( 4,2) invariant. 
The representation (s = 0, k = 0) in the conformal interpre­
tation of SOC 4,2) describes a massless spin-O particle. The 
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representation s = 1, k = ± ~ describes the helicity state of a 
massless spinor. Now for a massive particle, the conformal 
invariance breaks down and k = ± ~ cannot be represented 
as helicity states in the conventional sense, but represents an 
"internal helicity" or orientation so that the mutually oppo­
site orientations are equivalent to particle and antiparticle 
states. 

Since these representations can be fully extended to the 
conformal group SO ( 4,2), we can now deal with eight-com­
ponent conformal spinors. The simplest conformally covar­
iant spinor field equation postulated as an O( 4,2) covariant 
equation in a pseudo-Euclidean manifold M 4

•
2 is of the form 

(ra ~ + m)S(1/) = 0, a = 0,1,2,3,5,6, (2) 
J1/a 

where the elements of the Clifford algebra r a are the basis 
unit vectors of M 4

•
2

, m is a constant matrix, and S( 1/) is an 
eight-component spinor field. Cartan 10 has shown that in the 
fundamental representation where the unit vectors are rep­
resented by 8 X 8 matrices of the form 

r =10 :::1 
a H 0' (3) 

the conformal spinors S are of the form 

(4) 

where 9JI and 9J2 are Cartan semispinors. The characteristic 
property of these spinors is that for any reflection 9JI and 9J2 
interchange. In this basis, Eq. (2) becomes equivalent to the 
coupled equations in the Minkowski space 

i~9JI = m9J2' 

i~9J2 = m9JI' 
(5) 

However it is also possible to obtain from Eq. (2) a pair of 
standard Dirac equations in Minkowski space. To this end, 
we have to work with a unitary transformation CI given by 

(6) 

where L = ~(l + Y5), R =!( 1 - Y5) with 

Y5 = I~ _ ~I· 
With this, we have 

(7) 

and 

c- Irc=r D =!Y/1 
I /1 I /1 ° 

This suggests that Eq. (2) is equivalent in Minkowski space 
to the pair of standard Dirac equations 

(i~ + m)"pl = 0, 

(i~ + m)"p2 = 0. 
(8) 

It is to be noted that space or time reflection interchanges <PI 
and <P2 and transforms "pI and"p2 into themselves; conformal 
reflection interchanges both <PI~<P2 and "p1~"p2' It should 
be added that "pI and "p2 may represent physical free massive 
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fermions whereas <PI and <P2 do not unless they are massless 
since they obey coupled equations. However, in the case 
m #0, if we define <PI and <P2 such that they represent two 
different "internal helicity" states given by k = +! and 
-!, i.e., <PI = "p(k =!) and <P2 = "p(k = -!), Eqs. (5) 

can be reduced to a single equation with two internal degrees 
of freedom when the linear combination of "p( k = +!) and 
"p(k = - p represents an eigenstate. Now, to retain the 
four-component nature of the spinor in Minkowski space, 
these two internal degrees of freedom should be associated 
with particle-antiparticle states. Evidently this property of 
<PI and <P2 satisfies the criteria that space, time, or conformal 
reflection transforms one into the other. This follows from 
the facts that (a) the parity operator changes the sign of k; 
(b) the time reversal operator T changes the orientation of 
the internal helicity and hence changes the sign of k; (c) as 
<PI and <P2 are related here to particle-antiparticle states, con­
formal reflection changes one into the other. Thus each 
member of the doublet of massive spinors having the internal 
helicity k = + ~ and -~, corresponding to particle and an­
tiparticle states, represents a Cartan semispinor. 

To have a geometrical interpretation of the doublet of 
Cartan semispinors it may be noted that it is possible to re­
gard the components of the semispinor as the homogeneous 
coordinates of a point in three-dimensional projective space 
whereas those of another semispinor are regarded as the ho­
mogeneous coordinates of a plane in P 3 (Ref. 11). Moreover, 
a point-plane correspondence exists in p 3 that reflects the 
conjugation relation of semispinors. On the other hand, ac­
cording to the analysis of Penrose,12 there also exists a 1-1 
correspondence between twistors of valence (6) (7) and a 
point plane in p3. Thus the semispinors into which an eight­
component spin or splits in the Cartan basis are identical to 
Penrose twistors. This reflects the analysis ofStemberg4 that 
charge conjugation corresponds to Hodgestar operation in 
twistor space. 

This analysis along with the fact that the anticommuta­
tion relation ofthe eight-component conformal spinors gives 
rise to supersymmetry algebra 13 suggests that we can intro­
duce a spinor structure at each space-time point so that we 
have additional degrees of freedom to our space-time mani­
fold E parametrized by (x/1,f),(}), where e = (~;) is a two­
component spinor. This effectively corresponds to a super­
space. Indeed, the additional degrees of freedom e, () in the 
space-time structure may be related here with the internal 
helicity given by the values k = +! and - ~ in the represen­
tation space ofSO(4) = SO(3) I ® SO(3h To this end, we 
choose the chiral coordinates in the supers pace as 

Z/1 = x/1 + (i12)A ~ea (a = 1,2), (9) 

where we identify the coordinate in the complex manifold 
Z/£ =X/1 +iY/1 with y/1=p,~ea. We now replace the 
chiral coordinates by the matrices 

ZAA' =X AA ' + (i12)A~A'ea, (10) 

where A~A'(a= 1,2)ESL(2,c). With these relations the 
twistor equation is now modified as 

(11 ) 

where 17' A ( l' A' ) is the spinorial variable corresponding to the 
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four-momentum variable [1', the conjugate of X p., and is giv­
en by in the matrix representation 

pAA' = :;rA~' (12) 

and 

with 

wA = i(XAA' + (i12)A ~A'oa)1TA" 

Equation (II) now involves the helicity operator 

S= _A.~A' oa1TA1TA " 

(13) 

(14) 

(15) 

It may be noted that in the complex manifold, we have taken 
the matrix representation of Pp.' the conjugate of Xp. in the 
complex coordinateZp. = Xp. + iYp.' aspAA' = :;rA~' imply­
ing P! = 0 and so the particle will attain its mass due to the 
non vanishing characteristic of the quantity Y!. In the null 
plane where Y! = 0, we can write the chiral coordinates as 
follows: 

(16) 

where the coordinate yp. is replaced by yAA' = ~BAOA'. In 
this case, the helicity operator i!f given by 

S= -2yAA '1TA1TA, = -B AOA'1TA1TA' =E€, (17) 

with € = iO A '1T A " E = - iB A1T A' In this case, following 
Shirafuji 14 we can apply the canonical quantization proce­
dure where i za and i E are canonically conjugate to Z a and €, 

respectively, and we can postulate the canonical commuta­
tion and anticommutation relations given by 

[za'Z{3] =oa{3' 
{€i,Ej } = o~. 

(18) 

(19) 

Symmetrizing Za and Z a and antisymmetrizing E and € we 
require that the state vectors should satisfy 

({Za,za} + [E,€]) 11/1) = O. (20) 

From this we find 

(s + F€ - ~) 11/1) = 0, 

where 

S=!{Za,za}. 
Now defining the operators 

S a -za Si -Z i 
i = E; , a = a E , 

we have the commutation relations 

[S,Sn = -! Sf, 

[S,S~] = ~ S~, 

(21) 

(22) 

(23) 

(24) 

which indicates that S ~ and Sf are the helicity raising and 
lowering operators, respectively. The state with the internal 
helicity +! is the vacuum state of the fermion operator 

€IS= + p = O. (25) 

Similarly, the state with the internal helicity -! is the vacu­
um state of the fermion operator 

"EIS= -p =0. (26) 

In case of a massive spinor, we can define a negative 
definite plane D - where for the coordinate Z = X + iY, Y 
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belongs to the interior of the forward light cone (Y> 0) and 
as such represents the upper half-plane with the condition 
det Y> 0 and! Tr Y> O. The positive definite plane D + is 
given by the set of all coordinates Z withY in the interior of 
the backward light cone (Y -<0). The map Z-+Z* sends a 
negative definite plane to a positive definite plane. The space 
M of null space (det Y = 0) is the Shilov boundary so that a 
function holomorphic in D - (D +) is determined by its 
boundary values. Thus if we consider that any function 
q;(Z) = q;(X) + irjJ( Y) is holomorphic in the whole do­
main, we note that the helicity + ~ ( - !) given by the oper­
ator iO A1T A ( - iB A1T A ) in the null plane may be taken to be 
the limiting value of the "internal helicity" in the upper 
(lower) half-plane. This indicates that in the massive spinor 
case, we can consider that the helicity given by 

(27) 

represents the internal helicity + ~ where we have Y> o. 
Since the map Z -+ Z * transforms a negative definite plane to 
a positive definite plane, we will have an opposite internal 
helicity - ~ with the coordinate Z p. = Xp. - i~ replaced 
by the matrices ZAA' = X AA ' - (i12)A. ~A 'Oa having 
! Tr Y < O. In the null plane we will have the condition 
Y AA' = ! B AO A' so that we can have the simultaneous exis­
tence of two helicities +! and -! corresponding to the spin 
projections on the z axis for a massless spin or. In this way, we 
can relate the spinorial variables 0 and B in the superspace 
given by the coordinate (Xp. ,O,B) with the internal helicity of 
a massive spinor. Evidently, this corresponds to the values 
k = +! and -! in the representation space of 
SO( 4) = SO(3) I ® SO( 3)2 in the de Sitter space. 

Now we want to point out that when the extension of a 
particle is given by the coordinate (Xp.,O,B), we can have a 
gauge field theoretic description of this extension when the 
corresponding gauge fields have the group structure 
SL(2,c). Indeed, the metric tensor ~~' (X,O,O) 
= gp.y (X)OAO A' can be taken to be described by the SL(2,c) 
gauge fields in Minkowski space-time with the gauge field 
strength tensor given by 

Fp.y = ap.By - ayBp. + [Bp. ,/3y], (28) 

where Bp. is the matrix-valued potential and belongs to 
SL (2,c) (Ref. 3). The asymptotic zero curvature condition 
then implies Fp.y = 0 so that we can write the non-Abelian 
gauge field as 

Bp. = U -lap' U, where UESL(2,c) , 

With the substitution, we note that the corresponding La­
grangian is given by 

L = M2 Tr(ap. u'ap' U) + Tr[ ap' uU+,ay UU+ ]2, 
(29) 

where M is a suitable constant having the dimension of mass. 
Thus we find that the quantization of a Fermi field con­

sidering an anisotropy in the internal space leading to an 
internal helicity description corresponds to the realization of 
a nonlinear sigma model-where the Skyrme term in the 
Lagrangian (LSkyrme = Tr[ ap' uU+,ayuu+ ]2) automati­
cally arises for stabilizing the soliton. Thus in this picture, 
fermions appear as solitons and the fermion number is found 
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to have a topological origin. Indeed, for the Hermitian repre­
sentation, we can take the group manifold as SU (2) and this 
leads to a mapping from the space three-sphere S 3 to the 
group space S 3 [SU (2) = S 3] and the corresponding wind­
ing number is given by 

q =-1-1.dS ~VaPTr[U-Ia uu-1a uu-1a U]. 
24r s' p. v A /3 

(30) 
Evidently q is a topological index and represents the fermion 
number. 

III. TOPOLOGICAL ASPECTS OF A FERMION AND THE 
CONSERVED CURRENT 

The above analysis can be used to link up the topological 
origin of fermion number with the internal helicity. Then the 
wave function for a particle and an antiparticle is implicitly 
represented as l/J(x,e) and l/J(X,e), e,e indicating the inter­
nal helicity +! and _- ~, respectively, and the metric tensor 
is given by gp.v (X,e,e). That is, spinor structures are intro­
duced to each space-time point and we have a superspace. 
This geometry effectively gives rise to the SL(2,e) gauge 
fields (as the spinor-affine connection) having the field 
strength 

Fp.v = ap'Bv - avBp. + [Bp.,Bv], 

where Bp. is the matrix-valued potential. In superspace a 
given covariant tensor Fp.v does not have contravariant com­
ponents Fp.v. Therefore, following Carmeli and Malin l5 we 
choose the simplest Lagrangian density which is invariant 
under SL(2,e) transformations 

(31) 

where E"pyti is the completely antisymmetric tensor density 
in four dimensions with E> 123 = 1. Applying the usual proce­
dure of variational calculus, we get the field equations 

afj (E"Prfj Fap) - [Bfj ,E"/3yfj Fap] = O. (32) 

Taking the infinitesimal generators of the group SL(2,e) as 

gl = [~ ~], g2 = [~ _ ~], g3 = [~ ~]. (33) 

we can write 

Bp. = b~ It' = bp.·g, 
(34) 

Fp.v = F~vlt' = fp.v·g (a = 1,2,3). 

Evidently in this space, these SL(2,e) gauge fields will ap­
pear as background fields. 

Thus to describe a matter field in this geometry, the 
Lagrangian will be modified by the introduction of this 
SL(2,e) invariant Lagrangian density (31). Hence for a 
massless spinor field we write for the Lagrangian 

(35) 

whereDp. is the SL(2,e) gauge covariant derivatives defined 
by 

Dp. = ap' - igBp., 

where g is some coupling strength. It is to be observed that by 
the introduction of the SL(2,e) gauge field Lagrangian in 
(35), we are effectively taking into account the effect of the 
extension of the fermionic particle giving rise to the internal 
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helicity in terms of the gauge fields. 16 That is, writing the 
space-time coordinate and the four-momentum variables as 

Pp. = Pp. + ipp., 
(36) 

where qp. (Pp.) corresponds to the mean posi~onA(momen­
tum) relating to the external space-time and Qp. (Pn ) corre­
sponds to the internal stochastic extension, we can write, 
following Brooke and Prugovecki, 17 the following represen­
tation of Qp. I wand Pp. I w, w = III lme (I being a fundamen­
tal length) acting on functions defined in phase space: 

Qp. = -i(~+¢p.), 
w app' 

Pp. = i(~ + l/Jp.), 
w aqp. 

(37) 

where ¢p. and l/Jp. are matrix-valued functions. Thus identify­
ing ¢p. with the SL(2,e) gauge field Bp., we note that this 
spatial extension will give rise to a Lagrangian density given 
by (31) in addition to the point-particle spinorial Lagran­
gian density ¢y p. a p. l/J. Besides we can conceive of a coupling 
with this backgroundfield with the spinor and this leads to 
Eq. (35) for the effective Lagrangian of the spinorial matter 
field. 

From this, we can now construct a conserved current 
corresponding to this Lagrangian and we get (neglecting the 
coupling with the gauge field) 

(38) 

Indeed from the properties of SL(2,e) generators we find 
from (32) that 

~vaP(avfaP - bv X faP) = O. 

This suggests that 
'p. - ,.JJ.vaI3L X f - ,.JJ.vapa f Je-e' "Ov ap- e' Yap' (39) 

Then using the antisymmetric property of the Levi-Civita 
tensor density r!'"vaP we get 

a 'p. - ,.JJ.vapa a f - 0 p.Je - e' p. v ap - . (40) 

Now noting that for spinor field, the vector current density is 
conserved, we finally have 

(41) 

However, in the Lagrangian (35), if we splitthe Dirac mass­
less spinor in chiral forms and identify the internal helicity 
( +!) ( - P with left (right) chirality corresponding to e 
and e, we can write 

¢Yp.Dp.l/J = ¢rp.ap. l/J - ig¢rp.B~lt'l/J 

= ¢Yp.ap. l/J - (ig/2){¢RYp.B !l/JR - ¢RYp.B ~ l/JR 

+ ¢LYp.B!l/JL + ¢LYp.B!l/JL}' (42) 
Then the three SL(2,e) gauge field equations give rise to the 
following three conservations laws, 

ap.U( -ig¢RYP.l/JR) +J!] =0, 

ap' B( - ig¢LYP.l/JL + ig¢RYP.l/JR) + J!] = 0, (43) 

ap' B( - ig¢LYP.l/JL) + J!] = o. 
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These three equations represent a consistent set of equations 
if we choose 

j~ = -j~/2, J! =j;12, 

which evidently guarantees the vector current conservation. 
Then we can write 

al-' (¢RYl-'ifJR + ~) = 0, 
- '2 al-' (ifJL YI-' ifJL - JI-') = o. 

(44) 

From these, we find 

al-' (¢rI-'Y5ifJ) = a~~ = - 2a~;. (45) 

Thus the anomaly is expressed here in terms of the second 
SL(2,c) component of the gauge field currentj;. However, 
since in this formalism the chiral currents are modified by 
the introduction ofj;, we note from Eq. (44) that the anom­
aly vanishes. 

From these equations, two separately conserved charges 
emerge, viz., 

QL = f ifJt ifJ2 d 3X - f j~ d 3X, 
(46) 

QR = f ifJtifJR d 3x + f j~ d 3x. 

The charge corresponding to the gauge field part is 

q=fj~d3X= f €ijkda;F;k (iJ,k=1,2,3). (47) 
)surface 

Visualizing F;k to be the magnetic fieldlike components for 
the vector potential B;, we see that (i = 1,2,3) is actually 
associated with the magnetic pole strength for the corre­
sponding field distribution. 

The term €a(3y6 Tr Fa(3FY6 in the Lagrangian can be actu­
ally expressed as a four-divergence of the form al-'0l-', where 

01-'= - (1/16r)~a(3YTr[!BaF/:iY -j(BaB(3By)]. 
(48) 

We recognize that the gauge field Lagrangian is related to 
the Pontryagin density 

p= - (l/16r) Tr*Fl-'yFI-'Y=al-'01-' (49) 

and 01-' is the corresponding Chern-Simons secondary char­
acteristic class. The Pontryagin index 

(50) 

is then a topological invariant. If we consider Euclidean 
four-dimensional space-time, then the above integral may be 
reduced to a three-surface integral where the three-surface is 
topologically equivalent to S 3. Now it is noted that we must 
have Fa(3 = 0 at all spatial and temporal infinity points so 
that the action S = f L d 4X gives rise to a finite energy gauge 
field configuration. Then the gauge potentials tend to a pure 
gauge at large distances in all four directions, i.e., we have 

(51) 

This then helps us to write 
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q = _1_ i dsl-' ~a(3y 
24r s' 

XTr[ U- I aaU U- I a(3u U- I ayU]. (52) 

We observe that this is nothing but the fermion number as 
discussed in the previous section. In four-dimensional space­
time, if we assume B I-' to go faster than 1/ r, B I-' being zero at 
negative infinity of the time coordinate but tends to a pure 
gauge at positive infinity of the time coordinate, we can write 

(53) 

From this, it appears that the axial vector current is now 
modified as 

-:5 '5 2Z.0 JI-' =JI-' + 71 I-' (54) 

and though al-' j~ #0, we have aJ~ = O. That means, when 
the topological properties of a fermion related to the origin of 
fermion number is taken into account, we are not confronted 
with the chiral anomaly. The origin of the chiral anomaly is 
thus found to be due to the naive form of the point particle 
current without any topological structure, which turns out 
to be essential for the quantization of a Fermi field. 

IV. FERMIONS AND THE INTERACTION WITH AN 
EXTERNAL ABELIAN GAUGE FIELD 

The chiral description of the matter field in terms of the 
spinorial variables e,o in the metric tensor gl-'v (x,e,O) giving 
rise to the SL(2,c) gauge field currents necessitates the in­
troduction of a disconnected gauge group for the external 
Abelian field interacting with the matter field in a chiral 
symmetric way. In the case where the external Abelian 
gauge field is the electromagnetic field, the Lagrangian den­
sity is given by 

- (36- -
L = - ifJYI-'DI-' ifJ -! Tr(~ y Fa(3Fy6) 

-! Tr(Fl-'vFI-'V) + Tr(jl-'A 1-'). (55) 

Here DI-' is the SL(2,c) gauge covariant derivative and, con­
sidering the order of ifJ - BI-' coupling to be negligible com­
pared to the matter current electromagnetic field coupling, 
we can replace it by aI-" 

Pa(3 = aa B(3 - a(3Ba + [Ba,B(3], Ba ESL(2,c) 

and FI-'" = al-'Av - ayAI-" AI-' being the electromagnetic 
gauge potential andjl-' is the matter current matrix given by 

. _ [¢RYl-'ifJR +j; 0 ] 
J (56) 

I-' - 0 ¢LYl-'ifJL - j; , 

wherej~ is the second component of the SL(2,c) gauge field 
current as discussed in the previous section. It is evident that 
this matrix structure of j I-' exhibiting the chiral form suggests 
that for AI-' we should take the disconnected gauge group 
U1L X U1R = Utx{1,d} where d is the orientation reversing 
operation. Evidently in such an interaction the field strength 
and current are not gauge invariant but only gauge covar­
iant, each changing sign under d. This is similar to the non­
Abelian theories where field strengths and currents are only 
gauge covariant even under gauge transformations connect­
ed to the identity. The internal symmetry group here is 0(2) 
which is given by the relation 
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0(2) = SO(2) X{l,d} = U1 x{1,d}, (57) 

where d is the orientation reversing operator. Indeed, we can 
take 

(58) 

Kiskis l8 has studied the interactions having disconnect­
ed gauge group. Following Kiskis, we can think of a large 
system of observers each responsible for a small open region 
Uj of the connected space-time manifold M. Let us consider 
that all the frames in Uj have the same orientation. Physical­
ly this means that the space is simply connected and the 
observer can give an unambiguous definition of positive 
charge everywhere. This suggests that we can introduce the 
connection (gauge field) in the Lagrangian 

Lj=L~i) +L<Jj, (59) 

where i identifies quantities associated with the region 
Uj ,L <Jj is the matter field Lagrangian, and L ~j) is the kinetic 
energy term for the connection. The gauge symmetry of the 
L ~i) is given by 

A ..... g-1(J + A)g, (60) 

with g a smooth map 

g= Uj ..... O(2) (61) 

which may lie in either component of 0(2). A transforma­
tion that reverses the orientation at each point can be written 
as 

g= dgo, 

go = Uj ..... SO(2), (62) 

d = (~ _~). 
This gives 

A ..... go-1(J-A)go· (63) 

We see that it is a combination of charge conjugation and 
orientation preserving gauge rotation. Evidently in this for­
malism the chiral currents interact with the gauge field in a 
disconnected form. Indeed, writing 

[
AI-' + 

A = 
I-' 0 

we find the interaction term is given by 

[
(¢Lrl-'tfL;j!)AI-'+ 0 ] (64) 

(¢RrptfR+j!)Ap- . 

Evidently there is no term like AI-' + AI' _ in the Lagrangian. 
As Kiskis 18 has discussed, in the overlap region 

Uij = UjnUj 

there are two observers studying the same physical system 
where each observer has set up his own basis in the internal 
symmetry space over Uij' The relation between these bases is 
a gauge transformation 

gij:Uij ..... 0(2), 

where the map lies in either component of 0(2). That is, 
observers i and j may have opposite charge convention. If 
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they have opposite convention about charge, they will have 
opposite convention about field. In fact, if we designate a 
priori what is a particle and what is an antiparticle, the left 
and right directions can be determined by any parity violat­
ing interaction. On the other hand, if we designate what is 
left and what is right the particle-antiparticle designation 
remains fixed. Thus any parallel transport from a region Uj 

to ~ of the manifold will be such that either the orientation 
remains the same and the observer will see the same charge 
or the orientation is opposite when by reversing the orienta­
tion of Uj the observer will see the same charge. Thus any 
path from any region Uj to ~ will be such that either this 
will give the same orientation for ~ or it is opposite when 
reversing the orientation, the observer will identify a left­
handed or a right-handed particle. 

v. DISCUSSION 

We have shown above that the chiral anomaly is con­
nected with the topological properties of a fermion. Indeed, 
the topological property of a fermion gives rise to the fer­
mion number which is always conserved and helps us to treat 
fermions as solitons. The Skyrme term here arises just as an 
effect of quantization of a fermion3 and is related to the 
quantum geometry of a relativistic particle. The relativistic 
generalization of a quantum particle necessitates the particle 
to be an extended one and to attain the fermionic property, 
we need to introduce an anisotropic feature in the internal 
space of the particle so that it gives rise to two internal helici­
ties corresponding to a particle and an antiparticle. This spe­
cific quantum geometry of a Dirac particle gives rise to the 
solitonic feature as envisaged by Skyrme l as well as by Fin­
kelstein and Rubinstein.2 When in the Lagrangian formula­
tion the effect of this topological property is taken into ac­
count, we find that the anomaly vanishes. 

This analysis suggests that the origin of anomaly lies in 
the fact that fermions are conventionally treated as localized 
point particles devoid of any specific geometrical and topo­
logical feature. But when this topology is taken into account 
anomaly vanishes implying that when we study quantum 
mechanical symmetry breaking, we must take into account 
the geometrical features involved in the quantization proce­
dure. That is, quantum mechanical effects have their origin 
in quantum geometry and need to be studied in this perspec­
tive. 
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New exact solutions are searched for on the basis of the method of separation of variables 
proposed in earlier work by the present authors [J. Math. Phys. 30, 2132 (1989)]. The essence 
of this method consists of constructing first-order matrix differential operators that define the 
dependence of the Dirac bispinor on the related variables, but commutation of such operators 
with the operator of the equation or between them is not assumed.The classical problems are 
considered as possibilities, namely, electrons in the field of plane monochromatic 
electromagnetic waves (Volkov's problem) and electrons in the Coulomb field (hydrogen 
atom). Then "plane" external electromagnetic fields are considered for which some new exact 
solutions are obtained in terms of special functions. Four new exact solutions of the Dirac 
equation in the fields with axial cylindrical symmetry are also shown, and lastly one "free" 
solution with exotic geometry is demonstrated, namely, "free" parabolic cylindrical spinor 
waves. 

I. INTRODUCTION 

We have proved rigorous theorems about necessary and 
sufficient conditions on the external vector fields that allow 
us to have partial or complete separation of variables in the 
Dirac equation in Ref. 1 (see Theorems 1-6 for Cartesian 
coordinates and Theorems 7 and 8 for the general orthogo­
nal curvilinear coordinates). 

Taking into account the conditions of complete separa­
tion of variables in the Dirac equation in Cartesian coordi­
nates, we can see that all the possible potentials that allow 
such a separation contain additively in the components the 
dependences on the corresponding variables, i.e., 

Ak =Ak(Xk) +Bk(xm,Xn,xi
), k #m#n#l. (1.1) 

Therefore it is possible to simplify according to 

'I' = \Ii exp{i I f Ak (xk)dxk}, k = i,j,m,n. (1.2) 

As a result of transformation (1.2), the bispinor 'I' satisfies 
the Dirac equation in the form 

{yea; - iA;) + yj(aj - iAj ) + ym(am - iAm) 

+ yn(an - iAn) + rno}'I' = 0, (1.3 ) 

where the Lorentz condition on the vector potential is ful­
filled automatically: 

(1.4) 

(summation on rn takes place). Here and thereafter we use 
the nomenclature of Ref. 1. 

Simplifications analogous to (1.2) are possible also in 
the case of curvilinear coordinates. 

Note that the conditions of separation of variables in the 
Dirac equation according to Ref. 1 require the components 
of the vector potential to be sums of functions of separable 
variables. However, the physical fields may have structure 
other than as sums of functions of separable variables; for 

a) Permanent address: Centro de Fisica, Instituto Venezolano de Investiga­
ciones Cientificas (lVIC), Apdo 21817, Caracas 1020-A, Venezuela. 

example, as a field of a plane monochromatic electromagnet­
ic wave: 

(1.5) 

Here the wave propagates along the Z axis with transversal 
polarization. In such cases we can often reduce the Dirac 
equation to the form (1.3) by means of transition to the new 
variables. However, such transition is connected with a mix­
ing of space and time variables and as a result the matrices 
multiplying the corresponding derivatives may not have 
definite Hermitian form and, moreover, may be degenerate. 
In the case (1. 5) such a situation takes place for the well 
known variables 

u = z - t, v = z + t. ( 1.6) 

The degenerate matrices must be handled with special care. 
In other words, after reducing the Dirac equation to the 
form ( 1.3) we can use the method of separation of variables 
proposed in Ref. 1. 

In the case ( 1.5) the Dirac equation takes the form 

{yl(ax - iA(u») + r ay + yU au + y" au + rno}'I' = 0, 
( 1.7) 

where 

( 1.8) 

Here the matrices yU and yU are degenerate. 
Separating successively x,y, and v according to Theorem 

3 of Ref. 1 we have 

Kx = - i ax, Ky = - i ay, Ku = - iau' (1.9) 

Ku =yl(kx +A(u»)+rky -i"lau +y"ku -irno. 
( 1.10) 

Choosing the representation 

yl = el ~} r = (~ 

r=e3 ~} "I=ie2 

( 1.11) 

we obtain the exact solution 
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(1.12) 

k 2=k; +m~, 

fP,=exp{ -~ f{(kx +A(u»)2+ k 2}dU}, 

(1.13 ) 

(1.14 ) 

fP2 = - i {k - i(kx + A(u»)}fP,' 
2kx 

This is the well-known Volkov solution.2
,3 

Our nomenclature, however, is closer to Refs. 4 and 5. 
Taking the Dirac equation in spherical coordinates in 

the presence of a Coulomb field in a diagonal gauge tetrad we 
have 

{r' ar + f a(J + ( a 
r rsmO '" 

+ta, -it ~ +mo}IfI=o. (1.15) 

According to Theorem 8 of Ref. 1, separating t, 0, and fP 
successively we have 

A A 

K t = - i at' K", = - fa"" 

K(J = - f{f a(J + -t-m}r't, 
smO 

(1.16) 

Here m is an eigenvalu~ of the operator K", and k is an eigen­
value of the operator K (J' 

Taking the matrices y' and t in the form 

-1) (1 
0' t=iO (1.17) 

we can have from (1.16) the standard radial equations of a 
hydrogenlike atom 

(:r + ~)x-(E-~ +mo)fP=o, 

( - :r + ~ )fP + ( E - ~ - mo)x = 0, 

(1.18 ) 

A A 

Gathering the operators K", and K(J after the unitary trans-
formation that is the inverse of that of (3.25) of Ref. I, we 
obtain the operator (expressed in the Cartesian gauge) 

connected in the standard way with the momentum of Dir­
ac's particle: 

K~ =(£+~(1)2 +~=J2+~={(1£)+IF.(1.20) 
'" 2 4 4 

Here £ is the orbital momentum operator and ~(1 is the spin 
momentum. 

Thus we have classical results for the classical problems 
in our scheme of separation of variables proposed in Ref. 1. 
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II. SOLUTIONS OF THE DIRAC EQUATION IN 
CARTESIAN COORDINATES 

We assume that when necessary the transformation 
( 1,2) is fulfilled and, according to Theorem 6 of Ref, 1, the 
components of the vector potential satisfying the Lorentz 
condition and allowing the complete separation of variables 
take the form 

Ai = 0, Aj = Aj (Xi), Am = 0, An = An (xm), (2.1) 

or the trivial case when the components of vector potential 
depend only on one variable. The separation is most simple if 
first we separate the variables in pairs. Then instead of ( 1.3) 
we have 

{r' a3 + feE -A4 )}rt\li = k\li, (2.2) 

{rial + f(a2 - fAz) + mo}y'f\li = ik\li, (2.3) 

where 

\Ii = tlfl =!(1 + ift) (1 + ylr)IfI. (2.4) 

In contrast to Ref. 1 throughout the paper, we take the 
fourth variable to be imaginary. 

In the standard representation of the Dirac matrices, 

yk = (~ ~), k = 1,2,3, t = i(~ _~) (2.5) 

(here and after t is anti-Hermitian), instead of (2.2) and 
(2.3) we can write 

k5' = {i a3 + (E - A4) }52' (2.6) 

{ia3 -(E-A4 )}5,= -k51' (2.7) 

i(mo - k)A + ( - a, + (k2 + A2»)B = 0, (2.8) 

i(mo + k)B + (a, + (k2 + Az»)A= 0, (2.9) 

where k is an eigenvalue ofthe operators of Eqs. (2.2) and 
(2.3). 

Then we have for the structure of a bispinor 

(

A(5' - 52) ) 
\Ii = B(5, + 52) . 

iA(51 + 52) 
- iB(5, - 52) 

(2.10) 

Note that the potentials 

A,(xk
), I =l=k, A;(xi), i=l=j, (2.11 ) 

in our nomenclature correspond to the parallel electric and 
magnetic fields (i liB), respectively. 

Let us consider situations where Eqs. (2.6)-(2.9) allow 
exact solutions in terms of special functions. 

A.A4=cz, c=const 
After introducing a new variable y, 

Y = E - cz (2.12) 

(here E is the energy of the state), Eqs. (2.6) and (2.7) take 
the form 

- k5' + ( - ic ay + Y)52 = 0, 

- (icay +Y)5, + k52=0. 

After the change, 

x = M(E - cz) = My, 
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2374 



                                                                                                                                    

and from (2.13) and (2.14) we have the equation of the 
parabolic cylinder, 

{a!x - (k 2 + ic)12c + !X2}SI = 0, (2.16) 

for which exact solutions in terms of degenerate hypergeo­
metric functions are well known: 

SI =ale-iX'/4M( - ial2 + 1,Vx212) 

+blxe-iX'/4M( -iaI2+M,ix2/2). (2.17) 

Noting that Eqs. (2.13) and (2.14) are mutually conjugated 
we have 

S2 = a2eiX'/4M(iaI2 +!,!, - ix212) 

+ b2xei
x'

/4M(iaI2 + i,~, - ix212). 

Taking into account the relation 

M(a,p,x) = eX(p - a,p, - x), 

instead of (2.18) we can write 

S~ = a~e-iX'/4M(ia/2 + l,!, + ix212) 

+ b ~xe- ix2I4M(iaI2 + M, + ix212). 

(2.18) 

(2.19) 

(2.20) 

Substituting (2.17) and (2.20) in (2.13) we find the 
connections between coefficients to be 

a2 = i,J2clk, bl = aT, b2 = ik 1,J2c, a2 = b T, 
(2.21 ) 

The determination of the functions A and B is trivial. 
Thus the problem is solved exactly. 

B. A2 =cx, c=const 

Introducing the variable 

Z= k2 +cx, 

instead of Eqs. (2.8) and (2.9) we have 

i(mo - k)A + ( - c az + z)B = 0, 

i(mo + k)B + (caz + z)A = O. 

As a result of the substitution 

z = ~c/2y, 

(2.22) 

(2.23 ) 

(2.24) 

(2.25) 

we again have the equations of the parabolic cylinder, 

{a;y -ly2 + (k 2 - m~ + c)/2c}A = 0, (2.26) 

{a;y -ly2 + (k 2 - m~ - c)/2c}B = 0, 

for which exact solutions are known: 

A = a le-i'/4M(aI2 + M,y2/2) 

+ aIYe-i'14M(aI2 + M,y2/2), 

(2.27) 

(2.28) 

B = ble-i'/4M(aI2 + M,lI2) 

+ blYe-i'/4M(a12 + M,y2/2). (2.29) 

If 

{k 2 - m~ )/4c = - n12, n = 1,2,3, ... , (2.30) 

the degenerate hypergeometric functions reduce to the Her­
mite polynomials, and the quantization of energy takes 
place: 

E = (m~ + k; + 2nc) 1/2. (2.31) 

Returning to Eqs. (2.26) and (2.27), we have the rela­
tions between the coefficients of the solutions: 

a l = - i,J2cb2/(mo - k), hi = {i,J2c/(mo + k)}a2• 

(2.32) 

It is trivialto solve Eqs. (1.6) and (1. 7) in this case. The 
problem is solved exactly. 

C. A4 =!3e'lz, !3=const, l1=const 

Equations (2.6) and (2.7) for this potential after the 
change 

p, = e'lZ 

take the form 

- kSI + (i",p,aJ.L + (E - /3P,»)S2 = 0, 

(i",p, aJ.L - (E - /3P,»)SI + kS2 = 0, 

and therefore 

(2.33 ) 

(2.34) 

(2.35) 

{
a 2 1 a 1 ( ip,/3 1 2 2 )} -+--- --+-(E-/3p,) -k) SI =0. 
ap,2 p, ap, p,2 ", ",2 

(2.36 ) 

The change 

(2.37) 

leads to the equation of degenerate hypergeometric func­
tions 

~"Y;' + Y; (2q - 1 -;) + (iE I", - q) Y1 = 0, (2.38) 

where 

; = 2i/3l1j "" 

q = ikzl",. 

Therefore 

(2.39) 

(2.40) 

f: -iPJ.LIT/{ -ik,/T/M( ikz iE+ 1 2ikz +L 2i/3/1-) + ik'/T/M(ikz iE 2ikz +L 2i/3P,)} (241) ~I=e alP ---- ,--- ,-- azll ----,-- ,--,. 
11", 11", 11 11+ 1 ", ", 

(2.42) 
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According (2.35) and (2.36) the coefficients are connected 
by the relation 

aT = bl, aT = b2 , a lla2 = iCE + k z )Ik. (2.43) 

The problem is solved exactly. 
In the case of free motion [p-.O, M(a,p,O) = 1], ifP 

is not an integer number then we have superposition of two 
free waves running in opposite directions. 

D. A2 =pe"x, p = const, 1J = const 

After the change 

instead of (2.8) and (2.9) we have 

i(m - k)A + ( -1JJ-l ap + (k2 + pJ-l»)B = 0, 

i(m + k)B + (1JJ-l ap + (k2 + pJ-l»)A = 0. 

Thus again we have the exact solution 

(2.44 ) 

(2.45 ) 

(2.46) 

A - -fJPI.,{ ik,I"M(k2 + ikl 2ikl L 2PJ-l) -e aiJ-l ,--+ ,--
1J 1J 1/ 

- ik,I"M (k2 - ik l 2ikl L 2PJ-l)} +a2J..l ,---+ ,--
1/ 1/ 1/ 

(2.47) 

B = e-fJPI"{biJ-lik,I"M(k2 ~ ikl + 1, 2~1 + 1, 2~) 

+b2J..l-ik'I"J-l(k2~ikl+l'_ 2~1 +1,2~)}. 
(2.48 ) 

The coefficients are related as follows: 

b I = ia I (k2 + ik I) I (mo + k), 

b2 = ia2(k2 - ikl)/(mo + k). 

E. A4=//Z, I=const 

Now we have instead of (2.6) and (2.7) 

- kSI + (iaz + (E -I IZ»)S2 = 0, 

(iaz - (E-Ilz»)sl +kS2=0. 

(2.49) 

(2.50) 

(2.51) 

Passing to the second-order equations we have the well­
known Whittaker ones: 

{a;z + if Ir + (E -I IZ)2 - k 2}SI = 0, 

{a;z -iflr+ (E-Ilz)2-k2}S2=0. 

The corresponding solutions have the form 

SI = e - Y12{y1 - ilal M(1 - if- k,2 - 2il,y) 

+ a2MUI- k,2il,y)/l}, 

S2 = e - Y12{y1 - ilblM( 1 + il- k,2 + 2if,y) 

+ b2M( - i/- k, - 2if,y)/l}, 

where 

y = 2~kz - EZz, 

k= -lE/~e-E2. 

(2.52) 

(2.53) 

(2.54) 

(2.55) 

(2.56 ) 

(2.57) 

The connections between the coefficients may be deduced 
from substitution of (2.55) and (2.56) into (2.51) and 
(2.52): 
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bl = - ia2k 1[2~e - E2(1 + 2il)], 

b2 = - [2~k2 - E2(1 - 2it) ]/ik. 
(2.58) 

The behavior of solutions in the asymptotic region when 
z -. 00 is given by 

SI =e-YI2/-i'CI +e- YI2/'c2, 

S2 = e -YI2/ + ildl + e -YI2y - ild2. 

F. A2=llz, I=const 

(2.59) 

(2.60) 

Equations (2.8) and (2.9) with such potential take the 
form 

i(m - k)A + (- ax + (k2 + 1 Ix»B = 0, 

i(m + k)B + (ax + (k2 + Ilx»A = 0. 

(2.61 ) 

(2.62) 

Analogously to those presented previously, these equa­
tions may be solved exactly; namely, we have 

A = e- y/2{aIY1+ IM(1 + 1 + 21k21A,2 + 2/,y) 

+ azY-'M( -I + 21k21A, 1 - 2/,y)}, (2.63) 

B=e-YI2{al{i(mo+k)/2~q +m~ _k2(2/+ 1)}-1 

XM(1 + 2Ik2IA,2Iy)y' 

+ a I {( mo - k) /2i~ k ~ + m~ - k 2 (1 - 2/)} - I 

X M(1 - 1 + 21k21 A,2 - 2/,y)yl -I}. (2.64) 

III. SOLUTION OF THE DIRAC EQUATION IN 
CYLINDRICAL COORDINATES 

The Dirac equation in general cylindrical coordinates 

x = ell- cos e, y = ell- sin e, z, t (3.1) 

in the presence of vector fields in a diagonal tetrad gauge 
takes the form 

{yl(~ -L4p)+i(~ -IAe)+r(az-iAz ) 

+ y4(at - iA4) + mo}1{I = 0. (3.2) 

In the case where the vector potential has only one com­
ponent, i.e., Ap = Ae = A z = 0, A4 = A4(J-l}, Eq. (3.2) al­
lows a separation of variables such as 

/(12 = - y4i aplell- + tyl aelell- + iyli(A4 + E), 
(3.3 ) 

/(z = - ylirt az + ylitmo, 

[/(12'/(Z] = 0, (/(12 + /(z)iji = 0. 

(3.4 ) 

(3.5 ) 

Here it is taken into account that the operator of Eq. (2.2) 
and the operator of energy - i at are commute. 

In order to solve Eq. (3.2) and to find the explicit form 
of the bispinor let us transform from standard representation 
of the Dirac matrices to some "almost standard" representa­
tion through the transformation 

y-.S-IyS, S= (ll V2) (1 +irt), (3.6) 

which correspond~to the transitions r -+it and t -+ir· 
The operator K z leads to the equations 
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- caz + mo)X = krp, 

caz - mo)rp = kX, 

\jI = (%), 

C3.7) 

(3.8) 

where 

\jI = S -I'll = '110 exp{i(kzz - Et)}, 

'110 = (;). 

(3.9) 

(3.10) 

Thus we have 

k Z = k; + m6, (3.11 ) 

" where k is an eigenvalue number ofthe operator K z • 

Equation (3.3) leads to the system 

{(ulle")aJL + i~mle" - a3(A4 + E)}rp = krp, (3.12) 

{(ulle")aJL + i~mle" - a3(A4 + E)}X = kX, (3.13) 

where m is an eigenvalue of the operator - i ao. The num­
ber m takes the values permitted by the corresponding 
boundary conditions in the Cartesian tetrad gauge. 

The transformation S( 0) that achieves the transition 
from the diagonal tetrad gauge to the Cartesian one has the 
form 

A 

S( 0) = e - 1'/2 exp( - (0 12)rl y), (3.14) 

I.e., 

'II Cart = S - I (0) 'II Oiag. (3.15) 

According to (3.14), S(O + 21T) = - S(O) and therefore 

'llDiag (0 + 21T) = - 'IIoiag (0). (3.16) 

So we have m = n + !, where n is an integer number. 
Equation (3.12) leads to the system 

{e-JL(aJL + m)}rpz = {k + (A4 + E)}rpl' (3.17) 

{e-JL(aJL - m)}rp\ = {k - (A4 + E)}rpz, (3.18) 

where 

rp = (:J (3.19 ) 

The system of equations (3.17) and (3.18) allows exact 
solutions in the case of the potential A4 = lie". 

A.I=O, free case 

In this case, instead of (3.17) and (3.18) we have 

az 
pZ a;\ _{m(m_l)+(k 2 _E 2)p2}rp\=0, (3.20) 

aZ 
pZ a;z -{m(m+1)+(k 2 -E2)lp 2}rp2=0, (3.21) 

where a new variable e" = P is introduced. 
The solutions of (3.20) and (3.21) are well known: 

rp\ = crfpJm _ 1I2 (i.,fk
2 - E 2p), (3.22) 

rpz = CZ/pJm + 112 (i.,fk 2 - E2p ). (3.23) 

After substitution of (3.22) and (3.23) in (3.17) and (3.18) 
we have the relation between the coefficients 

c\ = ic2.,f(k - E)/(E + K). (3.24) 
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In the Cartesian gauge the radial solutions have the form 

rp\-Jm _ 1I2 (i.,fk
2 - E2p ), (3.25) 

(3.26) 

For the asymptotic behavior (large p) we have the well 
known cylindrical wave 

J m +\/2(i.,fk 2 -E2p) 

-> IT. 1 cos{.,f E 2 _ k 2 P - !!...(m + !) _ !!...}. 
\j 1T .J7(2E1 P 2 2 4 

B. A4=1/e", I=const 

Taking into account the change 

e" =p, 

we have instead of (3.12) 

(ap + mlp)rpz - (E + k + IIp)rp\ = 0, 

(ap - mlp)rp\ + (E - k + I Ip)rpz = o. 

( 3.27) 

(3.28 ) 

(3.29) 

( 3.30) 

We find the solutions of (3.29) and (3.30) in the form 

rp\ =.,fl-Elke-J..p{F\(Up) -Fz(Up)}, (3.31) 

rpz=.,fl-Elke-J..p{F\(Up) +F2(Up)}, (3.32) 

where 

(3.33 ) 

The substitution of these expressions in (3.16) and (3.17) 
leads us to the equations 

(3.34) 

(3.35) 

where .0 = Up. 
Let us consider the behavior of the solutions of these 

equations when .0 -> O. Then it is convenient to write 

F\ = ajJv, Fz = ajY. (3.36) 

Here ai' az, and v are constants connected according to 
(3.34) and (3.35) by the relations 

(v + IE IA)a\ + (m + IklA)az = 0, 

(- m + IkIA)a\ + (- v+ IEIA)az =0, 

from which we have 

v = .,fm2 _/2. 

Introducing the function 

(3.37) 

(3.38) 

(3.39) 

Fz = ,ovGz(,D) , (3.40) 

we can see that the function G2 satisfies the equation 

pG 2+(2v+1-p)G;+(/EIA.-v)Gz =0. (3.41) 

Then 

G2 = cM(v -IE IA,2v + 1,.0). (3.42) 

Taking into account Eqs. (3.34) and (3.35) we have 
finally 
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F) = - c[ (VA -IE)/(mA -lk)]PV 

XM(v+ 1-IE/A,2v+ l,p), 

F2 = cPVM(v -IE /A,2v + 1,p). 

(3.43) 

(3.44) 

Formulas (3.42)-(3.44) define the functions of the variable 
p for E < k and E> k. 

Note that in the case E < k the energy spectrum will be 
discrete. In order to find the possible values of energy it is 
necessary to use the condition of finiteness of the functions 
F) and F2 when p -+ 00. 

We have the following behavior of the hypergeometric 
functions for p ~ 1 (see Ref. 6): 

M(a,b,p)-+e- i1TO nb) -o+nb)pO-beP (3.45) 
nb-a) p na) , 

from which we can see that M(a,b,p) does not contain the 
exponentially increasing term if 

Urea) = O. (3.46) 

Application of this condition to the functions F) and F2 gives 

un V - IE / A) = o. (3.47) 

Since the poles of the gamma function are negative integer 
numbers and zero, we have at last 

v-IE/A = - n. 

So the possible values of the energy are 

En =k/{(I/(n+v»)2+ n1l2. 

(3.48 ) 

(3.49) 

The solution of the Dirac equation in the diagonal tetrad 
gauge has the structure 

_(ikZ :m 
'l'Diag -

xexp{i(kzz + mtp - Et)}. (3.50) 

Now we shall investigate the possibilities for exact solu­
tions of the Dirac equation (3.2) if we separate the variables 
first with pair separation of J.l,e from z,t, i.e., 

{r'{~ -iAI')+ye(~ -iAe)}r~lII= -iklll, 

(3.51 ) 

(3.52) 

Taking into account the standard representation of the 
Dirac matrices (2.5) we can rewite Eq. (3.51) in the form 

{itr( ~ - iAI') - iU)( ~ - iAe) + k }'I'L = 0, (3.53) 

{ - itr( ~ - iAI') + iU{ ~ - iAe) + k } '1'2 = 0, 

(3.54) 

III = (!J (3.55) 

which leads to 

'1') = C(Z,t)a3'1'2' (3.56) 

Using the explicit form of the Pauli matrices, 
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1) tr = (0 
o ' i 

- ~), 
(3.57) 

we have from (3.53) 

ktp) - i{(ae/ell - iAe) + i(al'/ell - iAI' )}tp2 = 0, (3.58) 

ktp2 + i{i(al'/ell - iAI') - (ae/ell - iAe )}tp) = O. (3.59) 

The corresponding equivalent second-order equations 
take place: 

{d;p - (ke + 1)ke/p2+dpAe -A~ 

- 2keAe/ P + k 2}tp) = 0, (3.60) 

{d;p - (ke - 1)ke/p2 + dpAe -A ~ 

- 2keAe/ P + k 2}tp2 = O. (3.61) 

These equations admit exact solutions for the potentials 
Ae = Cr and Ae = C, where C is constant. 

C.Ae=Cr, C=const 
This case corresponds to a constant magnetic field 

B = 2Cez • 

After the change 

J.l = yp2, 

(3.60) and (3.61) lead to 

{ 
a2 + ~ _ (ke + 1)ke _ C 2J.l 

J.l 1'1' 2 I' 4J.l 4y 

+ (k 2 - 2keC + C) }tpl = 0, 

{ 
a2 +~a _ (ke -l)ke _ C

2
J.l 

J.l 1'1' 2 I' 4J.l 4y 

+ (k 2 - 2keC - C) }tp2 =0. 

Introducing the new unknown functions 

(3.62) 

(3.63) 

(3.64 ) 

(3.65) 

tpl,2 = eal'J.lfJJ;,2' (3.66) 

where a and {J are constants, we find for II and/z the differ­
ential equations 

(3.67) 

(3.68) 
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where These equations may be simplified if we set 

(x2 - C 2/4r = 0, (3.69) a = 2~C~ - k\ k = - 2keCe/a; f.LI.2 = ± (ke + ~). 
(J«(J-!) - (ke ± 1)ke/4=0, (3.70) (3.89) 

I.e., 

(J = (ke + 1)/2 or ke/2, 

and for 

(3.71) 

C=y, a=!, (3.72) 

Eqs. (3.67) and (3.68) take the form 

{p, a!" + (ke + ~ - f.L)a" + (k 2/4y - 1 )}/I = 0, 
(3.73) 

{p,a!" + (ke +~-f.L)a" + k2/4y}t; =0. (3.74) 

These equations admit polynomial solutions under the con­
dition 

Then, instead of (3.73) and (3.74) we have 

{p, a!" + (m + 1 - jL)a" + (n - 1)},fJ = 0, (3.76) 

{p,a!" + (m-f.L)a" + n}/Z =0, (3.77) 

where 

m = ke +!. (3.78) 

The solutions of these equations are the Laguerre polynomi­
als6 

The solutions of these Whittaker equations are the func­
tions 

M k ." (z) = e - Z/2ZlIZ + "M(! + f.L - k,l + 2f.L,z). (3.90) 

Because of (3.87) and (3.88) the parameter f.L takes two 
values and therefore we formally have two functions of type 
(3.90) as the solutions but one ofthem is singular at z = O. 

Note that Eqs. (3.60) and (3.61) are very simple with 
the potential Ae = Ce, 

kcpI + (ap - (ke/ P + Ce ))cpz = 0, (3.91) 

kcpz = (ap + (ke/ P + Ce ) )CPI = O. 

According to (3.90) we finally have 

+ be-Z/2z112-"'Mq - f.LI - k,l - 2f.LI'z), 

CP2 = ce - z12Z112 + "'Mq + f.Lz - k,l + 2f.Lz,z) 

+ de- z/2ZllZ -"'Mq - f.Lz - k,l - 2f.Lz,z), 

where 

(3.92) 

(3.93) 

(3.94) 

f.LI=ke +!, f.L2=ke -!. (3.95) 

Substituting these solutions into (3.91) and (3.92) we 
have the relation between the coefficients 

II =cIL';_I' 

12 = c2L ';_-11, 

(3.79) a/c = k /a(2ke + 1), alb = k /a(2ke - 1). (3.96) 

(3.80) 

where CI and C2 are constant coefficients. 
Substituting (3.79) and (3.80) in (3.76) and (3.77) we 

have the relation between the coefficients 

CI/C2 = 2yI/2/k. (3.81) 

After a unitary transformation that is the inverse of 
(3.14), we finally have the expressions of CPI and CP2 in the 
Cartesian tetrad gauge: 

m = e- (l12),,"m12 (2 y I/Z/k)L m_ , 
T1Cart r- n 1 

m =e-C1l2),,"Cm-l)12Lm-l. 
TZc~ r n-l 

D. Ae =Ce =const 

(3.82) 

(3.83) 

Now Eqs. (3.60) and (3.61) maybe reduced to the form 

{pZa~p - (ke -l)ke 

- (C~ - kZ)p2 - 2keCep }CPI = 0, 

{pz a~p - (ke + 1 )ke 

- (C~ - kZ)pz - 2keCep }cpz = o. 
After the change 

z=ap, 

we have 

(3.84) 

(3.85) 

(3.86) 

{a;Z + ( -! + k /z + U - (ke + ~)2)1zZ)}CPI = 0, (3.87) 

{a;z + ( -! + k /z + (1 + (ke - !)Z)/zZ)}cpz = 0, (3.88) 
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So instead of (3.93) and (3.94) we have 

CPI = ae - Z/Z/o+ IM(ke + 1 - k,2ke + 2,z) 

+be-z12z-kOM(-ke-k,-ke,z), (3.97) 

cpz = (aa/k)(2ke + l)e-Z12zkOM(ke - k,2ke,z) 

+ (bk/a)( 2ke _1)-le-z12z1-kHM 

X (1- ke - k,2 - 2ke,z). 
(3.98 ) 

Note that Eqs. (3.51) and (3.52) are investigated in 
Ref. 7 with an application to quaternions. But the author 
only looks into some of the possibilities we consider and he 
does not deduce the relations between the coefficients of the 
solutions. 

IV. SOLUTION OF THE DIRAC EQUATION IN 
PARABOLIC CYLINDRICAL COORDINATES IN THE 
ABSENCE OF FIELDS 

Here we consider the most complex case of separation of 
variables in the Dirac equation in the search for an exact 
solution when Lame's functions depend on two variables 
even in the diagonal tetrad gauge. The general approach for 
such cases is proposed in Ref. 1. We consider here only the 
case of free motion, i.e., we investigate the "free" parabolic 
cylindrical spinor waves. 

The free solutions of wave equations, i.e., in the absence 
of fields, play an important role both for understanding the 
nature of the spreading of the waves of different geometric 
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types in space and for the construction of a theory of interac­
tions. It is well known that the latest aspect is most elegantly 
achieved by free plane waves interacting locally. It is difficult 
to accept as truly free waves the well known cylindrical, 
spherical, and other types of waves because the amplitudes 
of such waves change with distance. We can, however, talk 
about a natural damping of divergent spherical or cylindri­
cal waves. But how do we accept the "supernatural" amplifi­
cation of convergent waves? What is the powerful source 
that generates them in the infinite distance and forces them 
to converge along fixed congruences? In this sense if we ac­
cept the primitive correspondence "free particle-free wave" 
and take into account that the free particle moves with con­
stant impulse and energy, i.e, with constant direction and 
amplitude in the wave sense, we can accept as the only possi­
ble truly free wave the de Broglie's wave, which has won 
respect for its constant "love of freedom." 

The free plane, cylindrical, and spherical waves are well 
known in the literature.8

•
9 Here remembering about the con­

ditional freedom of geometrically complex waves we present 
the "free" parabolic cylindrical wave, i.e., the free solution of 
the Dirac equation in the corresponding coordinates. 

The Dirac equation in the parabolic cylindrical coordi­
nates 

x = (fl2 - Y)/2, Y = flv, Z, t 

takes the form 

(4.1 ) 

{(t'lh)a/L + (yYlh)ay + r az + Y' at + mo}iIi = 0, 
(4.2) 

( 4.3) 

As the single Lame's function in (4.1) depends on two 
variables fl and v, it is natural first to fulfill the separations in 
pairs (fl, v from z,t) : 

{t' aIL + yY ay )rY' + ihk}<I> = 0, (4.4) 

{y4 az + rat + morY' - ik}<I> = 0, (4.5) 

where k is the constant of separation. 
Writing 

(4.6) 

we can find the structure of the bispinor <I> and its depen­
dence on the variables Z and t: 

<I> - ( rp ) i(k,z - Ell (47) 
- {iUJ(E - mo)/(kz - ik)}rp e . . 

Here <I> is a new unknown bispinor connected with '11 by the 
relation 

(4.8) 

Eis the energy of the state, k z is thez component of the wave 
vector, and rp depends only on variables fl and v. 

Using the standard representation of the Dirac matrices 
(2.5) we have from (4.4) 

(c? aIL - a l ay + kh)rp = 0, 

(-c?a/L +alay +kh)X=O. 

(4.9) 

(4.10) 

Because of the structure (4.7), Eqs. (4.9) and (4.10) are 
equivalent and therefore we only consider Eq. (4.9). 
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The presence of the expression h = (fl2 + y) 1/2 in Eq. 
( 4. 9) does not allow us to separate variables immediately in 
this equation. However, after a similarity transformation by 
means of the operator 

s= (l/~){(h+fl)1/2+iUJ(h-fl)1/2} (4.11) 

(see Ref. I) we have the more simple equation 

{(c?a/L+ikfl)-i(c?ay-ikv)}t=O, ip=st. (4.12) 

Introducing a new two-component spinor 

t = {- iCc? ay - ikv) - UJ(c? aIL + ikfl)}S, (4.13) 

we have the second-order matrix differential equation 

{(a!/L + ic?k+ k 2fl2) + (a~ -ic?k+k 2y)}S=0, 
(4.14 ) 

which allows the separation of variables 

(a;'/L + ic?k + k 2fl2)S = AS, 
(a~y - ic?k + k 2y)S = - AS, 

where A is the separation constant. 

(4.15 ) 

(4.16) 

Now we make a transition to a new representation of 
Pauli matrices in order that c? -+ UJ. It is easy to see that such 
a transition may be achieved by means of the corresponding 
unitary transformation 

U= (1/~)(1 +ial), U- I c?U=a3. (4.17) 

Then we have instead of (4.15) and (4.16) 

(a!/L + ia3k + k 2fl2 - A)1] = 0, 

(a~y - ia3k + k 2y + A)1] = 0. 

(4.18 ) 

(4.19 ) 

Because of the separability of the variables fl and v, we can 
now write 

1]1 = P(fl)Q(v), 1]2 = R(fl)S(V), 

where the unknown functions satisfy the equations 

(a!/L +ik-A+k 2fl2)p(fl) =0, 

(a;'/L -ik-A+k 2fl2)R(fl) =0, 

(a~ - ik +A + k 2y)Q(v) = 0, 

(a~ + ik + A + k 2y)S(v) = 0. 

(4.20) 

(4.21) 

(4.22) 

(4.23 ) 

(4.24) 

The standard solutions of these equations of the parabolic 
cylinder are well known.6 

Taking into account the transformation (4.17) we have 
a spinor structure 

S = _1 (1 _ ial) (PQ) = _1 ( PQ - iRS ). 
~ RS ~ -iPQ+RS 

(4.25) 

Analogously in correspondence with (4.11) and (4.13) 
we have 

rpl = {(h +fl)1/2 + ia3(h _fl)1/2}{i(Qy - ikQv)P 

+ iUkR/L - Rfl)S - (Sy + ikSv)R 

- (P/L + ikPfl)Q, (4.26) 

<P2 = {(h + fl) 1/2 + ia3(h - fl) 1/2}{( Qy - ikQv)P 

+ UkRfl - RI')S - i(Sy + ikSv)R 

(4.27) 
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Finally with (4.7) and (4.8) we obtain the exact solution of 
Eq. (4.2): 

f ~( :'~:i~:~}"" EO. 
(4.28) 

Regarding the discussion of the exact solution (4.28), 
i.e., the parabolic cylindrical wave, note that the space de­
pendence of this wave on the x and y variables is determined 
by the equation on the j.L and v variables (4.4) separated 
from z and t (4.5). It allows us to affirm that the vector 
potential of the kind A4 (z) or A z (t) may be included in the 
solution (4.28) in a trivial way. 

For example, in the caseA4 (z), instead of (4.5) we have 

{y4 az + rIa, - iA4 (z)) + mory4}<I> = ik<l>. (4.29) 

Taking into account the stationarity of the state after the 
similarity transformation 

{H}-S-I{H}S, 1] =S<I> = (~~), 
by means of the operator I 

s= ~(l- Y"r)(l + irvy4), 
we have the equations 

{o.! az - cr(E + A4)}7J2 - Ul?mo - k)1]1 = 0, 

{o.! az - cr(E + A4)}1]1 - Cil?mo - k)1]2 = O. 

According to the structure of these equations, 

(
a(z») 

1]1 = 1]2 b(z) , 

( 4.30) 

(4.31) 

( 4.32) 

(4.33 ) 

where the functions a and b in the standard representation of 
the Pauli matrices satisfy 

{az + iCE + A4) }b(z) - Umo - k)a(z) = 0, 

{az - iCE + A4 )}a(z) + Cimo + k)b(z) = O. 

By (4.30) and (4.31) we have 

(

f{JI(j.L,v)(a + b») 
<I> = f{J2(j.L,v)(a + b) e- iEI, 

f{J3(j.L,v)(a - b) 

f{J4(j.L,V) (a - b) 

(4.34) 

(4.35 ) 

where f{JI' f{J2' f{J3' and f{J4 are components of the bispinor 
solution of Eq. (4.4). 

Analogously, the vector potential A z (t) may be intro­
duced. 

Finally we consider the asymptotic behavior ofthe solu­
tion (4.28) tox-+ oo,y- 00. Because of (4. 1) the conditions 
x- 00. y - 00 are equivalent to the requirement j.L - 00 for 
any v (or inversely v- 00 for any j.L). 

According to the relation6 

M(a,c,z)_r(c) e'z(a-c) + r(c) z-aei1Ta, (4.36) 
rca) rcc - a) 

we find 

_ ikp (j.Li). 12kA + eikll-'j.L - i)'12kB ) 
f{J e \.p.iAl2kC+eikll-'j.L-i)./2kD ' (4.37) 

where the functions A, B, C, and D depend only on v and 
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(4.38 ) 

Noting the explicit connection of x,y with j.L,V (or, equiv­
alently, withp), we have 

_( (x + p)i). /4kAe- ikp + eikx(x + p) - iAl4kB) 

f{J (x+p)iA/4kCe-ikp+eikx(x+p)-iAl4kD' (4.39) 

for large x and y (or, equivalently, for large p ). Then our 
solution takes the form of the superposition offree plane and 
cylindrical waves with amplitude modulation. 

V. DISCUSSION 

The possibilities for the method of separation of vari­
ables in the Dirac equation in the presence of vector fields in 
the search for exact solutions are not exhausted by the solu­
tions considered here. They only demonstrate the usefulness 
of our method. I Even in the statement of the problem we 
have other possibilities for exact solutions. These are the so­
lutions in the same geometries and for the same external 
fields but with other orders of separation of variables. Then 
we have the natural problem, namely, the problem of the 
unique solution (Cauchy problem). Note that we have not 
considered the boundary conditions for our solutions. Only 
after the introduction of boundary conditions can we select 
the physical solutions. Note, too, that as the Dirac matrices 
have the special structure and each Dirac 4 X 4 matrix con­
sists of the 2 X 2 matrices, each component of the Dirac bi­
spinor finally is determined by the second-order differential 
equation for each variable, whose solution contains two lin­
early independent functions. So the number of mathemat­
ically different solutions will be determined by the number of 
combinations of different solutions of the equations on the 
separated variables. The physical solution will be deter­
mined by criteria of finiteness, square integrability, bound­
ary conditions, and others. 

In any case, we have demonstrated the possibilities for 
the search for exact solutions of the Dirac equation by means 
of our method proposed in Ref. 1 for all types of variables, 
namely, in the "plane" Cartesian coordinates, in the curvi­
linear cylindrical coordinates, and finally in the exotic para­
bolic cylindrical coordinates where Lame's function does 
not separate its variables in the diagonal tetrad gauge. 
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The equivariant inverse problem for Yang-Mills-type Euler-Lagrange expressions is solved in 
the affirmative. This leads to a proof of the uniqueness of the Yang-Mills equations. 

I. INTRODUCTION 

Let P(M,G,11") be a principal fiber bundle with base 
space M, total space P, and structural group G. Let 
n = dim M, r = dim G. For a, /3 non-negative integers we 
define V: = Tp (LG), the space of a contravariant, /3 covar­
iant tensors on the Lie algebra LG of G and p: G -# G L ( V) 
by 

""'J ""'J 
p: = Ad ® '" ® Ad ® Ad ® ... ® Ad, ( I ) 

where 
""'J 
Ad(a)( 71)(Xe): = 71(Ad(a)(Xe»), (2) 

and Ad is the adjoint representation of G. Let z be the local 
chart around e in G given by expo 

A gaugefield is a connection form won P. If U is an open 
set in M then a gauge is a pair (U,O') where 0': U -# P is a 
smooth section of11". For a gauge (U,O') let (U,,: = O'*(U. Then 
(U" is an LG-valued one-form defined on U. If (x, V) is a local 
chart in M such that U n V 1=0 then 

(U" = (A f dxi)ea 

(latin letters run from I to n, greek letters run from 1 to rand 
we use the summation convention). The A f are called the 
gauge potentials of (U associated to (U,O'), (x, V), and ea' 

If ( U,O') and (U' ,0") are two gauges such that 0'( m ) 
= 0" (m) for some m in U n U', then there is a smooth func­

tion ¢: un u' -# Gsuch thatO'·¢ = 0' in U n U'.ltiswell 
known that 

A ;a = Adp 0 ¢ - 1 A f + I p 0 ¢ a!fJ ; 
ux' 

(3) 

where ¢fJ: = zfJ 0 ¢; Ip dzfJ are the left invariant one-forms 
generated by the dual basis of ea, and Ad(a)ea 
= Ad~ (a)ep . 

We say that Tis a gauge tensor field o/type (V;r,s,w) ifit 
gives for every gauge (U,O') a V-valued relative tensor field 
T" of type (r,s,w) defined over U. We say that Tis a gauge 
tensor field of type ( p;r,s,w) if furthermore 

To' =p(¢-')T" in un U', (4) 

where p is given by (1). 
The coefficients of the curvature form, defined as 

F a. _ A a A a + C a A pA r ij' - j,i - i,j Pr i j' (5) 

where Cpr are the structure constants associated to ea , are 
the components of a gauge tensor P of type (Ad;O,2,O). 

If we have a Lorentz metric gij on M, the gauge covar­
iant derivative of P is defined as 

P~lh: = Pij,h - P kj r~ - Pile rj~ + Pij Cpr A~, (6) 

where r}l. are the Christoffel symbols associated to gij' 
The Yang-Mills equations are 

B P aij Ji 
ap Ilj = 13' (7) 

where Bap are the coefficients of an Ad G-invariant bilinear 
symmetric form on LG. They can be obtained through a 
variational principle as follows. If L = L(gij; A f; A f.), 
then through a variation of A f one obtains the Euler-La­
grange equations 

E~(L) =J~, (8) 

where 

(9) 

To allow for possible interaction with a gravitational 
field, it is of interest to define the energy momentum tensor 

Tij=Eij(L) = aL . (10) 
agij 

If one chooses L as 

L -B paijpfJ 
- ap ij' (11) 

then Eq. (8) becomes (7) and Eq. (10) becomes 

Tij = Bap (pai
k pPjk - ! gijpahk p ~k)' (12) 

The left-hand sides of (7) and (12) are gauge tensors; 
the same is true for the Lagrangian ( 11 ). However, while the 
gauge invariance (i.e., being a gauge tensor) is mandatory 
for the field equations, it is not so for the Lagrangian, be­
cause in general it has no physical meaning. The equivariant 
inverse problem 1 for this particular case could be stated as 
follows. If L is a function of the type 

L = L(gij; Pij), (13) 

such that E~ (L) and Eij(L) are gauge tensors, is there a 
gauge invariant Lagrangian L such that E~ (L) = E~ (L) 
and Eij(L) = Eij(L)? We will prove that this is the case, a 
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fact that restricts severely the form of the function given by 
(13). Using this restriction, we will prove that Yang-Mills 
equations are the only possibility, thereby proving the 
uniqueness of these equations. It is worthwhile to note that 
the Pij satisfy identically the following2

: 

*paij 0 IIj = . (14) 

This problem was treated by Homdeski. 3 He added the 
following strong hypothesis about the form of the Lagran­
gian in fiat space-time: that it reduces to 4g112 raP p Pijllj' 
where raP are the components of a symmetric Ad G invar­
iant bilinear form on LG. This allows him to find the general 
form of the Lagrangian. We do not assume such a hypothe-
sis. 

II. THE EQUIVARIANT INVERSE PROBLEM 

We will work in a four-dimensional space-time, and we 
will only assume in this section that E ij(L) is a gauge tensor. 
This leads to Theorem 1. Let us denote L ij = E ij(L) and let 
us suppose that r = dim G = 3. If we consider H ihjk given by 

{g H ihjk = L ijghk _ L ikgh} 

(15) 

then it is clear that H ihjk is skew-symmetric in i,h and skew­
symmetric inj,k. Then, by a previous result4 we can write 

Hihjk = a' paih p pjk + b' paih *p P}k ap ap 

+ caP * pain p pjk + dap * pain * p {ljk, (16) 

where the coefficients are gauge invariant scalar densities 
and 1 ';;;a, (3.;;;3. Since H )hik = H ikjh, it follows at once that 

(17) 

Replacing in (16) and multiplying by ghk it follows that 

(l/{g)L ij = a't) + 2aap paik p Pk} 

+b:':p(paik*pp)k+pa)k *pPik), (18) 

I 

taking account that 

*paik *P P}k = _ ~ t}t/Jap + paj
k p Pik, (19) 

where 

t/Jap = paij p P ij. (20) 

Decomposing b :.:p in its symmetrical and skew-symmet­
rical parts, and taking account that 

pa}k * p Pik + p Plk * paik = ~ gij ,paP, 

where 

.IPP = paij *p Po. 
If' I)' 

then it follows that 

(21) 

(22) 

L ij = {g {atl + aap TaPij + baf3 saPil}. (23) 

We have proved the following lemma. 
Lemma 1: If L ij = L ij(ghk; Phk ) is a tensorial concomi­

tant symmetric in i, j, then L ij has the form (23), where 
aaP = apa , baP = - bpa ' and a, aap, and baP are gauge in­
variant scalars. Also, 

TaPij = pais p f3sj + pals p /lsi, 

sa/lij = pais *P psj + pals *p /lSi. 

(24) 

(25) 

By the way, since (23) is valid for any symmetric tensor 
L ij, it follows that the ten tensors gij, TarJij, and S aIlij are 
linearly independent (1 ';;;a, (3.;;;3). 

By a previous results it is known that 

a = a( t/Jap; t/l'(3), aa/l = aa/l ( t/Jpv; t/JpV), 
(26) 

baf3 = ba/l( t/J!-'v; t/JpV) 

in a dense subset of the set of concomitance variables (i.e., as 
long asP l,p2,p3, *p I, *p2, *p3 is a linearly independent set; 
see Refs. 4 and 5), and where t/Jap and t/I'/l are given by (20) 
and (22). 

Since L ij = aL lagij' then L ij;hk = L hk;ij. In view of 
(26), this can be written, after some reductions as 

( 
aa - 2 aa _ aaaP t/Jpv) Tapijghk + ( _ a + 2 aa + aaaP t/Jpv) Ta/lhktj 

P at/JaP at/Jpv ap at/JaP at/Jpv 

+ 2 ( aaaP _ aapv ) TaPijT pvhk + 2 aba(3 sapijT !-,vhk _ abap t/JpvsafJijghk 
at/J pv at/JaP at/J pv at/Jpv 

-2 abap sa(3hkT pvil + abap t/JpvsaPhkg'i+bapth(pals *pPsk_paks *pPsl) 
at/Jpv at/Jpv 

+ ba(3 glh(pais *p f3sk - pa\ *p (3Si) + baP tk(pa}s *p Psh _ pan. *p (3S}) + ba/l gjk(pais *p /lsh _ pa\ *p PSi) = o. 

Multiplying (27) by gjk and P r" for an arbitrary P rh we 
obtain 

_ 8C A.apvpy + 8b ( _ .1. vpyap + .1. ypvaP) appv 'f' appv 'f' 'f' 

- 12bap t/J ya/l = 0, 

where 

2383 

Cappv = aaap/at/J!-'v - aapvla¢aP, 

bappv = abapla¢pv, 
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(28) 

r 

and 

.I.vpyap = pvi p pj P yh pak *P /ls 
Y; J h k s l' 

t/JyaP = p y~ pa}h *p Phi' 

(27) 

It is very easy to prove that t/J ya/l is skew-symmetric in all of 
its greek indices. Also, from the definition we have 

(29) 

L6pez. Noriega, and Schifini 2383 



                                                                                                                                    

and 

From (21) it follows easily that 

t/Jvl'ya{3 = _ t/JvI'Yf3a _ ! ¢VI'Y ~{3, 

t/Jvl'ya{3 = _ t/J{3/.trav _ ! ¢I'ya t/Jv{3. 

From (30) and (31) it follows that 

t/Jvl'ya{3 = _ ~l'yv{3 _ ! ¢I'Yv ~ +! ¢{3I'Y t/Jva 

(30) 

(31) 

-! ¢I'ya t/J,,{3, (32) 

and from (7) in Ref. 4 we know that (9) in Ref. 4 is true. 
Written out in full and using (30) we have 

t/J ya{3I''' = t/J {3l'yav + ! ¢ {3I'Y t/Jav _ ~ t/J {3I'Y ¢av 

_! t/J{3I'V ¢ya _! ¢{3l'a t/Jrv, (33) 

where ¢{3I'Y = F {3~ F I'jh F yhi is skew-symmetric in all of its 
indices. 

It is straightforward to prove that 

*Faij F {3hk =! { ~{3( gih gjk _ gik gjh) 

+ 2Famk * F {3j m gih - 2Famh * F {3j m ik 

+ 2Fakm *F {3im gjh _ 2Fahm *F {3i
m 

gjk 

+2Fahk *F{3i]}. (34) 

Multiplying (34) by F hk F I' /i F v Ij we deduce 

t/J vI' ya{3 = t/J I'vra{3 + ! t/J vl'a ¢ {3y _ ! ¢ vI' Y ~{3 

(35) 

Using (31), (29), (31) again, and (35) it follows that 

b a{31' v ( - t/J vI' ya{3 + t/J Yl'va{3) 

= ba{3l'v (t/Jl'y{3 ¢av + ¢ YI'{3 t/Jav). (36) 

Due to the skew-symmetry of t/Jl'y{3 and ¢l'y{3 it follows 
that the only terms in (36) that could be different from zero 
are those that have 

fl =f r =1= P =1= fl, fl =1= r =1= a =1= fl, 

v=l=r=l=P =1= v, v =1= r=l=a=l= v. 
(37) 

Being r = 3 wededucefrom (37) that it mustbea = P, 
and so all terms in (36) are null because of the skew-symme­
try of ba{3' Then (28) reads 

8C A,a{3vI'Y + 12b .1.ya{3 = 0 a{3l'v 'I' a{3 'I' • (38) 

SinceF Yih was arbitrary, we can differentiate (38) with 
respect to F Yih and then multiply by * F Yih to obtain 

- 8Ca{3l'v ~{3vI'Y + 12ba{3 ¢ ya{3 = O. (39) 

Using (33), (30), (31), (30) again, (35), and (29) it 
follows that 

C .1.a{3vpy = 1 C .I.apy A,v{3 + 1 C A, pay .1.{3v 
a{3pv 'I' 2 a{3pv 'I' 'I' 2 a{3pv 'I' '1" 

(40) 

and so, repeating the argument that led to (37) we deduce 
that (39) reads 

2384 

- 8Ca{3pv ~{3vpy = - 16(C1122 t/J1l22Y 

+ C I133 t/J1133Y + C2233 ~233y). 

(41) 
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Similarly, using (7) of Ref. 4 and the identity ¢a{3vPY 

= - ¢ I'v{3ay we obtain 

8Ca{3pv ¢a{3vPY = 16(C1122 ¢1122Y + C I133 ¢1133r 

+ C2233 ¢2233Y). (42) 

Taking r = 3 in (38) and (39), and taking account of 
(41) and (42) we have the 2 X 2 system, 

- 16Cl122 ¢11223 - 24b12 t/J123 = 0, 

- 16CU22 t/J11223 + 24b 12 ¢123 = O. 

(43) 

(44) 

By working out an example we see that the determinant 
of ( 43) and (44) is not identically zero and so being a poly­
nomial, it is non-null in an open dense set. Then b12 = 0 
everywhere. Similarly, taking r = 2, and r = I, we obtain 
b13 = b23 = O. 

Now, from (27) and from the independence of tensorial 
products of independent tensors, we deduce 

a - 2 ~ _ aaa{3 t/JI'V - 0 
a{3 a¢a{3 at/Jpv -, (45) 

and 

(46) 

From ( 46) we deduce that there is a functionf = f( ¢a{3; 

~{3) such that 

a = af (47) 
a{3 a¢a{3 . 

From (47), we can write (45) as 

~ (f - 2a - ~ t/Jpv) = 0, 
a¢a{3 at/Jpv 

(48) 

and then we obtain 

a = 1. (f -~ t/Jpv) + h(~{3), 
2 at/Jpv 

(49) 

for some function h. Substituting everything in (23) we have 

(50) 

where Lo = Jif is a scalar density. 
It is important to note that within the domain of the 

variables ¢a(3, t/Ja(3, it is included that ~(3 = 0 for all a, P, 
even if we take account of our hypothesis that 
F 1,F2,F3,*F 1 ,*F2,*F3 are linearly independent. In fact, it is 
enough to consider (gij) = diag( - 1,1,1,1) and Ft = 8: 
'8J - 8;'8J, Ft = 8: '8J - 8;'8J, and Ft = 8: '8; - 8; '8). 

Now, let k be the function 

k( t/Ja{3) = h( t/Ja{3) - h (0) - a~{3 (0) . ~(3, (51) 

where h is given in (49) and (50). 
Since k(O) = 0 and (ak la~(3) (0) = 0, it is known6 

that 

k( t/Ja{3) = al'VEe (~{3) . t/Jl'v t/JEe. 

Then, 01 A 2)k(A~{3) = al'VEe (At/Ja{3). t/JI'V t/JEe. 

Let v be defined as 

v = v( t/Ja{3) = - (~k(At/Ja{3)dA. 
Jo A 
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Then a straightforward computation proves that 

k = v _ ~ I/?P, 
al/?p 

and so 

L ij = Loij + (2..[g v)ij + (2..[g h(O»)ij 

+ ..[g gij Aapl/?P 

= LI ij + ..[g giiAaP I/?P 

= LI ij + ((In g)Aap ipP)ij . 

Then we have proved the following lemma. 

(52) 

Lemma 2: If L ij = L ij(ghk; F hk ) is a symmetric tensor­
ial concomitant such that L ij = Eij(L) = aL lagij for a 
function L = L(ghk; F hk ) (not necessarily a scalar), and if 
the Lie group is three-dimensional (i.e., a = 1,2,3), thenL ij 
has the form (52), where L 1 is a scalar density, tj?P = ..[g I/?P, 
and Aap are real numbers. 

The result (52) is proved for r = dim G = 3. Let us sup­
pose now that r;;;. 3, and let AS (4) be 

AS(4) = {AER 4X4: A = _ At}. 

Letgij be a symmetric matrix inR 4x4 of signature (1,3) 
and let F\F2,F3 be elements of AS(4) such that 
FI,F2,F3,*FI,*F2,*F3, be linearly independent. If we 
denote 

A' = {aa( gij;F~;F~;Ft) Fhk 

+ ba (gij; F~; F~; Ft )*F hk : 

h;;a<3, aa and ba scalar concomitants}, 

it is obvious that A ' C AS ( 4 ). Since dim AS ( 4) = 6 and the 
real numbers are examples of scalar concomitants, then it 
follows easily that AS( 4) C A " and so AS( 4) = A'. 

As a consequence, if (Ft) E AS (4) is a fixed but arbi­
trary skew-symmetric matrix, then there are scalar concomi­
tants aa (gij; F~; F~; Ft) and ba (gij; F~; F~; Ft) 
o <a<3) such that 

and 

Ft =aa Fij +ba *Fij. 

From (40) it follows at once that 

¢lP4 = aa ¢laP + ba I/?P 0<P<3), 

¢l44 = (aaap - babp)</JaP + 2aabp l/?P, 

¢P4 = aa I/?P - ba r P 0<P<3), 

(53) 

(54) 

(55) 

(56) 

If a = a( gij; F~; Ft; Ft; Ft) is a scalar concomitant, 
then, for F4 fixed, we can write, in a dense subset of the set of 
concomitance variables 

(58) 

as a consequence of (54 )-( 57) and Ref. 5. It is clear that 

a F' ( ¢laP; I/?p) = aF , ( ¢laP; I/?p), (59) 

where F4 is F4 when computed in any other coordinate sys­
tem. 

The relation (59) is valid for the scalar a appearing in 
( 23) as well as for the scalars a ap and b ap in (23). Then, we 
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can repeat the proof leading to (50), and so to (52). Thus 
(52) is valid for all r;;;'3. 

We deduce from (52) that 

L = L 1 + (In g)Aap tj?P + T(Fij) 

=L1 + (lng)t(¢aP) + T(Fij) 0<a,p<3). (60) 

If now we vary F4 then it follows from (60) that 

L( gij; F~; F~; Ft; Ft) 

= ..[g IF' ( ¢laP; ¢ap) + ..[g(ln g) t F' ( tj?p) 

+ TF.(Fij) 0<a,p<3). 

But we can chooselF, ( ¢laP; I/?p) such that 

IF' ( ¢lap; ¢a(3) = iF, ( ¢laP; ¢ap) 

because lis chosen to satisfy 

al --=a =a a¢laP aPF , aPI'" 

(61) 

then ..[g IF' ( r P; ¢ap) is a scalar density concomitant of 
gij' F~, Ft, Ft, Ft. Since 

h =a _~(/_~¢!'v), 
2 a¢!'v 

then hF' = hF' and so it defines a scalar concomitant of 
gij' F~, Ft, Ft, Ft· 

Finally, 

tF.( ¢lZp) = ah (O)'tj?P, 
al/?p 

and so 

tF, ( ifi'p) = B· t F' ( ifi'P), 

where B = det (axil aji). Then it defines a scalar density 
t = t(F~; F~i; Ft; Ft)· Let us find its form. 

From the in variance identities 7 we have 

t if,hk( 1F 1 • 1F2 • 1F3 • 1F4 ) ap /L. ij,A ij,A- ij,/L ij 

- t ij;hk(F 1 'F 2 'F 3 'F4 ) - a/3 ij' ij' ij' ij • (62) 

Since ipP can be zero, we can take lim,,_o in (62) to 
obtain 

t ij;hk(F 1 'F 2 'F 3 'F4 ) 
a/3 lJ' ii' IJ' ij 

= t~~k(O;O;O;O) = /ap€ijhk, (63) 

where the result follows from Ref. 8 (laP are real numbers). 
Integrating (63) we obtain 

t - / .1, - / ijhkFaFP (1 a 4) (64) - ap 'f'ap - ap€ ij hk <a,p<. 

From (61 ) and the following considerations we deduce 

L(gij;F~;Ft;Ft;Ft ) 

- L (g 'F 1 'F 2 'F 3 'F4 ) - ] IJ' 'i' ij' ij' ij 

+ (lng)/ap/pap + T(Fij) 0<a,p<4). 

Similarly it follows that 

L(gij;Fij) =L1(gij;Fij) + (lng)/apipP 

+ T(Fij) o <a,p<r). (65) 

We have proved the following theorem. 
Theorem 1: If L (gij;Fij) is such that E ij(L) is a tensor-
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ial density, then L is given by (65), where Ll is a scalar 
density and 'a{3 are real numbers. 

Remark: It is not difficult to prove that (In g) la{3 ir{3 is 
not equivalent (it does not have the same Euler-Lagrange 
expressions E ij) to any scalar density. 

Let us denote L z = (In g) I a{3 i'pa{3. Since E ~ (L) is a 
gauge invariant tensorial density, then 

E i (L) Lij; hkF{3 a = a{3 hklU' 

Differentiating this last equation with respect toA ~.kj' it 
follows thatL ~~k + L :;;1 is tensorial density. But from (65) 
we deduce 

L ij;hk + L ik;hj - L ij;hk + L ik;hj + L ij;hk a{3 a {3 - 1 a{3 1 a (3 2 a{3 

+ L ik;hj + Tij;hk + Tik;hj (66) 2a{3 a{3 a{3' 

Now, L2 ~;~k + L z :;;1 = 0, as we can see from the defini­
tion of L 2. AlsoLl ~~k + Ll :;;1 is a tensorial density because 
Ll is a scalar density. Then, from (66), T~~k + T:;;1 is a 
tensorial density. 

To find the contribution of T to (66) we consider, for 
each a, /3 between 1 and r, the scalar density 

C = (Tij;hk+ Tik;hj)Fr.+lFr+Z (67) a{3 a {3 a {3 l} hk, 

where F r+ 1 and Fr+ 2 are arbitrary and independent skew­
symmetric tensors. We will prove later that 

- {j 
Ca{3 = Ca{3y{jt/J'Y , (68) 

where l<r, 8<r + 2, and Ca{3'Y{j are real numbers. 
Differentiating successively (68) with respect to F;/ 1 

and F~: 2 we obtain 

4Tts;lm + Ttm;'s _ Tt';ms _ Tsm;'t + Ts';mt a{3 a {3 a{3 a (3 u{3 

= Ca{3,r+ l,r+2 Etslm. (69) 

Changing m with t in (69) and adding the correspond­
ing equalities, we have 

5T ts;lm + 5T ms;lt _ Tt';ms _ Tm';ts = 0 a{3 a{3 a{3 a{3 . (70) 

Changing Iwithsin (70), and comparing (70) with the 
resulting identity, it follows that 

and so the contribution of T to (66) is null. 
It remains to prove (68). In order to achieve this, we 

proceed as we did to derive (65) from (52) to write 

Ca{3 = .JgGa{3(4)I'V;t/JI'V) (r<j1-,v<r + 2). (71) 

Differentiating (71) with respect to gij we have 

0= iJCa{3 = ~gij(G _ iJGa{3 t/Jl'v) 
iJg 2 a{3 iJt/JI'V 

(72) 

Since gij and Tl'vij (r<j1-,v<r + 2) are linearly indepen­
dent in a dense subset, it follows from (72) that 

iJG a{3 v iJG a{3 
G (3 =--t/JI' --=0 

a iJt/JI'V ' iJ4>"v ' 

and so 

(73) 
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and 

(74) 

Differentiating (74) with respect to A. and making A. = 0 
it follows that 

iJG 
G (.I.I'V) =~(O)·.I.l'v= C .I.I'V 

a{3 Of' iJt/JI'V Of' a{3l'v If' , 

which, together with (73), proves (68). 
From the identity following (70) we deduce easily that 

T~: is skew-symmetric in all of its latin indices. Then 
Tij;hk = d Eijhk a{3 a{3 . 

Differentiating (75) with respect to F~ we have 

Tij;hk;rs = iJdu{3 Eijhk 
a{3 Y iJFY . 

rs 

(75) 

(76) 

But the left-hand side of (76) is skew-symmetric in all of 
its latin indices. Since we are working in a four-dimensional 
space, then it is null, and sotheda{3 in (75) are real numbers. 

Integrating (75) gives 

(77) 
A .. . 

Let K = K~Fij + K. We know that E~ (L) is gauge invar-
iant. Using the replacement theorem of Homdeski9 and tak­
ing account thatE~ (K;1F~j) = 2K~C~aA 1, we have 

E~ (L)(ghk;O; - i F~k) = E~ (L)(ghk;O; - ! FJ:d 

+E~(L2)(ghk;0; - !FJ:k) 
(78) 

and so E~ (L 2 ) is a tensorial density. We will prove that it is 
zero. In fact 

- a{3 
= (In g)E~ (/a{3i'pa{3) + la{3 :~ r ghkghk,j' (79) 

l,) 

By making a change of coordinates such that 
(gij) = diag( -1,1,1,l),gij,h =0, anddet (iJxi/~) = I, it 
follows from (79) that E ~ (L 2 ) = O. Since E ~ (L2 ) is a sca­
lar density, then it is null in every coordinate system. Now, 
taking a coordinate system where g = 1 and ghkghk,j #0, it 
follows from (79) and the vanishing of E~ (L 2 ) that 

iJi'pa{3 
laP -- = O. (80) 

iJAL 

Differentiating (80) with respect to A t,k we have 

la{3Eijhk = 0, 

from where it follows la{3 = O. Then 

L 2 =0. (81) 

Using (64) we deduce that L is a scalar density defined 
everywhere (the tensorial character follows from the conti­
nuity of the in variance identities). Besides 

is a tensorial density. It follows easily8 that it is zero. We 
have proved then 

(82) 
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· A .. A 

where E'(K) = 0, EIJ(K) = O. Then it follows 

Eij(L) = Eij(L), Ei(L) = Ei(L). (83) 

But, from (83), L is a scalar density whose Euler-La­
grange expressions are gauge invariant. We deduce lO that L 
can be replaced by a gauge invariant scalar density without 
modifying the Euler-Lagrange expressions. This solves in 
affirmative the equivariant inverse problem for L, and so we 
have the following theorem. 

Theorem 2: IfL(gij;Fij) is such thatEij(L) andE~ (L) 

are gauge invariant tensorial densities, then there is a gauge 
invariant scalar density L such that 

Eij(L) = Eij(L), E~(L) =E~{i). 

III. THE UNIQUENESS OF THE YANG-MILLS 
EQUATIONS 

Let L be defined as in Theorem 2. By similarity with (7) 
and ( 14), we could claim the field equations to be 

(84) 
-" .. 
*L~IV=O. (85) 

Now, Eqs. (85) corresponding to the Yang-Mills inter­
nal equations do not depend on the charge and current distri­
bution, and so they should be satisfied identically. 

.. A.. .. 

Let H~ = *L~, so that H~IV = O. 
Since H ~ is gauge invariant, this can be written as 

aHij 
-+P~kIV = O. (86) 
aF hk 

Differentiating (86) with respect to A ~,hj we have 

H ij;hk + H ih; jk = 0 (87) 
a/3 a /3 ' 

so that it follows easily that H ~~k is skew-symmetric in all of 
its latin indices, and so 

H ij;hk = I/. 'TJijhk 
a/3 ra/3" . (88) 

Differentiating (88) with respect to F ~s we have 

H ij;hk;rs _ aJ.la/3 ijhk 
a/3 r - apr 'TJ 

rs 
(89) 

2387 J. Math. Phys., Vol. 30, No.1 0, October 1989 

But 
H ij' hk· rs H ij' rs' hk _ H ir; js;hk 

d/3'r= d/3'r = a /3r' 

and so H ~~k;; is skew-symmetric in all of its latin indices. 
Since we are working in a four-dimensional space, then 
H ~~k;; = 0 and so aJ.la/3/ aF';.s = 0, which means that J.la/3 is 
a scalar concomitant of gij alone. Then ll J.la/3/~ is a con­
stant for each a,/3. From (88) we have, integrating 

H ij = I/. * F/3ij + A ij ( g .. ) a ra/3 a IJ' 

But A ij = 0 from Ref 11 so that Hij = I/. *F/3ij and a ., a ra{3 , 

so 

(90) 

Multiplying (90) by 'TJijhk and then multiplying by ghrgks 

it follows that 

L rs = I/. p/3rs 
a ra{3 , 

and so, integrating 

L = J.la/3r/3 + C~, 
in ~hich case L ~IV = J.la/3F/3ijllj' which means that 
E ~ (L) = J ~ are the usual Yang-Mills equations. 
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A one-loop tadpole graph in covariant closed string field theory must generate all inequivalent 
tori with one puncture. In order to determine the region of integration in moduli space we map 
the tadpole to a two-sheeted sphere and use the analyticity of the modular parameter with 
respect to the complex propagator parameter. It is shown that the naive closed string extension 
of the Witten open string vertex fails to give the correct modular region for this one-loop 
amplitude. 

I. INTRODUCTION AND SUMMARY 

In light cone field theory closed strings interact via a 
three-point vertex that is the naive extension of the open 
string three-point vertex. 1 In covariant field theory open 
strings interact via a three-point vertex suggested by Wit­
ten. 2 Its naive extension, however, did not appear to be a 
compelling candidate for a closed string vertex.2 Neverthe­
less it has been studied somewhat.3 It was realized that it 
would not generate completely the modular region for the 
four-point scattering amplitude4 and therefore it would have 
to be supplemented by an elementary four-point closed 
string interaction. There are even concrete proposals for 
such an interaction.5 

There is, however, a very simple test that a covariant 
closed string vertex must pass. When two of the legs of the 
vertex are contracted with a propagator to give a one-loop 
tadpole one must generate all inequivalent tori with one 
puncture. This criterion was advocated in Ref. 6 as the basis 
for a search for a satisfactory closed string vertex and it was 
shown that it rules out all vertices based on SL(2,C) func­
tions (projective type vertices). For the case of the naive 
extension of Witten's vertex, which is not projective, qualita­
tive arguments were put forth that it would give the wrong 
answer for the one-loop tadpole.7 

In this paper we discuss the evaluation of one-loop tad­
poles. Our motivation for studying this problem in detail is 
based on the following. The tadpole graph cannot be treated 
with light-cone type methods because it corresponds to a 
surface with one puncture, while light-cone graphs corre­
spond to surfaces with at least two punctures. Therefore this 
is a somewhat novel type of problem, which we have found 
can be studied quite effectively using the automorphic func­
tion of the level-two congruence subgroup r(2) of the mo­
dular group r. Given that projective vertices are ruled out6 

as candidates for closed string vertices, we wished to learn 
how to deal with nonprojective vertices and this vertex was a 
prime candidate. As in Ref. 6, we concentrate on finding the 
region of integration for the modular parameter T describing 
the torus. The modular parameter T is a function of the com­
plex parameter T = ( + if) (t is the length and f) the twist 
angle) describing the closed string propagator and knowl­
edge of this function is sufficient to determine if one is getting 
the correct modular region. Finally, we wished to give quan­
titative confirmation of the argument of Ref. 7. Indeed, the 

naive closed string vertex fails badly in giving the correct 
modular region for the one-loop tadpole and it does not seem 
to have any special modular properties. This implies that 
used in conjunction with the usual closed string propagator, 
for which 0.;;( < 00 and - 1T.;;f) < 1T, it cannot lead to a com­
pletely satisfactory field theory. Perhaps it is possible to use 
our methods and result to understand possible modifications 
for the closed string propagator.s 

In Sec. II we first discuss issues related to analytic be­
havior. In a one-loop tadpole, two legs of a given three-point 
vertex are joined by a propagator specified by the length 
parameter ( and the twist angle f). The modular parameter T 

of this torus, for a fixed three-point vertex, can only depend 
on ( and f). We argue that T is an analytic function of the 
complex parameter T = t + if). This fact simplifies enor­
mously the work of finding the region ofintegration in mod­
uli space, since it is sufficient to work with rectangular tori 
(f) = 0) to find T(t) and extend this analytically letting 
t -+ T. Such type of arguments could not be made in light­
cone diagrams because the propagator parameters are not 
independent. Namely, between two interaction points, the 
length of all tubes must be equal, so that this constraint re­
quires the nonanalytic equation Re Tl = Re T2 = .... In 
covariant field theory there are no such constraints and one 
has analytic dependence of the modular parameters on the 
propagator parameters, which play the role of complex co­
ordinates for moduli space. 

We then turn to review the representation of a torus as 
two sheets joined across two branch cuts, one extending 
from 0 to 1 and the other from a point x up to 00. This 
standard mathematical presentation has been used in recent 
string theory works.9 Any square torus ( - iT real and posi­
tive) can be mapped by a Schwarz-Christoffel transforma­
tion into two sheets with cuts running from 0 to 1, and from 
x, real and greater than one, to 00. We verify that for a gen­
eral torus the same type of Schwarz-Christoffel map works, 
but x becomes complex. The only complication that arises is 
that if one wished to present the fundamental region of the 
torus as a parallelogram, the cuts between 0 and 1 and x to 00 

would be curved. This is an illustration of the idea, which 
will be used in Sec. III, that general tori can be dealt with 
using mapping functions that are an analytic continuation of 
the ones used for rectangular tori. 

In the two-sheeted construction x is the modular param­
eter. For the general case of a torus with a modular param-

2388 J. Math. Phys. 30 (10), October 1989 0022·2488/89/102388-09$02.50 © 1989 American Institute of Physics 2388 



                                                                                                                                    

eter 7, X depends on 7, in factx( 7) = A -I (7), whereA( 7) is 
Picard's automorphic function of the modular subgroup 
r (2).10.11 We found the two-sheeted presentation of the 
torus especially useful, since it was possible to cut the tadpole 
graph in two pieces and relate via a Schwarz-Christoffel 
transformation each piece to one sheet. From the relation 
between x and 7 one can see what is the region in the x plane 
that corresponds to the fundamental region of the modular 
group (Fig. 4). Special limits for 7(X), necessary for Sec. III, 
are given for the cases x ..... 1 and x ..... 00 • 

In Sec. III we concentrate on the naive closed string 
vertex and give the Schwarz-Christoffel map of the tadpole 
(p plane) into the two-sheeted sphere presentation (z 

plane). The map is interesting in that p = SZ¢, where ¢ is not 
a meromorphic differential on the torus. It could not have 
been a meromorphic differential, since given that it should 
map into a tadpole, which has one external leg, it would have 
to have a single first-order pole with a non vanishing residue 
corresponding to the length parameter. But this is impossi­
ble for meromorphic djfferentials, since the sum of their resi­
dues has to equal zero. 12 The differential we have is a multi­
valued one, it has two zeroes of order + ~ and a simple pole 
(like a square root of a Weierstrass function). We argue that 
it can be used consistently to perform the conformal map­
ping. 

Our aim is to find x ( T). While, in general, this is very 
hard to do explicitly, it can be done both for T ..... 0, which 
corresponds to x ..... 1, and T ..... 00, which corresponds to 
x ..... 00. Comparing with the limits given in Sec. II for 7(X), 

one is able to relate T and 7. We find that for T ..... 0 one has 
that 7 - T. This implies that the neighborhood of 7 = 0 is 
covered (see Fig. 10) and since this region contains an infi­
nite number of copies of the modular region we find that the 
naive closed string vertex fails to give the correct region of 
moduli space. 

In Sec. IV we give some conclusions and discuss how 
our arguments can be applied to simplify the discussion of 
four-point closed string scattering. 

II. ANALYTICITY AND TORI AS TWO-SHEETED 
SPHERES 

A. Analytic behavior of the modular parameter 

We first wish to argue that the parameters that define 
the propagator, namely, t and () form a natural complex pa­
rameter T = t + i() and that the modular parameter, which 
in our case of interest is 7, is an analytic function of T, name­
ly, we have 7( T). A similar situation should hold for higher 
genus diagrams in covariant closed string field theory, each 
propagator parameter is an unconstrained complex variable, 
and the modular parameters must be analytic functions of 
those parameters. 

The process of evaluating a tadpole graph can be set in a 
formal way,6 following the formalism of Ref. 13. As dis­
cussed in Sec. V of Ref. 6 for any closed string vertex, one has 
two local coordinates, Zl and Z2' corresponding to the two 
legs of the tadpole that are to be contracted, and two func­
tions hI (ZI) and h2 (Z2) that define mappings from the local 
coordinates to the Z plane, where the strings interact. Figure 
1 shows the local coordinates and the images of the unit 
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FIG. 1. Formulation of the general problem of evaluating a tadpole graph. 
The process of identification between Q and Q' is indicated. The Z J and Z2 

variables are the local coordinates. 

circles Qo under the functions h. A particular torus is built 
gluing Q with Q', which is the image of the circle Q, in the 
plane Z2. The circle Q, itself is obtained from Qo, via the 
transformation R, (z) = t /z. Here t is a complex parameter. 
It seems fairly clear that the holomorphic differential on the 
surface will depend on t but not on t, which does not appear 
anywhere. [A mathematical proof of this would probably 
use the analytic dependence on ( of the identifying transfor­
mation T; = h2

0 R,o(h l )-1 in the z plane.] It then follows 
that the modular parameter will only depend on t. But t is 
nothing else than the complex propagator parameter in dis­
guise, since the annulus between Qo and Q, in the Z2 plane 
corresponds to the tube that joins the two legs of the vertex. 
The mapping In Z2 takes the annulus into a cylinder 
of parameter T = length + i twist = - In (= - In I t I 
- i arg (t). Since the modular parameter depends only on (, 

it will depend only on T and not on T. 

B. Tori as two-sheeted spheres 

The mapping that takes a torus into two sheets glued 
across two cuts is just a Schwarz-Christoffel map. Since this 
standard presentation for tori is one of the main tools for our 
work we discuss it next, and illustrate how for tori that in­
volve a twist angle, the same mapping function works if one 
lets some parameters become complex. The mapping func­
tion is nothing else than the integral ofthe holomorphic dif­
ferential on the torus. Consider the rectangular torus indi­
cated in Fig. 2. The short sides oflength 1T are glued to each 
other, and so are the sides oflength T. The torus is cut along 
the line AA ' into two pieces, which can be glued together 
following the pattern indicated by the signs to again form the 
torus [Fig. 2(b)]. The left piece is mapped into the z plane 
via 

1
z dz' 

p(z) = N --;::::;:::;:::;:==;~:;===7 
o ~z'(z' -l)(z' -x) 
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FIG. 2. Construction of a square torus (a) as a two-sheeted sphere (c). 
Here x is the modular parameter. 

Note that the sides that have to be glued to the other half go 
into the slits from 0 to 1, and from a parameter x to 00. The 
horizontal sides FE and F'E', which are identified in Fig. 
2(b), are effectively glued in Fig. 2(c). The powers of ( - !) 
in the above equation are there because around z; = O,I,x 
one must have p;:::; (z - Zj) 1/2. The normalization constant 
N is fixed requiring peE) = i1T12, and T depends only on x 
via the relation T /2 = p (E) - p (F). The other side of the 
diagram will be mapped similarly, as shown in the figure, but 
note that the pattern of signs is automatically inverted as it 
should, in order to be possible to glue the two surfaces. 12 This 
is so because the diagram to the right of Fig. 2(b) has to be 
rotated by an angle of 180· around 0 in order to get a config­
uration equivalent to the one on the left and therefore be able 
to use the same mapping function for both. 

In order to work with tori that have a twist angle one just 
lets T and x become complex, there is no need to change the 
mapping function. We illustrate this in Fig. 3. There a com­
plex torus with modular parameter 7 = T 121T = (t + iO)1 
21T is cut again in half. One may think that the Schwarz­
Christoffel map that takes one of the pieces into the Z plane 
may even need irrational powers to smooth the corners for 
arbitrary 0, but this is wrong. The fact is that in the p plane 
the total internal angle at point E, which is identified with E', 
is still1T and therefore comparing with the situation in the z 
plane where the angle is 21T one sees that the power of ( - P 
is still needed. The same holds for point F. Thus the mapping 
function is the same, the normalization condition is the 
same, and the only thing that changes is the fact that the 
relation between T and x (which is the same) requires x 
complex, given that T is complex. It should also be noted 
that the mapping function would not take the straight slits 
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FIG. 3. Construction of a general torus using two sheets with cuts. 

indicated in Fig. 3 into the straight lines joining E and E' or F 
and F'. It would produce an equivalent copy of the half torus 
with curved but identical lines joining E and E " and Fand F'. 
This is perfectly acceptable. Equally acceptable curved slits 
shown in dotted lines in the figure could be found that would 
give straight lines in the p plane. It is interesting to realize 
how the identification procedure between the slits works in 
both cases. For the case displayed in Fig. 3, in which we have 
curved slits in the z plane, the argument is the same as in the 
case of the square torus. For the case in which we have 
straight slits in the z plane, we notice that p(z) follows a 
curve that is symmetric around 0 between points E and E' 
when z goes around the slit and therefore the previous argu­
ment can also be applied to this case. 

Any torus can therefore be mapped conformally into 
two sheets (Riemann spheres) glued across slits cut from 0 
to 1 and from a given point x to 00. In this rather convenient 
presentation for tori the modular parameter 7 for the torus 
can be calculated as 

7 = ~ , W2 = (X dz , 
WI JI Y 

WI = (' dz, y =z(z-l)(z-x). 
Jo y 

(2.2) 

Here dz/y is a holomorphic differential in the two-sheeted 
surface [in fact, the integrand in (2.1)] and the w's are the 
integrals of this differential over the cycles of the torus. 
These integrals are just complete elliptic integrals and 7, 

which just depends on x, can therefore be written as 

7(X) = i[K(k ')IK(k)], (2.3) 

where K(k) is the complete elliptic integral of the first kind 
(see the Appendix for notation), k 2 = X - I, and 

k' = ~ is the complementary modulus. 
Two simple observations can be made: (i) in the above 

construction four points were singled out, namely, 0, 1, x, 
and 00; the branches can run between any pair of points and 
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one still gets conformally the same torus; (ii) for a given 
value of x there are five other values of x that represent the 
same torus, the six values of x are obtained when one consid­
ers the six SL(2,C) transformations that generate the per­
mutations of the points 0, 1, and 00. These six transforma­
tions form a finite group, the A group or group of 
anharmonic ratios lO relevant to the problem of the four­
point scattering in closed string field theory. 14 

The function x ( 1') is in fact just 1/ A ( 1'), where A is Pi­
card's function. Under modular transformations one has 

x(1'+ 1) = l-x(1'), x( -1/1') =x(1')/[x(1') -1]. 
(2.4) 

The function x( 1') is invariant or automorphic under some 
important transformations of the modular group. One has 
that 

x[ (a1' + 2b)/(2c1' + d)] = x( 1'), ad - 4bc = 1, 
(2.5) 

where a, b, c, and d are integers. These transformations form 
a subgroup of the modular group denoted r(2), where 
r (N) denotes the level N principal congruence subgroup of 
the modular group r: 

r(N)=:{(: !)erla,d=:l mOdN;b,c=:omodN}. 

(2.6) 

Note that r(N) is, in fact, a normal subgroup of r. This 
implies that the quotient r Ir (2) is itself a group. This 
group is just the A group, of six elements. Therefore r(2) 
has index six in A and consequently its fundamental region 
y 2 [Fig. 4 (a)] contains six copies of the fundamental re­
gion of the modular group Yo' Here Y 2 is the region of the 
upper l' plane bounded by the vertical lines l' = ± 1 and by 
two circles of radius! centered at ±!. The subgroup r (2) is 
generated by the transformations 

1'->1' + 2, 1'->1'/{1 - 21'), (2.7) 

and the effect of the generating transformations on the boun­
daries of Y 2 is indicated in Fig. 4 (a). The function A ( 1') can 
be expressed in terms of theta functions 

A( 1') =: 1/x( 1') = OJ (011')10; (011'). (2.8) 

Most important for our purposes is that A ( 1') [and as a con­
sequence x ( 1') ] maps Y 2 onto the Riemann sphere and so is 
theN = 2 analogofthe modularinvariantJ( 1'). In Fig. 4(b) 
we indicate how each of the six copies of Yo that make Y 2 is 
mapped under x ( 1'). 

For the study of the tadpole diagram we need to know 
the behavior of x( 1') for special situations. It is possible to 
obtain asymptotic expressions for l' for some regions of x. 
First consider the case when X-> 1. Inspection of Fig. 4(b) 
shows that l' -> O. In this case k -> 1 and it is possible to expand 
both integrals using Eqs. (A3) and (A4). The result for ris 

1'(x) = _ i1T + o( x-I ) (x-> 1). 
In[(x-1)/16] In(x-1) 

(2.9) 

Note that the above function indeed maps a neighborhood of 
x = 1 into the zero angle wedge at l' = 0, as shown in Figs. 
4(a) and 4(b). 
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FIG. 4. (a) Fundamental region:72 of r(2) represented in the r plane 
showing the identifying transformations. (b) Image of 5'2 under 
x(r) =A -l(r). Herew=ei(v/Jl. andp= ei(2w/J1. 

The other limit of interest arises when x -> 00. In this 
case 1'-> 00 and one finds the following expression: 

1'(x) = (i11T) [In( 16x) - 1/2x + O(x- 2 In x)] 

(x-> 00). (2.10) 

III. THE CONFORMAL MAP 

The aim of this section is to provide the tools for the 
determination of the region in moduli space covered by the 
one-loop tadpole diagram using the bilocal, naive extension 
to closed strings of the vertex that Witten proposed for open 
string field theory [Fig. 5 (a) ] . In this vertex, three cylinders 
representing free propagating closed strings join in a sym­
metrical way. The total angle at each interacting point is 31T. 
The one-loop tadpole graph we wish to study is shown in Fig. 
5 (b). There is one incoming string (C) that splits into two 
strings at the interaction points B,D and a closed string pro­
pagator pairing these two strings. 

To find the region of integration in moduli space, we 
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o 

{a) (b) 

FIG. 5. (a) Diagram representing the naive extension of Witten's vertex to 
closed string field theory. Here I, II, and III represent the three interacting 
closed strings. Note that B is one of the two interaction points. The total 
angle at any interaction point is 31T. (b) The one-loop tadpole graph. The 
intermediate loop parameter is called T. The marked points are in corre­
spondence with the ones in Figs. 6-9. The diagram is cut along the CBADC 
and EO lines. 

perform a conformal mapping from the Riemann surface for 
the tadpole [Fig. 5(b)], which is conformally equivalent to 
a torus with one puncture and to a double-sheeted complex 
plane with two cuts. The conformal mapping is carried out in 
three stages. First, we cut the original diagram along a line 
that contains the two interaction points of the vertex and 
slices the external propagator along a diameter [line 
CBADCinFig. 5(b)]. We also cut along the curve EO in the 
loop portion of the diagram and we end up with two pieces. 
For the moment, we assume there is no twist in the propaga­
tor. Each one of the two components of the diagram can be 
represented as the portion of the complex plane shown in 
Fig. 6. Segments EA and E' A ' are identified in this construc­
tion. The other segments ofthe boundary are glued with the 
corresponding ones of the symmetrical piece representing 
the other half of the diagram. The upper half w plane can be 
mapped to this region by a Schwarz-Christoffel transforma­
tion 

(w) = 2Niw dw (w
2 
-/]2) 1/2 

p 0 -(-w-:2-_""":""I-)-:-I7:/2...!(-w-2:"_-a-2-) -1/'-2 • (3.1 ) 

11' c 11'12 

FIG. 6. Region of the complex plane corresponding to half of the tadpole 
diagram for the case of zero twist angle. 
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-1 0 1 a f3 

FIG. 7. The region of the complex w plane that is mapped by (3.1) to the 
region of Fig. 6. Because of the symmetry and overall normalization free­
dom it depends on the position of two points a and p, as shown. 

Here N is a normalization factor. The mirror symmetry of 
the diagram around the real axis in the p plane (Fig. 6) is 
realized as a reflection symmetry around the imaginary axis 
in the upper w plane (Fig. 7). By virtue of this symmetry, the 
origin in the w plane is mapped onto the origin in the p plane 
and the mapping depends only on two real numbers, a and 
/3. P?ints ± 1 (E"E) are mapped onto points p = 
+ i ( 17'/2). Points ± a (A',A) are mapped onto points 

p = += i ( rr /2) + t /2, where t is the Schwinger parameter of 
the loop propagator. Since the internal angles at E, E ' , A, and 
A' are rr/2, the exponent for the factors (w ± 1) and 
(w ± a) is (- ~). Points ±/3 (D,B) are mapped onto 
points + i( rr/4) + t /2. The internal angles at Band Dare 
3rr/2 and therefore the exponent for the factors (w ± /3) is 
( + p. The external state (C) is mapped to infinity. 

In the next stage, we map the upper half w plane to the 
whole complex z plane using the transformation z = w2

• It is 
useful to define x = a 2 and y = /3 2. After performing the 
same set of operations for each half of the original diagram 
we end up with two sheets, each one with two cuts on it: one 
between 0 and 1 and the other from a point x up to infinity 
(Fig. 8). From this picture, it is clear that y plays the role of 
an auxiliary variable and that x is the modular parameter. 
The segments EA and E'A ' that had to be identified in the w 
plane are effectively glued in the z plane across the slit that 
goes from I to x. In the final stage, opposite sides of the cuts 
of the two sheets are identified in order to recover the origi­
nal Riemann surface. The final expression for the mapping is 

FIG. 8. The region of the complex z plane that is mapped by (3.2) to the 
region of Fig. 6. Here x = a 2 and y = P 2 are real numbers for the case of 
zero twist angle. 
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then given by 

p(Z) = N dz' z - Y . i
z 

( (' ) )112 
o z'(z'-I)(z'-x) 

(3.2) 

As we already pointed out in the Introduction, the differen­
tial in (3.2) is not meromorphic. To evaluate the integral we 
have to specify the sign assignments given to the object that 
is being integrated in each sheet. On the first sheet (Fig. 8), 
we define the integrand of (3.2) to have opposite signs across 
a slit that goes from 0 to 1 and across a slit from x to y. For 
points beyondy we assign the same sign to points immediate­
ly above and below the cut in the surface. Signs are complete­
ly reversed on the second sheet. It is possible to check that 
with this definition the object that is being integrated in 
(3.2) is well defined over the double-sheeted plane. 

As it is customary, we normalize all closed string widths 
to 1T. The conditions that we will impose on this map are the 
following: (a) let the strip width between E and E' be 1T, 

peE) -peE') = i1T; (3.3) 

(b) let the length of segment AE be equal to the length of 
segment A ' E' and both should equal I /2, where I is the inter­
nal propagator parameter, 

p(A') -peE') =p(A) -peE) = 1/2; (3.4) 

and (c) let the strip width between Band D be 1T/2, 

pCB) - p(D) = i1T/2. (3.5) 

The overall normalization constant N can be fixed by consid­
ering the limit z - 00. In this case the integral becomes a 
logarithmic one and application of condition (c) gives 
N =!. Conditions (a) and (b) leave us with two elliptic 
integrals: 

21T = t dZ( (y - z) )112, 
Jo z(l - z)(x - z) 

(3.6) 

1- dz ----'~-..::......-1 IX ( (y - z) )112 
-"2 I z(z - l)(x - z) . 

(3.7) 

The first one determines y as a function of x and the second 
one gives the intermediate time t as a function of x and y. 
Using both conditions we can find I as a function of x alone. 
For the case in which the intermediate loop propagator con­
tains a twist we consider it as being performed before gluing 
the two matching circumferences of the loop. Half of the 
total amount of the twist is assigned to each component 
piece. We may still use the previous technique, provided we 
extend t to a complex parameter T = t + ie, in which t is 
interpreted as before and e is the twist angle that runs 
between - 1T /2 and 1T /2 (Fig. 9). We rely on the analyticity 
of (3.6) and (3.7) to conclude that these expressions can be 
extended to the case of complex T, provided x and y become 
complex variables. For later convenience, we notice that 
(3.6) and (3.7) can be rewritten as (Ref. 15) 

21T= [2y/~x(y-l) ]ll(aLk2 ), (3.8) 

T= [1/~x(y - 1)][ - ll(aLk l ) + yK(k l )]. (3.9) 

HereK(k) and ll(a2,k) are complete elliptic integrals of the 
first and third kind, respectively. The parameters k (modu-
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1T 

FIG. 9. Region of the complex plane corresponding to half of the tadpole 
diagram for the case of complex T = t + iB. 

Ius) and a are given by 

ki = (x-l)y/(y-l)x, k~ = l-kt, 

ai = (x - l)/x, a; = 1/(1- y). 
(3.10) 

It is worthwhile to realizel6 that there is an expected 
symmetry in expressions (3.6) and (3.7). In order to see 
this, consider again Fig. 1. It is clear that the answer for the 
tadpole amplitUde should be independent of an arbitrary ro­
tation of the circles Qo or Qt around the origin by any integer 
multiple of21T. According to the interpretation of the propa­
gator parameter T = t + ie, given in Sec. II, a full rotation of 
the circles results, in our conventions, in a shift of T to 
T ± i1T. Under this operation, we should get the same torus 
up to a disconnected diffeomorphism. It can be verified that 
when x- 1 - x and y- 1 - y, (3.6) is invariant and (3.7) 
shifts according to T -+ T ± i1T [this requires a short calcula­
tion using the invariance of (3.6)]. But x -+ 1 - x corre­
sponds to r- 1 ± r [Eq. (2.4)] and indeed we recover the 
same torus up to one of the generators of the modular group. 

The region o/integration in moduli space: Our strategy 
for determining the region of moduli space covered by the 
diagram consists in finding the limit curve in the r plane, 
namely, the boundary of the region in moduli space. To do 
so, we consider the boundary of the region Yl T in the T 
plane, defined as the semi-infinite rectangle that satisfies 
Re( T);;,O and - 1T/2<Im( T) <1T/2. This region represents 
the standard free propagator. Our calculation of x( T) im­
plies that we know r( T). The limit curve is the image of the 
boundary of Yl T in the r plane under this map. Knowledge 
of this curve is enough to determine if the diagram repro­
duces or not the correct integration region in moduli space. 
In order to gain some understanding of the mapping, it is 
useful to consider some special limits in which analytic 
forms can be found for the previous expressions. 

First we would like to consider the limiting case defined 
by X-+ 00 and y- 00. For simplicity we consider the case of 
real x and y and then we extend the results by analyticity. We 
look for an approximation to the integral (3.6) for the case 
in which both x and yare real and large. Since x <y, if x- 00 

we get the condition y = 4x + 0(1 ), in order that (3.6) be 
true to lowest order in x - I. It is possible to obtain the follow-
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ing asymptotic relations, as it is shown in the Appendix: 

y=4x-~--8(1!x) +O(x- 2
), (3.11) 

(3.12) 

Using (2.10), we see that in this limit T(x) and T(X) are 
similar and to leading order we have a linear dependence, 

T(x) = - i1TT(X) (x-+ 00), 

which implies 

T = (i/rr) T ( T --+ 00 ). 

(3.13a) 

(3.13b) 

Subsequent terms do not follow this relation. This is the ex­
pected result since the region that we are considering corre­
sponds to the case of both Re (T) and 1m ( T) large. In this 
region, the mapping that relates T and T is the mapping 
between two strips and therefore it should be of the form 
(3.13b). From a physical point of view, it is clear that in this 
limit the length of the intermediate tube is very large and so 
T is essentially the modular parameter independently of the 
details of the gluing at the end points of the tube. 

The second limit we will consider is given by X-+ 1, 
which corresponds to small intermediate times and is char­
acterized by a1-+Oand k1-+O. Note thatifx-+ 1 theny--+ 1, in 
order that (3.6) remains infinite. By using the asymptotic 
expansion for IT(a2,k), given in the Appendix, and setting 
x = 1 + E, where E is small, (3.8) gives 

E= 16 (y-l) exp[ __ 2_(rr_tan- 1_ l_) 
y ~y - 1 ~y - 1 

+o( E 2)] +O(c). (3.14) 
(y - 1) 

In the limit E --+0, we can invert the above relation to get 

y(x) = 1 + r/ln2(x -1) + O(ln- 3 (x - 1»). (3.15) 

The time integral can be evaluated in a similar fashion, using 
expansions for the elliptic integrals given in the Appendix. 
[Wenoticethatai = O(E) whilek~ = O(dn2 E).] There­
suIt is 

T=!!....~y-l +E!!....(~ 2-y -1) 
2 4 2 ~y - 1 

+ O(c In4 E). (3.16 ) 

Note that T can also be written in terms of x by replacing 
(3.15) in (3.16): 

T(x) = - (r/2)[I/ln(x - 1)] + O«x - I)ln(x - 1»). 
(3.17) 

Recalling (2.9) we observe that in this limit there is also a 
linear relation between the leading -order terms of T( x) and 
T(X), given by 

T(x) = -i(rr/2)T(x) (x-+l) (3.I8a) 

and therefore 

T = i(21rr) T (T -+0). (3.I8b) 

This last property implies that the modular region will be 
covered an infinite number of times. This can be seen from 
the fact that as T -+ 0, the part of the neighborhood of T = ° 
that is in f!i? T will be mapped under (3.18b) into a similar 
neighborhood around T = 0, as shown in the bottom portion 
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FIG. 10. Qualitative picture of the modular region covered by the one-loop 
tadpole graph. 

of Fig. 10. Such a neighborhood contains an infinite number 
of copies of the modular region. We see that the vertex fails 
in providing a finite number of coverings because it does not 
reproduce the familiar wedge around T = ° shown in Fig. 
4(a). 

For completeness, we now discuss briefly how to obtain 
a qualitative picture of the limit curve in the T plane. The 
interesting part of this curve is the image of T = iO in the T 

plane. We wish to find the value To of the modular parameter 
for T= i(rr/2) (see Fig. 10). For x of the form 
x = ~ + ilm(x), yisoftheformy =! + ilm(y), as can be 
verified using Eq. (3.6), and T is of the form 
T = -! + i Im( T) (Fig. 4). Equation (3.7) and the values 
ofx andy imply that Tis ofthe form T= i(rr/2) + Im(T). 
The actual value of 1m (T) for a given x can be found by 
solving Eqs. (3.6) and (3.7) numerically. We find that 
Im(x) = 0.103 and Im(y) = 1.382 correspond to 
1m (T) = ° and therefore to T = i( rr /2). The corresponding 
value of To lies on the segment that separates region S4 from 
S6 with! < Im( To) <13/2 (Fig. 4). Given (3.18b), we know 
T for small values of T, and therefore a continuous line start­
ing at T = ° and ending at T = To must join all points corre­
sponding to purely instantaneous twists T = i(J (Fig. 10). 
We observe that the curve does not appear to have any spe­
cial modular properties and that the modular region is cov­
ered an infinite number of times. 

IV. CONCLUSIONS 

The method developed here for the determination of the 
limit curve in moduli space is quite general and may be ap­
plied to test other types of vertices. It is based on the repre­
sentation oftori as two-sheeted spheres and the analyticity of 
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the modular parameter with respect to the closed string pro­
pagator parameter. 

As this paper has further confirmed, the naive closed 
string vertex is not a satisfactory vertex for covariant closed 
string field theory. It has been shown that it fails in giving the 
correct region of integration in moduli space for the one-loop 
tadpole. The reason for this failure is the infinite covering of 
the modular region that arises for very short intermediate 
times. This behavior can be traced back to the fact that in this 
vertex the interacting strings overlap too much. A condition 
that must be fulfilled by a given vertex, in order to achieve a 
finite number of coverings, is that it should be able to map 
the neighborhood of T = 0, which is in g; T to the familiar 
wedge around 1" = 0 in the modular plane. In fact, it is possi­
ble to obtain such behavior, as it is shown in Ref. 17. In view 
of the failure of the naive vertex in producing the correct 
answer for the tadpole problem, one may still consider some 
unlikely ways out. One possibility, suggested in Ref. 18, is 
that the quantization of covarient closed string field theory 
may not be straightforward and the tree-level Feynman rules 
need to be modified at the loop level. Another possibility is 
that even though this vertex fails in providing the right an­
swer for surfaces with one puncture, it may still be capable of 
producing the correct answer for surfaces with two punc­
tures or more. 

Our method of analysis of closed string amplitudes by 
considering their behavior for real values of the closed string 
propagator parameter can be applied to the problem of four 
particle scattering in covariant closed string field theory. In 
fact, the open string results of Ref. 19 could be used as fol­
lows to verify that the closed string extension does not 
work.4 Such results define a function A (t), which gives the 
SL(2,C) invariant cross ratio as a function of the intermedi­
ate open string propagator parameter. For closed strings, 
one continues analytically, letting t --> T. As argued repeated­
ly in Ref. 17 we, in fact, know what A ( T) would be. In order 
to get the complete region of integration A (T) must equal 
A ( T), where A is a map from g; T into two copies of the 
fundamental region of the A group. 14 It is possible to decide 
whether or not A = A by considering their behavior on the 
real axis. 
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APPENDIX 

1. Notation and definitions 

Here we give the definition of the complete elliptic inte­
grals according to Ref. 15. The complete elliptic integral of 
the first kind is defined as 

K(k) == ( dt = '0"12 
Jo ~ (1 - t 2 ) (1 - P t 2 ) Jo ~~=1 =-=k;::2:;::s:::::;:in::;2;:::8:;-

d8 

(AI) 
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whereas the complete elliptic integral of the third kind is 
defined as 

II (a2,k) == ( dt 
Jo (1- a2t2)~(1 - t 2)(1- k 2t 2) 

1
11'12 d8 

- (A2) 
- 0 (1- a 2 sin2 e)~1 - k 2 sin2 e 

Here a 2 =1= 1. In both cases k is any complex number known 
as the modulus. 

2. Useful expansions for the elliptic integrals 

The following expansions for the elliptic integrals of the 
first and third kind are quoted from Ref. 15. For the elliptic 
integrals of the first kind, 

+~[ln(~)-~]k'4+ ... (k' ..... O), (A3) 
64 k' 6 

K(k) = (1rI2) [1 + !k2 + &k4 + ... ] (k ..... O). (A4) 

For the elliptic integrals of the third kind, 

II(a2,k) = (17/2)(1 + !a2 + !k2 + ... ) (k,a-->O), 
(A5) 

II(a2,k) = [1/(1 - a2) ][In( 41k ') 

+~tan-I(~)] +O(k'2). (A6) 

The last expression is valid for k 2 < 1 and - a 2 > O. In all 

cases k' = ~ is the complementary modulus. 

3. Calculation of asymptotic expressions of relevant 
elliptic integrals 

We look for an approximation to the integral (3.6) for 
the case in which both x and yare real and large, 

il ( (y - z) )112 
dz = 21T. 

o z(1 - z)(x - z) 
(A7) 

If x ..... 00, we get the condition y = 4x + O( 1 ), in order that 
(A 7) be true to lowest order in X-I. Next we set 

y = 4x + Sex), 
where 

sex) = ao + allx + a21x2 + .... 

Expanding the integrand, we find 

(Y_Z)1I2 {I 1 
-- =2 1 +-(ao +3z) +-
x-z 8x 8x2 

x[(al - ;!)+ ! aoZ+ ~:~]} 
+ O(x- 3

). 

Replacing in (A 7) we get 

21T + (lIx)II + (1/x2)I2 + O(x- 3
) = 21T, 

where 

I - 1 11 dz 
I - - (ao + 3z), 

4 0 ~z(1-z) 
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1 i l 

dz [( a6 ) 5 39] 12 =- al -- +-aoz+-r . 
4 0 ~z(1 - z) 16 8 16 

By requiring II = 0, 12 = 0, etc., we get 

y = 4x - ~ - fisC l/x) + O(x- 2
). (A8) 

In order to evaluate the time integral (3.7) it is convenient to 
define 

t(x,U) = - dz , 1 lX ( (u -z) )112 
2 I z(z - l)(x - z) 

(A9) 

so that 

ly dt(x u) 
t(x,y) = t(x,x) + du ' 

x du 
(AW) 

Here 

t(x,x) = ~ (X ~=d=z:::;:::;::- = ~ In 4x + O(x- I
), 

2 JI ~z(z - 1) 2 

dt(x,u) 

du 

where 

1 r dz 

="4 JI ~z(z-l)(x-z)(u-z) 

--=---;::==1 ==::=-K(k), 
2~x(u - 1) 

k 2 = (x - 1)u/(u - l)x. 

(All) 

(AI2) 

(A13) 

We consider x < u <yo When x and yare large k 2 -> 1 and 
k 12 -> 0, so that we can use (A3) in (A 12) and replace this 
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result for the integrand in (A 10). Carrying out the integra­
tion in (AW) we obtain the desired result (3.12). 
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Relations for Clebsch-Gordan and Racah coefficients in sUq (2) 
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Relations are exploited among Clebsch-Gordan (CG) and Racah coefficients in the algebra 
sUq (2), known as a deformation ofsu(2). These are used to show that the Yang-Baxter (YB) 
relation for the IRF (interaction round a face) model results from one ofthe symmetry 
relations for the 9-j symbol specific to sUq (2), and that in an asymptotic limit this YB relation 
becomes the YB relation for the two-dimensional vertex model. The Racah coefficient, which 
has a particularly simple dependence on q, is efficiently used such that an asymptotic limit of 
the Racah coefficient is the CG coefficient and another limit gives the factorized S matrix of 
the vertex model. 

I. INTRODUCTION 

The quantum theory of angular momentum, i.e., the al­
gebra su (2), has been widely used in many branches of phys­
ics. I

-
5 In recent years, extensive studies on Yang-Baxter 

(YB) relations6.7 (sufficient conditions to yield commuting 
transfer matrices specific to exactly solvable models) have 
inspired generalization of Lie groups, called quantum defor­
mations of the Lie groups.8-11 In particular, the generalized 
algebra of su(2), called the algebra sUq (2),8-13 has become 
of great importance in studies of the braid group,14.15 six­
vertex algebra, 16 etc. 

The Clebsch-Gordan (CG) and the Racah coefficients, 
which play central roles in the theory of angular momentum, 
were generalized in terms of q analogs by Askey and Wil­
son. 17 Recently, these q analogs have been identified as the 
CG and Racah coefficients of the algebra sUq (2). Kirillov 
and Reshetikhin 13 have discussed relations among these co­
efficients and the YB relations. The present author l8 has 
pointed out that a known relation among Racah coefficients, 
which describes one of the symmetry relations for the 9-j (or, 
generally, the 12-j) symbol, is a kind ofYB relation for the 
IRF (interaction round a face) model7 even in the frame­
work ofsu(2). 

The aim of this paper is to present some new relations 
among the CG and the Racah coefficients of the algebra 
sUq (2) and to obtain YB relations in terms of these coeffi­
cients. One of our devices lies in expressing the CG coeffi­
cient as an asymptotic form of the Racah coefficient: The 
corresponding relationship in su(2) was given by Bieden­
harn. 19 This provides efficient manipulation that circum­
vents the very involved expression of the CG coefficient in 
sUq (2). We show that one of the symmetry relations specific 
to a kind of 9-j symbol, which is described in terms of three 
Racah coefficients, produces the YB relation for the IRF 
model. In an asymptotic limit, the YB relation becomes that 
for the two-dimensional vertex moder which concerns the 
factorized S (R) matrix of the process 

jlm l + j2m2 -j1m/ + j2m2'. (1.1) 

In the algebra sUq (2) , many of the quantities are func­
tions in the indeterminate q (Refs. 8-17). While the q depen-

dence of the CG coefficient is very complicated,12.13 the 
expression ofthe Racah coefficient is easily transcribed into 
the corresponding expression of the algebra su ( 2) and vice 
versa. In our formalism, this advantage of the Racah coeffi­
cient is utilized as much as possible. 

We use the 6-j symbol in place of the Racah coefficient: 
The distinction between these lies in a sign factor. It is partly 
because the 6-j symbol, as well as its modified form, is used in 
Ref. 13 and partly because we often use symmetries of the 6-j 
symbol. 

In Sec. II, a brief review is given of the algebra sUq (2), 
the CG coefficient, and the 6-j symbol (the Racah coeffi­
cient). Sections 111-V constitute discussions on the CG coef­
ficient, the 6-j symbol, and various new relations among 
them. In Sec. III, the CG coefficient is described as an 
asymptotic limit of the 6-j symbol. Symmetry relations for 
the CG coefficient are then deduced from those for the 6-j 
symbol. In Sec. IV, another asymptotic limit of the 6-j sym­
bol is presented which plays a decisive role in discussing YB 
relations. Section V is devoted to various relations among 
CG coefficients and/or 6-j symbols. It includes two rela­
tions, each of which describes the 6-j symbol as a weighted 
linear sum ofCG coefficients. In Sec. VI, a kind of9-j symbol 
is defined. It has the same kinds of symmetries as the 9-j 
symbol of su (2). In Sec. VII, the operator (matrix) R is 
defined as a quantity to express the overlap of a pair of cou­
pled bases, one specified by q and the other by 1/ q. Relations 
among R, CG coefficients, and 6-j symbols are discussed. In 
Sec. VIII, it is shown that one of the symmetry relations for 
the 9-) symbol is rewritten as the YB relation for the IRF 
model and that its asymptotic limit gives the YB relation for 
the vertex model. The operator R is interpreted as the factor­
ized S matrix of the vertex model. Concluding remarks are 
given in Sec. IX. 

II. PRELIMINARIES ON suq (2), THE CG COEFFICIENT, 
AND THE 6-j SYMBOL 

This section is devoted to a brief review of the algebra 
sUq (2) . In particular, algebraic expressions for the CG coef­
ficient and of the 6-j symbol, discussed by Kirillov and Re-
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shetikhin,13 are summarized. For recent studies on q analogs 
in group representations, see works by Milne.20

•
21 

The algebra sUq (2) is generated by the relationS
-

13 

(2.1) 

and 

+ _ _ qH!2_ q -HI2 
[X ,x ] - 1/2 -1/2 ' q -q 

(2.2) 

where q is an indeterminate defined as a positive number. In 
the case of q -+ 1, the operators X ± and H /2 becomeJ ± and 
Jz of the algebra su(2) (Refs. 1-5), respectively. The gener­
ators H, X ± acting on the bases I jm) yield 

and 

(H /2) Ijm) = mUm). (2.4) 

For a real number n we define [n] by 

[n] = (qnI2_ q -n/2)/(qI/2_ q-1/2). (2.5) 

Our definitions of q and [n] are the same as those given in 
Ref. 13: q and [n] here correspond to q - 2 and (n) of Ref. 12, 
respectively. The product [1][2]"'[n] is denoted as [n]!. 
We postulate that [OJ! = 1 and [n]! = Oifn <0. Notice that 

[n] is invariant under replacement of q by 1/ q. (2.6) 

The symbol [n] with a natural number n is rewritten as 

[n] =q(n-I)12+ q(n-3)12+ ... +q-(n-I)!2, n>l. 

(2.7) 

Some miscellaneous relations for [n] are 

q- n12[n'] + [n]qn'/2 = [n + n'], 

[2j+ 1][2/ + 1] 

and 

= [2U-fl + 1] + [2(lj-fl + 1) + 1] 

+ ... + [2(j+j') + 1], 

[n](n'+n"] - [n+n"](n'] = [n-n'][n"]. 

(2.8) 

(2.9) 

(2.10) 

The comultiplication (coproduct) !:..q' which acts on the 
product of two bases, Vi ® Vk' is defined such that 

!:.. (X ± ) = X. ± H./4 + - H/4 X ± 
q I ®q q ® k' (2.11a) 

and 

(2.11b) 

where I denotes the identity. The expression (2.11a) is a 
generalization of 

J ± = J; ± ® h + Ii ® J k ±, (2.12) 

defined in the algebra su(2). Notice that the right-hand side 
(rhs) of (2.11b) is independent of q. In the case q-+ 1, most 
of the expressions throughout the paper approach those of 
su (2). The coupled basis I (ji j k )jm) q is defined such that 
the comultiplication!:"q (X ± ) acting on it yields (2.3). The 
algebra on sUq (2) is a Hopfalgebra.s- 13 This means that the 
antipode and counit on the generators X ± and H are prop­
erly defined. This specific feature is not referred to explicitly 
in the following discussions. 

The CG coefficient is defined in the usual way as the 
expansion coefficient between the set of uncoupled bases and 
the set of coupled bases. It is expressed as l3 

X [j2 - m2]![j + m]![j - m]![2j + 1 ]}1/2 I( - 1)Zq-z(j, +j, +j+ 1)12 
z 

X{[Z]![j1 + j2 - j - Z]![jl - m l - Z]![j2 + m 2 - zl![j - j2 + m l + z]![j - jl - m2 + Z]!}-I. 
(2.13 ) 

The sum over z is taken such that none of the factorials could have a negative argument. We have defined 

!:..(abe) = ( [ - a + b + e]![a - b + e]![a + b - e]! )112, 
[a+b+e+l]! 

and 

x(a)=a(a+ 1). 

(2.14 ) 

(2.15 ) 

The symbol!:..(abe) is invariant under replacement of qby 1/q, as is shown from (2.6). [The symbol!:.. is used also to denote 
comultiplication (2.11), which, however, will not give rise to serious confusion. ] The symbol x(a) is the one denoted ase(a) 
in Ref. 13. The expression (2.13) is the q analog of the formula by van der Waerden and by Racah. 1 It is normalized so as to be 
unity in the case ofj = m = jl + j2' 

For later convenience and for checking expressions in this paper, we give (2.13) in a few special cases: 

(iim - mlOO) = ( - 1 )j- mqm/2/~ [2j + 1], (2.16 ) 

(jlj2m lm2Iii)q = ( - 1)j, - m'q{-x(j,) +x(j,) -x(j) +2m,(j+ 1)}/4 

( 
[2j + 1 ]![jl + m l ]![j2 + m 2 ]![j1 + j2 _ j]! )112 

X [jl _ m l ]![j2 - m 2]![j1 - j2 + j]![ - jl + j2 + j]!UI + j2 + j + I]! 
(2.17) 
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The 6-j symbol is defined in the conventional way as the transformation coefficient between different coupling schemes of 
three angular momenta. It is expressed in terms of CG coefficients by 

{~ ~ ;} = ( - 1)a+b+c+d(edm12m 3 Icm )q -I ~ (abm 1m 2 Iem12)q 

(2.18 ) 

The 6-j symbol multiplied by ( - 1) a + b + c + d gives the Racah coefficient, W( abcd;ej). Kirillov and Reshetikhin 13 deduced 
the following expression of the 6-j symbol, using (2.13) and (2.18): 

{~ ~ ;} = 1l.(abe)1l.(acj)1l.(cde)1l.(dbj) ~( - I)Z[z + 1]!{[z - a - b - e]![z - a - c - f]![z - b - d - f]! 

x [z - d - c - e]![a + b + c + d - z]![a + d + e + I - z]![b + c + e + 1- Z]!}-I. (2.19) 

The rhs of (2.19) is simpler than that of (2.13), the 
expression for the CG coefficient, since (2.19) is described 
only in terms of symbols [ ]! . From (2.6) or (2.19), we see 
that the 6-j symbol is invariant under the replacement of q by 
1/ q: Because of this, we abbreviate the suffix q or 1/ q of the 
6-j symbol. Furthermore, expression (2.19) is transcribed 
into a known expression for the 6-j symbol of su (2) by means 
of replacement of all the symbols [n]! by n! . This transcrip­
tion cannot be applied to the expression of the CG coeffi­
cient, (2.13), in general. This transcription is not available 
even with such symmetric CG coefficients as, for example, 
(jl N)() I jO)q. 

Various symmetries of the 6-j symbol that are known in 
the algebra of su (2) (Refs. 3 and 5) hold also in the algebra 
of sUq (2). That is, the 6-j symbol of this paper is invariant 
under any permutation of columns and also under an inter­
change of upper and lower arguments in each of any two of 
its columns. Further, Regge's symmetry holds.z2 

The CG coefficient and the 6-j symbols in the algebra of 
sUq (2) fulfills the same forms of orthogonality relations as 
those3

•
5 in the algebra su(2). For example, it holds that 

L (jlj2m lm2lim )q (jlj2m l'mz'l jm)q 
j 

lim (_1)2S{ a b S+e 1~[2s+ 1] 
s- "" S + d S + c .If 

(2.20) 

III. THE CG COEFFICIENT AS AN ASYMPTOTIC LIMIT 
OF THE 6-/ SYMBOL 

Here, we show that the CG coefficient can be expressed 
as an asymptotic limit of the 6-j symbol: The corresponding 
relation in su(2) is well known. 3

•
19 The relation provides a 

way to circumvent uses ofthe involved expression (2.13). 
We prepare the following expression for studies ofvar­

ious expressions in asymptotic limits: 

[S + a]! . hiS -=-----"- WIt a very arge 
[S + b]! 

{ 
[S] a - bq{x(a) - x(b)}/4, 

::::: [S] a - bq - {x(a) - X(b)}14, 
if q> 1 
ifq<l. 

( 3.1a) 

(3.1b) 

The factor [S] on the rhs is asymptotically 
~/2/(qI/Z _ q-I/Z) in the case of q> 1 and 
q- S/2/(q- 1/2 _ qllZ) in the case of q < 1. 

In order to relate (2.19) with (2.13), let us replace la­
bels of (2.19) such that c-+S + c, d-+S + d, and/-+S + f 
We replace further the label z as z -+ 2S - z + a + b + c + d 
and z-+2S + z + c + d + e, respectively, for q> 1 and q < 1. 
We subsequently make S-+ 00 in (2.19), using (3.1a) and 
(3.1b). We compare the resultant expression with (2.13) to 
obtain 

= {( _1)a+b+C+dq-f/2(a,b,J-c,d-/le,-c+d)q/~[2e+ 1], 

( - 1 )c+ d+ eql/2(a,b,c - f,1 - d le,c - d)q/~[2e + 1], 

(3.2a) 

(3.2b) 

Let us show that the CG coefficient has the symmetry, 

( . . I . (1 )j, + j, - J( . . I . ) lI1zm 1m z lm)q = - lIh - m l - mz 1 - m IIq' (3.3) 

Proof: We prove it separately for the cases of q> 1, q < 1, and q = 1. In the case of q > 1, we replace q in (3.2b) by 1/q, and 
compare with (3.2a). After changing notations such that a = jl' b = j2' e = j,j - c = m I' d - 1= m z, and d - c = m, we get 
(3.3). To prove (3.3) in the case ofq< 1 we replace q in (3.2a) by 1/q to compare with (3.2b). Putting a =jl' C - 1= m l , 

1- d = m2 , etc., we get (3.3). The relation (3.3) with q = 1 is well known3 in the algebra su(2). 
Various symmetry relations for the CG coefficient other than (3.3) can be deduced from (3.2a) and (3.2b) being 

combined with symmetry relations for the 6-j symbol. Among them, we have 

(3.4 ) 
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(3.5) 

(3.6) 

The last relation, which expresses Regge's symmetry23 of the CG coefficient, is linked to Regge's symmetry22 of the 6-j symbol. 
Kirillov and Reshetikhin l3 deduced (3.4) and (3.5), using (2.13): A misprint in their expression is corrected in (3.5). The 
combination of (3.3-3.6) generates q analogs of all the known symmetry relations for the CG coefficient of su(2). 

It is possible to define the q analog ofthe 3-j symbol by the rhs of (3.2). We should multiply, however, an extra factor 
q ± (c+ d +/)/6, where ± means + or - according to q> 1 orq < 1, to unify (3.2a) and (3.2b). Symmetries of the 3-jsymbol, 
rewritings of (3.3 )-(3.6), are linked to the symmetries of the 6-j symbol. 

In a previous paper,24 the author presented a new expression of the 6-j symbol in the algebra su(2). Transcription of it in 
the q analog is done with the replacement of every factorial n! by its q analog [n]! so as to yield e ~ ;1 = (_1)c+d+e(bae)(cde)/{(caf)(bdf)} 

(_1)a Z[a+z]![c+f-z]![b-c+d+z]! xI ' 
z [a-z]![b-e+z]![b+e+z+ 1]![ -c+f+z]![ -b+c+d-z]! 

where 

(abc) = ; ( 
[a+b-c]![a-b+c]![a+b+c+ 1]!)1I2 

[-a+b+c]! 

it is equivalent to (2.19), though these are apparently different from each other. 
There is another expression of the CG coefficient, which is apparently different from (2.13): 

(jd2m lm 2Vm )Q = (_l)j,-m'q{-xU,)+xU,)-XU)}/4+m,(m+I)/2 

( 
[jl - md![j2 - m 2]![j + m]![j - m]![jl + j2 - j]![2j + 1] )112 

X [jl + m l ]![j2 + m 2]![j1 - j2 + j]![ - jl + j2 + j]![jl + j2 + j + I]! 

[ . ]' [.. ]' XI(-1)zqz(j+m+I)/2 h+ml+ z . h+J-ml-z. . 
Z [z]![j - m - Z]![jl - m l - Z]![j2 - j + m l + z]! 

(3.7) 

(3.8) 

(3.9) 

Proof We prove separately the cases q> 1, q < 1, and q = 1. In the case of q > 1, we replace the labels in (3.7) as a -+ b, 
b-+S + J, c-+e, d-+S + c, e-+S + d,J-+a, andz-+ -z + c + e - J, and makeS-+ 00 using (3.2a). We subsequently change 
notations oflabels such that a = jl' b = j2' e = j,f - c = m l, d - f = m 2, d - c = m. We compare the resultant expression 
with (3.2), and get (3.9). In the case of q < 1, we first put q = 1/ q'in (3.9) so as to be q' < 1. Next, we use (3.4) to rewrite the 
left-hand side (lhs) as ( - 1 )j, +j, -j (j2j lm 2m l\jm)Q" We subsequently interchange labels asjl~j2 and ml~m2 together 
with the replacement of z by j - m - z'. After replacing q' and z' by q and z, respectively, we get (3.9) with q < 1. In the case of 
q = 1, the expression (3.9) becomes the so-called Racah's first form.3 

The expression (3.9) is to (3.8) what (2.13) is to (2.19). 

IV. ANOTHER ASYMPTOTIC LIMIT OF THE 6-jSYMBOL 
In this section, we give another asymptotic limit of the 6-symbol. 
Let us replace labels of (2.19) such that b-+S + b, c-+S + c, e-+S + e,j-+S + J, andz-+ 2S + z' so as to makeS -+ 00. It is 

shown that the label z' does not exceed the minimum of a + b + c + d and a + d + e + f and that the term of the largest order 
in Sis specified with the largest possible value ofz', irrespective of q. Using these, we transform (2.19) separately for the cases 
of q> 1 and q < 1. We get the following result, valid for a positive number q: 

lim ( _ 1)2S+a+b+C+d{a S + b S + e} [2S + e + f + I]! = {T(a,d,J - c,b - J,b - e,e - c), b + c,e + J, 
S-oo d S+c S+f [2S+b+c]! 0 b+c>e+f 

(4.1 ) 

We have defined Tby 

T(ada'd'a"d")= 1 ([a+a']![a-a"]![d-d']![d+d"]!)I12 
, , , " [a'-a"]! [a-a']![a+a"]![d+d']![d-d"]! 

(4.2) 

V. RELATIONS AMONG CG COEFFICIENTS AND/OR 6-jSYMBOLS 
Here, we give some relations among CG coefficients and/or 6-j symbols. Some new devices are developed to deduce them. 
Let us put in (2.18) m3 = d and m = c. We make use of (2.17) to express the first and the last two CG coefficients on the 

rhs of (2.18) in terms of q-analog factorials. It then follows that 
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Id
a b e} =q{-x(al-X(bl+x(el-2X(Cl+2x(J)}/4 ([c+d-e]![c+d+e+ 1]!)1/2 

c I (caj) (dbj) 

x I( - 1 )e+ d+f+ mqm(c+ d+ Il12 [c + I - m]! ([a + m]![b - c + d + m]!)1/2 
m [-c+l+m]! [a-m]![b+c-d-m]! 

X (a,b,m,c - d - mle,c - d)q/~[2e + 1]. 

We have another expression similar in form to (5. 1 ) : 

{
a b e} = (_l)a+b+c+dq{-X(Ol-X(bl+x(el -zx(Cl +2X(J)}/4 (caj) (dbj) 
d c I {[c+d-e]![c+d+e+l]!}1/2 

X q-m(c+d+ll/2 ([a+m]![b+c-d+m]!)I12 

f; [c-l+m]![c+l+m+ I]! [a-m]![b-c+d-m]! 

X (a,b,m, - c + d - mle, - c + d)q/~[2e + 1]. 

In the algebra su(2), the present author24 obtained (5.2) with q = 1. 
The relation (5.1) is termwise invariant under the replacement 

a--s - d, b--s - c, c--s - b, 

d--s-a, m--m+ (a-b-c+d)/2. 

Similarly, (5.2) is termwise invariant under the replacement 

a--s - c, b--s-d, c--s - a, 

d--s-b, m--m+ (a-b+c-d)/2. 

These invariances result from the Regge's symmetries of the 6-j symbol and of the CG coefficient, (3.6). 
The following relation holds among CG coefficients: 

(jljzm lm2Ijm)q = (_I)j,+j,-jq-{X(j,'+X(j,l-X(jl}12 I (_I)m,-m'"q{m,-m,"-(m,+m,"l(m,+m;'}/4 
m2 '>mZ 

(5.1 ) 

(5.2) 

(5.3 ) 

(5.4 ) 

(5.5 ) 

PrOOF We consider the case of q# 1, since (5.5) with q = 1 gives a trivial equality. Let us replace labels of (5.1) such that 
c--S + c, d--S + d, andJ--S + ItomakeS-- 00. To its rhs and lhs we apply (3.1) and (3.2), respectively: Thecasesofq> 1 
andq < 1 are to be treated separately. We replace labels such thata--jl' b--j2' andc--j. Further, weputl - c--ml, d - l--m2, 
d - c--m, m-- - m l', m + d - c--m2' in the case of q> 1, and put c - I--m l, 1- d--m2, c - d--m, m--m l', 
c - d - m -- m2' in the case of q < 1. It then follows (5.5). 

We transform (5.5), using (2.20) and (3.3), to get 

Iq{X(j,) + x(j,l - X(jl}12( jlj2m lm21 jm)q (jlj2ml'm2'1 jm) Ilq 
j 

= {( _ 1 )m, - m'"q{m, - m," - (m, + m,")(m, + m;l}/4(ql12 _ q-I/2)m, - m'"T(jl,j2,ml,m2,ml',m2'),ml>m.',. 

O,ml<m l' 

The combination of (4.1) with (5.6) yields 

lim (_1)2S+0+b+c+d{a S+b S+e} [2S+e+l+ I]! 
S-oo d S+c S+I [2S+b+c]! 

= (_ l)b+c-e-fq{x(bl +x(cl -x(el -X(J)}/4q - (bc-eJ)!2(qIl2 _ q-1/2)b+c-e- f Iq{x(Ol +x(dl -xUl}/2 
j 

X (a,dj - c,b - IU,b - c)q (a,d,b - e,e - clj,b - c) Ilq' 

Corresponding to Racah's sum rule in the algebra su(2), we have the relation 

(5.6) 

(5.7) 

I( _l)e+ f +K[2g+ 1]{a d gIla d g}q-{X(el+x(fl+x(gl}/2 = {a b le}q-{X(Ol+X(bl+X(Cl+X(dl}/2. (5.8) 
g cbebcl dc 
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Proof: Let us show that the lhs is transformed into the 
rhs. In the first 6-j symbol on the lhs, we substitute (5.1) 
after labels b, c, d, e, and/in (5.1) are replaced by d, b, c, g, 
and e, respectively. In a similar way, we substitute (5.2) in 
the second 6-j symbol on the lhs of (5.8), after labels b, d, 
and e in (5.2) are replaced by d, b, and g, respectively. The 
sum over gon the lhs of (5.8) is then carried out by using the 
orthogonality relation for the CG coefficient, (2.20). We 
compare the resultant expression with the expression (3.7), 
and obtain the rhs of (5.8 ) . 

The relation (5.7) can be deduced also from an asymp­
totic limit of (5.8). To show it, we replace b, c, e, and/in 
(5.8) by S + b, S + c, S + e, and S + J, respectively, and 
make S -+ 00. The cases q> 1 and q < 1 are treated separately. 
We apply (3.2) to two 6-j symbols on the lhs and obtain 
(5.7). 

The relation (5.8) in the case of/ = 0, a = d, and b = c 
gives 

L[2g+1]{a b e}q_{x(e)+X(g)}/2 
gab g 

= (_ 1)2a+2bq -x(a) -x(b). (5.9) 

From the combination of (5.1) and (5.2), where q in 
(5.2) is replaced by l/q, we can deduce the orthogonality 
relation for the 6-j symbol. This in turn gives a check of (5.1 ) 
and (5.2). 

The Biedenharn-Elliott (BE) rule in the algebra su(2) 
holds also in sUq (2) : 

~(-1)b+f+Z[2Z+l]e ; :}~ ! :H; ~ :} 
= (_1)a+c+k+ g+d+e+h{a c h}{h g k}. 

deb/de 
(5.10) 

Here, the labels of the 6-j symbols are arranged in a way 
suitable for the deduction of (7.12) given later. 

The simplest way to deduce (5.10) is to make use of the 
transformation from one specific coupling scheme of four 
angular momenta to another specific one, the way well 
known in the algebra su(2) (Refs. 3-5). There is no addi­
tional q-dependent factor in (5.10), since transposition of 
angular momenta is not involved in the transformation of 
the coupling schemes of concern. 

VI. A KIND OF 9-jSYMBOL AND ITS SYMMETRIES 

Here, a kind of9-j symbol is presented which has specif­
ic symmetries similar to the 9-j symbol of su (2). 

In the algebra su (2), the 9-j symbol is defined as the 
transformation coefficient between different coupling 
schemes of four angular momenta.3

-
5 Two defining expres­

sions, equivalent to each other, of the 9-j symbol are widely 
known, one in terms of six CG coefficients and the other in 
terms of three 6-j symbols. 3

-
5 As is discussed on p. 458 of 

Ref. 4, the transformation of the coupling schemes consists 
of three pure recouplings and two transpositions. 

In the algebra sUq (2), the situation is slightly different. 
The transformation coefficient is really expressed in terms of 
six CG coefficients. However, two of the coefficients, whose 
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labels are arranged in the standard form, are specified by the 
indeterminate l/q, while the other four are by q. It is due to 
the presence of transpositions involved in the recoupling of 
four angular momenta. Contrary to the case of su(2), the 
transformation coefficient is not expressed as a sum over 
products of three 6-j symbols. 

Here, we define an analog of the 9-j symbol by 

b e} 
d / 
k g q 

= L ( - 1)2Zq - {x(z) + x(h) + x(d) + x(e)}/2[2z + 1] 
z 

X {a c h} {b d k} {e / g}. 
k g z c z / z a b 

(6.1 ) 

This 9-j is not invariant under interchange of q and l/q, 
contrary to the 6-j symbol. 

Significance of the symbol defined by (6.1) lies in the 
following symmetry relation, valid for every q> 0, 

! ;} = ( _ l)Aq _X'(A)/2{: ; !) 
k g q h g k l/q 

in which A and x' (A) are defined by 
9 

A = L a,. = a + b + c + d + e + / + g + h + k, 
i=l 

and 
9 

x'(A) = L x(a i ) =x(a) +x(b) + ... +x(k). 
i~ I 

(6.2) 

(6.3) 

(6.4 ) 

Proof: We rewrite the first 6-j symbol on the rhs of (6.1) in 
terms of two 6-j symbols by using the Racah's sum rule (5.8) 
afterlabels in (5.8) are replaced such that b-+c, c-+g, d-+k, 
e-+h, and / -+Z together with q-+ lIq. Subsequently, we use 
the BE rule (5.10) for taking the sum over z on the resultant 
rhs of (6.1 ). From this we get the rhs of (6.2). 

The 9-j symbol satsifies the same kind of relation as 
(6.2) under interchange of the first two columns: The proof 
is essentially the same as that given to (6.2). Further, the 9-j 
symbol is unchanged under the interchange of rows and co­
lumns (matrix transposition). 3-5 From these it is shown that 
the 9-j symbol (6.1) has the same symmetries as that of 
su(2). 

VII. THE MATRIX R EXPRESSED IN TERMS OF A 6-j 
SYMBOL 

The operator (matrix) R is defined here as a quantity to 
express a degree of overlap of a pair of coupled bases, one 
specified by q and the other by lIq: The operator R is inter­
preted in the next section as the factorized S matrix that 
describes the process (1.1). 

We define the operator R by 

Rj,j,=.? I (jdz)jm)qF(jd2j)q«j2jl)jm l, (7.1) 
Jm 
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in which 

(7.2) 

The inverse of R is shown to be 

(Rj,j,)-I = L \ (j2jl)jm)qF(jlj2j)-l q«jd2)jm\. (7.3) 
jm 

The R matrix in the case of q = 1 implies simply the unit 
operator. 

It is shown from (7.1) thatal/q(X ±)R = Raq(X ±). 

The operator R, defined by (7.1), corresponds to the opera­
tor R of Ref. 13. 

The matrix element of R is expressed as 

(Rj,j,),::,:':::/ = «jl,m l') (j2,m2') \Rj,j,\ (j1,m l )(j2,m2» 
(7.4 ) 

= L F(jlj2j) Ud2 m l 'm2'\jm)q 
j 

= L (-1)j,+j,-jF(jlj2j) 
j 

(7.5) 

X (jlj2 m l'm2'\jm)q(jd2m lm2ljm)l/q' 
(7.6) 

In the last step, (3.4) has been used. Similarly, we express 
the matrix element of R -I in terms of CG coefficients. We 
compare the result with the lhs of (5.6) to find that 

( Rj,j,) -I)m,',m,' = the lhs of (S.6). 
m.,m2 

(7.7) 

As can easily be shown, the operators (Rj,j,) -I andRj,j, are 
interchanged if the indeterminate q is replaced by its inverse 
l/q. 

We combine (S.6) with (7.6), using (7.7), to get 

{q
{-m,+m,'+(m,+m,')(m,+m,')}/4(qI/2_ q-1/2)m,-m,'T(j' j'm m m' m') 

( .. ) m' m ' I' 2' I' 2' I' 2 , (R },j,) " , = 
m"m, 0, m l < m l '. 

(7.8) 

As a special case, it follows that 

(7.9) 

The expression of R, (7,8), differs significantly from that of 
Ref. 13 as to q-dependent factors. 

We modify the rhs of (7.6) using symmetries of the CG 
coefficient, (3.3) and (3.4), to get the following. 

The matrix element of R, (7.4), is invariant under re­
placement of labels (m l, m2, m l', m2') by ( - m l', 
- m 2', - m l , - m2 ) and underreplacementof(jl,j2' 

m l, m2, m l', m2') by (j2,jl' m 2', m l', m2, ml)' 
(7.10) 

The expression (7.8) actually fulfulls these symmetries. 
Combination of ( 4.1) with (7.8) gives 

lim ( _ 1) 2S + a + b + c + d {a S + b S + e } 
S-oo d S + e S + f 

X [2S+e+f+ 1]! 
[2S+b+e]! 

= (R ad) b - e,e - C q - {x(b) + x(c) - x(e) - x( /l}/4 
f- c.b-f 

Xq(bc- e/l!2(qI/2 _ q-1/2)b+ c-e-f, (7.11) 

We have described the relationship between R, T, the CG 
coefficient, and the 6:isymbol in (4,1), (S.6), (5.7), (7.6), 
(7.8), and (7.11). 

The BE rule (5.10) has the following asymptotic limit: 

~ (R af)g- z,z- b (R Cf)Z- k,k- d 
4.t e - b,g - e b - d,z - b 

z 

X (a,e,g - z,z - k \h,g - k)q 
= (R hf)!= ~:;= :(a,e,e - b,b - d \h,e - d)q. (7.12) 

Proof; In (5.10) we replace labels as z-+S + z, k-+S + k, 
g-+S + g, b-+S + b, e-+S + e, d--S + d and make S-+ 00. 

The cases of q> 1, q < 1, and q = 1 are treated separately. 
Here, we give the proof only for the case of q < 1, for simpli­
city. We use (3.2b) for the first 6:i symbol on each side of 
(S.lO), and use (7.11) for the other three 6:isymbols so as to 
express the S -+ 00 limit of (5.10) in terms of Rand CG 
coefficients. Notice that [2S + 2z + 1], for example, is of 
the form q- (S+z+ 1/2)/(q-1/2 _ qI/2). After rewriting ex-
pressions by the use of (3.1b), we obtain (7.12). 

VIII. YANG-BAXTER RELATIONS IN TERMS 
OF 6-/ SYMBOLS 

I t is shown here that one of symmetry relations for the 9-
j symbol generates YB relations for the IRF model and for 
the vertex model. 

Invariance of the 9:i symbol (6.1) under the third col­
umn being put onto the lhs of the first column is expressed in 
terms of the 6:i symbol as 

~(-1)2Z[2z+1]{~ ! ~}~ : :}~ : :}q-{X(Zl+X(hl+X(el+X(d)}!2 

=~(-1)2Z[2Z+1]~ ~ ;}~ ; ~}{~ ~ !}q-{X(Z)+X(gl+X(C)+X(b)}!2. (8.1) 
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The lhs is a reexpression of the rhs of (6.1). We have used 
symmetries of the 6-j symbol to arrange labels suitable for 
obtaining (8.5) given later. Let us define wand w' (the sym­
bol w stands for a weighC and not for the Racah coefficient) 
by 
w(h,c,z,g;a,k) 

= ( _ l)a + k + h + Zq{X(C) + x(g) - x(h) - x(z)}12 

X~[2h + 1][2c+ 1][2z+ 1][2g+ 1] 

This is in agreement with the so-called Wu-Kadanoff­
Wegner transformation.25

-
27 In the present formalism, the 

correspondence (8.7) is based on (7.11), and is linked ori­
ginally to the correspondence of the 6-j symbol and the CG 
coefficient (3.2). 

Using symmetries of the 6-j symbol, it is shown that 

w(,) (h,c,z,g;a,k) = w(,) (z,g,h,c;a,k) = w(,) (z,c,h,g;k,a). 

( 8.8) 

The symmetries correspond to the symmetries of R, (7.10), 

X {~ ! ~}, (8.2) which is compatible with (8.7). 

and 

w'(h,c,z,g;a,k) 

=~[2h + 1][2z+ 1]!{[2c + 1][2g+ In 
X w(h,c,z,g;a,k). 

We express (8.1) in terms of wand w' as 

L w(h,c,z,g;a,k) w(g,z,b,e;a,J) w' (z,c,d,b;k,J) 
z 

(8.3 ) 

= L w' (g,h,z,e;k,J) w(h,c,d,z;a,J) w(z,d,b,e;a,k). 
z 

(8.4 ) 

In this relation, it is allowed to replace simultaneously all the 
functions w by the corresponding w'. The functional relation 
(8.4) is the YB relation for the IRF model exploited by Bax­
ter7

: For the prescription to construct commuting transfer 
matrices from wand w', see Ref. 7. In Ref. 18, the present 
author discussed (8.4) with q = 1. 

In (8.1) we put z-+S+z, b-+S+b, c-+S+c, 
d-S + d, e-+S + e, g-+S + g, h-S + h and make S-+ 00. 

Subsequently, we use (7.11) to describe the asymptotic limit 
of (8.1) in terms of R. The cases of q < 1, q > 1, and q = 1 are 
to be treated separately. It then follows that 
" (R ak.) g - z.z - C (R at) e - b,b - Z (R kf) b - d,d - c 
£..ti h - e,g - h g - z,e - g z - c,b - z 

Z 

= " (R kf)e- z,z- h (R at)z- d,d- C (R ak)e- b,b- d. L g - h,e - g h - C,z - h z - d,e - z 
z 

In the case of q< 1, each side is equal to 
(_I)b-d+h- gq - (b+d+h+ g )/2(q\IZ _ q-\IZ)-2 

X lim ¢(s+ c) + x(S+ e) - zs- \ 
S-oo 

S+e 

f 
S+g 

a } S+c 

S+h q 

(8.5 ) 

(8.6) 

If q > 1, expression (8.5) with q being replaced by 1/ q gives 
each side of (8.5). 

The specific form of (8.5) is known as the YB relation 
for the vertex model.6

•
7 The matrix element of R describes 

two-particle scattering process ( 1.1 ). Beside q the labels a, k, 
and f act as parameters to specify w(.) and R. However, 
none of them could satisfy the additivity of spectral param­
eters. 7 

We compare (8.4) and (8.5) to find the correspondence 

(8.7) 
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IX. CONCLUDING REMARKS 

We have discussed relations among CG coefficients and 
6-j symbols (Racah coefficients, in the same sense) of the 
algebra sUq (2), and have shown that one of symmetry rela­
tions for the 9-j symbol, described in terms of three 6-j sym­
bols, generates YB relations for the IRF model and for the 
vertex model. 

As shown in (3.2), the 6-j symbol becomes the CG coef­
ficient in an asymptotic limit. This 6-j symbol becomes the 
matrix element ofR in another asymptotic limit, as shown in 
(7.11 ). Manipulation of the algebra in sUq (2) is remarkably 
simplified by virtue of these relations among R, the CG coef­
ficient, and the 6-j symbol, together with the fact that the 6-j 
symbol in sUq (2) has simple dependence on q in comparison 
with CG coefficient. 

Relations such as (3.5), (3.9), (5.8) (5.9), and (7.8) 
were already given in Ref. 13. However, serious confusion 
seems to exist in each of their expressions, especially as to q­
dependent factors. The expression of R we get in (7.8) 
differs from that of Ref. 13. 

It is hoped that many ofthe present results will hold in 
various "quantum" groups, so far as the CG coefficient and 
the.6-j symbol are properly defined. It is easy to extend the 
present discussion to the algebra of sUq (l, 1) (Ref. 28), al­
though we do not discuss it here. 
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An investigation is made of coherent states that differ from the usual ones in two ways: (a) 
they are connected with the coset space G / H, where the stability subgroup H may be 
noncompact; and (b) the notion of an H-invariant ray is replaced by the more general notion of 
an H-invariant subspace. A general framework is given for vectorlike coherent states with the 
help of the nonlinear realization technique as well as with the rigged Hilbert space theory. The 
vectorlike coherent states are found for the Poincare group and the hyperbolic coherent states 
are found for the SU ( 1,1) group. 

I. INTRODUCTION 

The coherent states technique is a powerful method 
widely applied to various branches of modern physics and 
mathematical physics as well as to mathematics. It was ori­
ginated from the pioneering papers by Glauber 1 and 
Klauder. 2 The concept was generalized by Radcliffe,3 Pere­
lomov,4 Thompson,5 and Gilmore and co-workers6.7 and 
next extensively applied and developed by a number of au­
thors. An exhaustive review of the theory and applications of 
coherent states as well as a reference list is given in the excel­
lent books by Klauder and Skagerstam,8 Perelomov,9 and 
Hecht. \0 We also should mention some works dealing with 
different systems of overcomplete states: the continuous rep­
resentations of quantum states by Bamt and Girardello,11 
Skagerstam,12 and Nieto. 13 

In this paper we investigate the coherent states under­
stood in the spirit of the Perelomov definition but with some 
generalization. In order to explain this fact let us recall the 
definition of Perelomov: "The system of states 
Il}!g) = U(g) 11}!0), where g are elements of Lie group G, 
U( G) is an unitary representation of G in the Hilbert space 
JY and II}! 0) is a fixed vector in JY, is called the coherent 
states system." Thus a coherent state II}! g) is determined by 
a point x(g) of the coset space G IH, where His the stability 
subgroup of the ray II}! 0)' Now, because that vector lies in 
the proper Hilbert space, the stability group H is thus com­
pact. 14 As we will see below, the compactness of H is a very 
convenient assumption for technical reasons. Although this 
last requiretnent increases our difficulties, it is highly desir­
able since it drastically extends the applicability of the coher­
ent states method. 

The aim of our paper is to propose a procedure for the 
case of the noncompact stability group. An additional gener­
alization of the Perelomov definition we have adopted is the 
replacement of the notion of the stable ray II}! 0) by the stable 
(H-invariant) subspace of JY (see also Refs. 10 and 15-24). 
The plan of this paper is as follows: In Sec. II we study prob­
lems connected with the noncompactness of H and we give a 
framework for dealing with such a case. Section III is devot­
ed to a description of the vectorlike coherent states in terms 
of the language of nonlinear realizations. In Sec. IV we in ves­
tigate the vectorlike coherent states for the Poincare group 

with the Lorentz stability group. In Sec. V we find the hyper­
bolic coherent states for the SU ( 1,1) group. In Sec. VI we 
briefly discuss the results. 

II. THE EXTENSION PROBLEM FOR 
REPRESENTATIONS OF G 

To explain some characteristic features of the coherent 
states with a noncompact stability group let us begin with an 
elementary but very pedagogical example of the special nil­
potent group the (Heisenberg-WeyI2,5 group). The Lie alge­
bra of this group is generated by q, p, and e: [q,p] = ie, 
[e,q] = [e,p] = O. The unitary representation of the Heisen­
berg-Weyl group, labeled by a real number A, is given via the 
Stone26 and von Neumann27 theorems by 

UJ. (x,p,f/J) = exp[i(Af/JI + pq - xjJ)]. 

Here q and p are unbounded self-adjoint with domains dense 
in the underlying Hilbert space JY, while I is the identity and 
e =)..J. For simplicity we choose A = 1, i.e., e = I. Note that 
the group space is the product S 1 XJR2. 

Now, the "classical" set of coherent states is obtained by 
choosing the compact phase group exp(if/J) as the stability 
group, by fixing its eigenvector, and finally by the action of 
the operator U(x,p,f/J) on this eigenvector. As a result one 
obtains a set of states parametrized by the points of the coset 
space SiX JR2 IS 1 """ JR, i.e., by points of the plane (x,p). 

Now, let us look for another choice of the stability sub­
group, namely, the subgroup generated by q and e: 
exp[i(¢,I + pq)]. The eigenvectors of this group do not be­
long to the Hilbert space JY, but rather to the space oftem­
pered distributions S' [the space of continuous linear func­
tionals over some nuclear subspace S of JY (see Ref. 28) ] . 
They are simply the position operator eigenstates: 
qlq) = qlq)· Therefore we extend the unitary representation 
of the Heisenberg-Weyl group from JY to S' with help of the 
duality of Sand S'. Finally, by the action of the extended 
operator U on Iq) we obtain the set of "coherent states" 
Iq + x), q fixed: 

exp[iC¢'I + pq - xp)] Iq) 

= exp[iC¢, + xpl2 + pq)] Iq + x); 

we have q = 0 without loss of generality. As the result we 
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obtain again the eigenstates of q; they correspond to the 
points of the coset spaceS 1 XR2/S 1 XR 1 =Rl and lie outside 
the Hilbert space K. 

Some remarks follow from the above example. 
( i) The noncompactness of the stability group H causes 

the nonexistence of H-invariant irreducible subspaces in 
K.14 

(ii) We have to extend the underlying space K appro­
priately as well as the representation U( G) in order to find 
the H-invariant subspace. 

(iii) By the group action on an H-invariant subspace we 
obtain the set of generalized coherent states lying outside the 
initial representation space K. 

We are going to show that such a construction can be 
done for many groups. As above, G is a Lie group, Hits 
proper subgroup, and U( G) is a unitary representation of G 
acting in the Hilbert space K. Both G and H may be non­
compact. Let us denote by DcK a set of differentiable (or 
analytic) vectors of the representation U( G). For several 
cases, the set D is nuclear so D " the set of all continuous 
linear functionals on D, is a natural and minimal domain for 
working with algebraic infinitesimal methods, especially if 
operators with a continuous spectra should be diagonalized. 
This is strongly related to the problem of subduction 
U( G) ~H with a noncompact H as well as with reduction of 
U(H) to the block-diagonal form. Now, having the Gel­
'fand-like triple28 DcKcD' we can extend by duality the 
representation U(G) to U'(G) acting in D'. As was shown 
by Nagel and Lindbland, 14 an unusual property of U' (G) is 
thatthesubducedrepresentationU'(H) = U'(G)!H,witha 
noncompact H, contains, in general, a number of "redun­
dant" unitary as well as nonunitary representations of H 
which do not appear in U(H) = U( G) ~H. Only for compact 
H do the representations U'(H) and U(H) always have the 
same representation content. 14 In this latter case, H-invar­
iant subspaces always belong to K, so there is no reason to 
extend the representation space to D '; this is just the source 
of the simplification in the case of coherent states with a 
compact stability group. In the noncompact case we should 
find first a nuclear set D for U( G). In Ref. 14 it was shown 
that D is nuclear at least for unitary irreducible representa­
tions of a large class of groups; namely, for semisimple G 
with finite center, semidirectproductA XK, where A is Abe­
lian while K is compact, nilpotent G, and Poincare-like 
groups (with m2 >O). 

III. THE VECTORLIKE COHERENT STATES 

This section is devoted to giving a general definition of 
the vectorlike coherent states and to studying their basic 
properties. To do this we use the technique of the nonlinear 
realizations of Lie groups of Coleman et al.29 and Salam and 
Strathdee.30 They define the (left) group action on the quo­
tient space G IH using the decomposition of g = gG1Hh, 
where h belongs to the subgroup H, while gGIH belongs to 
the part of G corresponding to G I H. In the following we will 
denote gGIH by Sex), where the x are coordinates in G IH. 
The relation 

gs(x) = S(x')h(g,x) (1) 
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defines the nonlinear transformation law for x, that is, a 
transitive realization of G on G I H. With the help of Eq. (1) 
it is possible to introduce a variety of realizations of G in the 
associated bundles (G I H, V), where V is a representation 
space for the subgroup H, by the following transformation 
law29,30: 

gs(x) = S(x')h(g,x), 

¢/ =D(h(g,x»)~, 
(2) 

where fjJe Vand D(H) is a linear representation of H acting in 
V. Note that contrary to the action of G on G I H the corre­
sponding action of G on V is not transitive; H acts on a orbit 
in V generated from a fixed vector, say, ~o. Furthermore, if 
the stability group of ~o is the subgroup HOof H, we conclude 
that the manifold (G I H, V) splits into the sum of the mani­
folds ( G I H, HI H 0) with a transitive group action. Now, let 
us define the "boost" from a fixed point (xo,~o) of the orbit 
(G / H,H I HO) to an arbitrary one (x,~) by 

gxq,S(xo) = S(x)hxq,' 

D(hxq, )~o = ~. 
(3) 

Here hxq, = h(gxq,'xo) [see Eq. (2)]. The boost gxq, is de­
fined by Eq. (3) up to an arbitrary element of HO. 

Let us assume that a unitary irreducible representation 
U( G) of G has in K the set D of differentiable (or analytic) 
vectors which is dense in K and nuclear. So we can extend U 
to U' actinginD' dual toD. Next, letasetofvectors Ixo,~o,k ) 
form the basis in a H ° -invariant linear submanifold of D '. So, 
under action of U'(Ho), 

U'(ho)lxo,~O,k) =R/(ho)lxo,~O,j). (4) 

Hereh °ElfoandR(Ho) isalinearrepr~sentationofHo. We 
define 

(5) 

Using Eqs. (3 )-( 5) we obtain the transformation law for the 
above vectors. First, let us note that the group element 
h ° (g ,x,~ ), defined by 

hO(g,x,~) =gx--:q,!ggxq, =hx--:q,!h(g,x)hxq" (6) 

belongs to HO. So by the use ofthe famous Wigner trick we 
have 

U'(g) Ix,~,k) = R/[h o(g,x,~)] Ix',D(hxq, )~(x)J). 
(7) 

Here x' is given by Eq. (1). Now we are ready to give the 
definition of the generalized coherent states. 

Definition: Let MCD' be a linear manifold invariant 
under the action of the group HOCHCG, i.e., 

U'(Ho) IxO,~O,k) = Rkj(Ho) Ixo,~oJ), 

where Ixo,~o,k ) forms a basis in M while R (Ho) is a linear 
representation of HO, but not the necessary unitary one. The 
set of vectors 

Ix,~,k ) = u' (gxq, ) Ixo,~o,k ), 

where x runs over G / H, forms the system of so-called vector­
like coherent states ofthe type [G-:::>H-:::>Ho, U( G), D(H), 
R(Ho)]. Note that for compact HO = H and for a one-di­
mensional McK this definition coincides with the Perelo­
movone. 
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Some remarks are in order. First, the system of vector­
like coherent states is not always overcomplete in D '. A typi­
cal example was given in Sec. II: the set {Ix)} of the position 
operator eigenstates does not form an overcomplete basis in 
S'. However, at least for semisimpleH 0, the system of vector­
like coherent states is the complete one. The operator 

E= LIH d,u(X)LIH"d,u(tP)f; <l>kjlx,tP,k)(x,tPJI, (8) 

where d,u (x) and d,u (tP) are the left invariant measures on 
G / HandH /Ho. respectively. is an invariant operator if there 
exists a <I> such that 

(9) 

This holds at least for semisimple HO's. Consequently, irre­
ducibility of U implies. via Schur's lemma. that E =.1, so 
completeness holds. 

In general. if there exists a <I> satisfying condition (9), 
the distribution 

Ckj (x.tP;y,ifJ): = (x,tP,k ly.ifJJ) 

behaves like a generalized reproducing kernel in the space of 
the distributions ('I'lx.tP,k ). 

IV. VECTORLIKE COHERENT STATES FOR THE 
POINCARE GROUP 

In this section, we are going to construct a less trivial 
example, namely, we choose G = P (the Poincare group), 
while H = HO = L (the Lorentz group). In this case the 
quotient space P / L is simply the Minkowski space-time. De­
noting by g = (A,a) a Poincare group element, where the A 
are the pseudorotations and the a are the translations. we see 
that under the identification sex) = (l,x) Eq. (1) takes the 
form 

(A,a) (l,x) = (A,Ax + a), 

i.e., we obtain the standard Poincare group action on the 
Minkowski space: 

x' = Ax + a. (10) 

Now. to specify the coherent states, let us choose the 
representation D(L) as the trivial one, i.e., D(L) = I while 
the representation R (L) is assumed to be finite dimensional. 
The latter one is denoted below as D( A). Finally, the irredu­
cible unitary representation U of P is taken as urn,s, where 
the mass square m2 > 0 and the spin s is fixed integer or half­
integer. So we have deal with coherent states of the type 
[P:>L.um's ,D(L)]. 

The representation urn,s can be uniquely extended31 

from the Hilbert space 2 to the space of tempered distribu­
tions S' where it takes the famous Wigner form (we have 
omitted the superscript prime at U) 

U(A,a) Ip,a;m,s) 
s 

= exp(iap) L ~S(RAP)aTIAp,T";m,s). (11) 
7= -s 

Here ap = aVpv' where Pv is the four-momentum, and ~s 
denotes a representation of the SU (2) group labeled by the 
spin value s. while RAP is the Wigner rotation. 

Now, let us look for anL-invariant subspaceM oftheS'. 
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To do this let us expand the base vectors IxO,k), 
k = 1,2, .... dim M, of M on the complete set of the vectors 
Ip,a;m,s): 

IxO,k) = f d,u(p) at-s udp,a)lp,a;m,s). (12) 

Heredp(p) = 8(p)8(p2 - m2 )d 4p. Because of the assump­
tion 

(13) 

we obtain from Eqs. (11) and (12) the consistency condi­
tion for the expansion coefficients u (p) = [Uk (p.a) J: 

u(Ap) =D(A-l)u(p)~S(RAp). (14) 

The set of the vector like coherent states is now obtained 
from a vector Ixo.k) by the action of the unitary operator 
u(l'x): 

Ix,k) = U(l,x) IxO,k) 

= f dp(p) at-s exp(ixp) XUk (p,a) Ip,a;m,s). (15) 

Obviously we can choose XO = O. It is a matter of direct ver­
ification that the vectorlike coherent states (15) are simply 
obtainable from the vacuum state 10) by action of a local 
field operator, say, tPk (x). The coefficients Uk (p,a) , satisfy­
ing the consistency condition (14), play the role of ampli­
tudes in the Fourier expansion of tPk (x). Consequently, the 
scalar product of two coherent states gives in this case the 
two-point Wightman function 

(¢k (x) ItPj (y» 

= (21T)3;;( -iJv)kU( -iJv)i~+(x-y;m), (16) 

where u denotes the Dirac conjugation of u and 

A+(x) = (21T)-3f dp(p)exp( - ixp). 

Concluding, the vectorlike coherent states for the Poincare 
group describe a free quantum motion of a relativistic parti­
cle with mass m and spin s. 

V. HYPERBOLIC COHERENT STATES FOR SU(1, 1) 

As was claimed in Sec. II, for unitary representations of 
semisimple groups with a finite center, the set of differentia­
ble vectors is dense and nuclear in the Hilbert space 2. The 
simplest example is given by the special pseudounitary group 
SU (1, 1). Now, we construct for this group the set 
of coherent states of the type (SU (1,1) :>SO(1, 1), 

U<t>,E", D[SO(1,l) ]), namely, we choose G = SU(1,l), 
H = HO = SO(1,1), D(H) = I, R(Ho) = D,dSO(1,I) J, 
and U = U<t>,Eo. Here SOC 1,1) is the hyperbolic subgroup of 
SU(l,I) while D;. is a one-dimensional representation of 
SOC 1, I) labeled by the real number A. The U<t>,Eodenotes the 
unitary representation of SU ( 1,1) fixed by the real numbers 
<I> and Eo.32 According to the standard procedure32 the base 
vectors in the representation space of SU ( 1,1 ) can be chosen 
as the monomials of two complex variables bE' € = 1,2: 

(17) 

Here m is the eigenvalue ofthe generator of the SO(2) sub-
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group while the normalization factor N m = 1 for the princi­
pal series of representations and N m = [r (m + Eo - <l» I 
rem + Eo + <l> + 1)] 1/2 for the other ones.32 Under the 
global SU (1,1) transformation, tE behaves as a spinor: 

(18) 

with lal 2 -111 12 = 1. The hyperbolic subgroup SO(1,1) is 
generated by the differential operator K = ~(t2 al - tl a2 ), 

where aE = a late 
Taking into account the homogeneity degree of vectors 

in an irreducible representation space, we obtain 

1<l>,A) =CA(tl +it2)<I>+iA(tl-it2)<I>-iA (19) 

as the solution of the eigenvalue equation K 1<l>,A ) 
= A 1<l>,A ),AER. HereCA is a normalization factor. Now, we 

can follow the usual procedure to construct the coherent 
states. We use the following parametrization of the cosets 
SU(1,1 )/SO(1,1): 

SU(1,I)/SO(1,1)-{(: ;)}, (20) 

where cuER, ZEC, and IzI2 - cu2 = 1. Let us begin with the 
construction of the hyperbolic coherent states 1<l>,A.;z,cu) for 
the discrete series D + of the unitary representations of 
SU (1,1). In this case, Eo = - <l> > ° and m = 0,1,2, .... Us­
ing Eqs. (18) and (19), we obtain 

1<l>,A.;z,cu) = U'(z,cu) 1<l>,A.) 

= CAPiA(Z + icu)<I> + iA(Z _ icu)<I> - iA 

xt~<I>[ 1 - itl(z - icu)lt2(z - icu) ]<1>+ iA 

X[1 +itl(Z+icu)lt2(Z-icu)]<I>-iA. (21) 

The right-hand side can be expanded with help of the for­
mula33 

(1-s)P-Q(1- S + sz)-P 

00 (q - n - 1) 
= n~o sn n F( - n,p,q;z), 

where F is the hypergeometric function. As a result we ob­
tain 

1<l>,A;Z,CU) = CA e - 1TArc - 2<l» -I (z + icu)<I> + iA(Z - icu)<I> - iA I im(z - icu )m(z - icu) - mrcm - 2<l» 1/2r(m + 1) -1/2 
m=O 

XF( - m, - <l> + iA, - 2<l>;2[ 1 - icu(z + z)] -1)1<l>,m). (22) 

The scalar product of two coherent states reads 

(<l>,A ';z',cu'I<l>,A,;Z,CU) = CA, CA rc - 2<l»Wi(A - A ')x<l> + iA 'y<l> - iAF( - <l> - iA " - <l> + iA, - 2<l>;4(xy) -I), (23) 

where 
w = zz' - zz' + icu(z' + z') - icu'(z + z), 

x = zz' + zz' - 2cucu' - icu(z' - z') + icu'(z - z), 

y = zz' + zz' - 2cucu' + icu(z' - z') - icu'(z - z). 

An analogous procedure for the principal and supplementary series gives 

1<l>,A.;z,cu) = CJH E,,[ 1 + icu(z + z) ]<1>[ _ z + ~cu ]iA [z + ~cu lEn f ;n _ m [z - ~cu ]n[ Z + ~cu]m 
Z-ICU Z-ICU n=O Z+ICU Z-ICU 

m=O 

(
Eo -<l>+n-l)(<l>+Eo) -I . . --I X n m N n _ mF(-n,Eo +1A.,Eo -<l>;2[1-ICU(Z+Z)] )I<l>,n-m). (24) 

Here32 for the principal series <l> = -! + iX, XER+, 
- ! < Eo <!, m = 0, ± 1, ... , and for the supplementary se­

ries <l>ER, -!<Eo<!, 1<l>+!I<!-IEol, Im=O, 
± 1, ±2, .... 

To our knowledge, the hyperbolic coherent states for 
SU ( 1,1) were not investigated in the literature [the elliptic 
coherent states with the stability group SO(2) are exhaus­
tively discussed in Ref. 9; they were first introduced by Pere­
lomov4 and Gilmore34

] • 

VI. DISCUSSION 

As follows from the specific examples we have discussed 
in Sees. II, IV, and V, the properties of the introduced coher­
ent states strongly depend on the defining groups. This holds 
because the class of noncom pact groups is too rich to give 
universal properties for the corresponding coherent states. A 
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typical example is given in Sec. II: The position operator 
eigenvectors Ix) are orthonormal and form a complete (not 
overcomplete) set in S', contrary to the coherent states with 
a compact stability group. As a consequence, no representa­
tion of operators by symbols exists. 

A somewhat different situation is the case of the vector­
like coherent states for the Poincare group (Sec. IV). These 
states are normalized to matrix elements of the projector on 
the positive energy subspace (with a fixed mass) of the Hil­
bert space of square-integrable functions with respect to the 
measure d 4X . Furthermore, this sytem is also complete rath­
er than overcomplete. 

Finally, the hyperbolic coherent states of the type 
SU(l,l)/SO(l,1) (Sec. V) form a nonorthogonal and over­
complete set of vectors [compare Eq. (23)]. 

Summarizing, some properties universal in the case of 
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compact groups do not necessarily hold for noncompact sta­
bility groups. Some possible relations between the group 
type and properties of the vectorlike coherent states are un­
der investigation. 

Now, let us discuss a possible physical application of the 
introduced states. To do this, let us consider first a simple 
extension of the example given in Sec. II, i.e., the coherent 
~ates for a special ~olvable group N generated by q, p, e, and 
H. The generator H, interp.leted as the ha~onic oscillator 
Hamiltonian, satisfies [H,q] = - ip, [H,p] = iq, and 

A-

[H,e] = O. 
We choose the noncompact group generated by q and e 

as the stability group H. Thus the stable vectors of H are the 
position operator eigenvectors Ix), i.e., they lie out of the 
underlying Hilbert space of the unitary representation of N. 
The set of coherent states has the form 

A-

Il,x + y) = exp [itH]exp [iyp] Ix) 
A-

= exp[itH] Ix + y) == It,q), 

i.e., they describe the time evolution of Iq) in the Schro­
dinger picture. Consequently the scalar product of two co­
herent states < q',t ' I q,t) is simply the propagation function 
for the quantum oscillator between two space-time points 
(q',t') and (q,t). 

A quite similar situation arises in the case of the vector­
like coherent states for the Poincare group (Sec. IV): The 
coherent states defined by Eq. (15) are simply the relativis­
tic-covariant wave functions of free quantum particles with 
spin in the coordinate representation. Therefore, their scalar 
product (16) gives a two-point Wightman function of the 
corresponding free quantum field theory. 

The above examples suggest that in terms of vectorlike 
coherent states it is possible to describe the quantum motion 
of particles in homogeneous space-times M = G 1 H. A typi­
cal example is the de Sitter space-time SO(4,1)/SO(3,1) 
and the anti-de Sitter space-time SO(3,2)/SO(3,1) and 
their supersymmetric counterparts. 35 In that spirit the gen­
eralized coherent states can be applied to the Kaluza-Klein 
cosmologies--our investigations in this direction are in 
progress. 
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It is shown that the cocycles of extension of one massless representation of the Poincare group 
.93 in 2 + 1 dimensions by the tensor product of n massless representations are coboundaries 

when the space of the representation is the space of the Coo functions on R2 rapidly decreasing 
at infinity and at the origin. As a direct consequence, the equivalence classes of formal 
nonlinear representations of .93 with an irreducible physical representation as linear term are 
isomorphic to the classes of extension of the linear term by its symmetrical tensor product of 
order 2. 

I. INTRODUCTION 

It has been shown in a previous paper that the Poincare 
group g; 3 in 2 + 1 dimensions has nonlinear formal repre­
sentations as defined in the general theory of Ref. 1. These 
representations started with massless representations as the 
initial linear term and were indexed by distribution in 
~ , ( ] 0, 1 [ ) characterizing the classes of extension of the ini­
tial representation by its symmetrical tensor product. 

Essentially the prooflies in recurrently exhibiting a par­
ticular solution verifying some conditions of support of the 
nth obstructive equation, but we completely discarded the 
possible contributions of the solutions of the homogeneous 
equations. These solutions are nothing but the cocycles of 
extension of the initial linear representation by its symmetri­
cal tensor power of order n. Their contribution will only be 
effective if they are nontrivial cocycles. For, in the opposite 
case, we can get rid off of them, at least formally, by a se­
quence offormal nonlinear transforms, each of which modi­
fies a given term of the formal expansion by a well-deter­
mined coboundary (see Appendix B). Since we are only 
concerned with classes of equivalent representations, we 
could then speak of the uniqueness of the representations in 
Ref. 2. 

The purpose of this paper is precisely to prove that this 
situation is the actual one, at least if we conveniently redefine 
the representations spaces. In so far as the spaces Y T/ intro­
duced below densely contain the spaces ~ T/ of Ref. 2, we do 
not find too high the price we have paid. 

Strictly speaking, we should again prove the results of 
Sec. III in Ref. 2. But the reader will convince himself that 
the cohomological considerations of Ref. 2 are meaningful 
for the new spaces provided we index the equivalence classes 
by distributions in ~' ( [0,1] ). 

Let us begin now by recalling the basic factors about 
g; 3' its massless irreducible representations, and the coho­
mology of extensions concerned with it. 

Let M3 be the three-dimensional Minkowski ~ace, M3 
its dual, C + the future cone without the origin in M 3 , and {J) 

the point of C + with coordinates 0/2,0, - 1/2). With any 
kEC+, we associate AkESL (2,R) such that 

a) Postal address: Universite Paris VII-L.P.T.M., Tour Centrale-3eme 
etage. 2. place Jussieu. 75251 Paris Cedex 05. France. 

k = Ak-1'{J), 

where Ak is given by 

A _I exp t "0 II cos q; 
k - ° exp ( - t) - sin q; 

tER, -1T/2<q;<1T/2. 

sin q; I, 
cos q; 

(1.1 ) 

( 1.2) 

The Minkowskian coordinates of k are written in terms of 
(t,q;) : 

ko = !exp( - 2t), kl = !exp( - 2t)sin 2q;, 

k2 = - !exp( - 2t)cos 2q; . (1.3) 

In the following we mark the point k of C + by k = (k 1 k 2 ) or 
the parameters (t,q;) indifferently. 

We define linear topological spaces Y T/' 17 = 0,1: 
!(t,q;)EY T/ if: 

(i) !(t,q;) is Coo in t,q;; 
(ii) f(t,q;) = (sgn q;) T/ !(t,q; - 1T /2 sgn q;) is COO in t,q;; 
(iii) for any integer r we have 

I 
aP+'1 I (ch 2t)' (t,q;) < 00; 

atP aq; q 
sup 
fER 

- "/2",,,<.,,/2 
p+ q<,r 

(iv) a sequence!n (t,q;) converges to zero in Y T/ if, for 
any integer r 

lim 
n- 00 

P+ q<r 

Yo can be identified with the space of Coo functions in R2 
rapidly decreasing at infinity and at the origin. 

Y 1 is isomorphic to Yo: if!EY 1, then exp(iq;)!EYo' 
Consequently, if TEY;, exp( - irp)TEY~ 'YO(Y 1 ) is ob­
viously nuclear. 

Y T/ are K(Mp ) spaces, with properties (P) and (N) as 
defined in Ref. 3. 

Let VT/ be the representation of g; 3 in Y T/ defined by 

!(k) -+exp i(a,k )ET/(A,k)!(A -lk), 

aER3 AESL(2,R) (1.4 ) 

where (a,k ) is the Minkowskian scalar product and 

E(A,k) =sgn(o-!3tgq;), A= I; ~IESL(2'R). 
( 1.5) 
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Here, V7I is the restriction to Y 71 of the unitary massless 
representation of 9 3 with helicity 7]/2. 

We are looking for mappings Z(g)E 
.!£ (Y 71, ® ... ® Y 7In' Y 71)' gE9 3 satisfying the following 
cohomological equation: 

Z(gg') = Z(g) + V7I (g)Z(g') V ~,I'7In (g), g,g'E9 3 , 

( 1.6) 

where V7I""7In (g) stands for V7I , (g) ® ••• ® V7In (g). Similar­
ly we will use Y 71,'" 7In instead of Y 71, ® ... ® Y 7In' Here, 
Z(g) defines an extension of V7I (g) by V7I ''''7In (g). We are 
interested only in nontrivial extensions and we will identify 
two solutions of ( 1.6) when their difference is a coboundary, 
i.e., a particular solution of ( 1.6) written: 

Z(g) = A - V71 (g)AV 71~,I'71"Cg), AE.!£(Y 71,71n'Y 71) • 

Accordingly, we do not restrict the generality in assuming 
Z(g) equal to zero on SO(2), the compact subgroup of 
SL(2,R). 

Lemma 1.1: Under this condition, the solutions of (1.6) 
are identically zero when 7] + TJI + ... + 7]n = 0, mod 2. 

Proof (0, - I)ESO(2) and (0, - I)g(O, - I) = g. A 
repeated use of ( 1.6) gives 

Z(g) = V71 (0, - I)Z(g) V71"71n (0, - I) 

= (_l)'I+7I,+"'+71nZ(g). 

In the following, we shall find it convenient to associate with 
Z(g) the distribution Zk (g)EY~,,, '7In' defined by 

(Zk(g),j) = (Z(g)j)(k), jEY 71''''7In' (1.7) 

The cohomological equation (1.6) now reads 

Zk(a,A)(a',N») = Zk (a,A) + exp i(a,k )€7I(A,k) 

XZA-'k (a',N) V ~,l'>in (a,A) . 
( 1.8) 

Let r cu be the stabilizer of w in SL(2,R); then 
hk (A) = AkAAi..-1'k belongs to r cu' and we have 

(O,Ak )(a,A) = (Aka,hdA>)(O,AA-'k) . 

Applying (1.8) to this identity, we get the following expres­
sion of Zk (a,A): 

Zk (a,A) = Zro(Aka,hk (A»)V7I''''7In (O,Ak ) 

- Zro (O,Ak ) V>i'''71n (O,Ak ) 

+ exp i(a,k )€7I(A,k)Zro (O,A" -'k) 

X V7I ''''71n (O,A"-'k) V ~,I'71n (a,A) . (1.9) 

This formula brings back the solution of (1.6) to the deter­
mination of Zro (a,A) for aER3

, AEr",. According to 
Lemma 1.1, we are concerned only with 
7] + 7]1 + ... + 7]n = 0, mod 2. 

II. TRIVIALITY OF Z(a,1) 

Lemma 2.1: There exists TEY 7I,"'7In such that 

Zro(a,I) = T-expi(a,w)TV~'~'7In(a,!). (2.1) 

Proof It is sufficient to prove (2.1) for 7] i = 0, 

i = 1, ... ,n. Indeed Zro (a'!)EY~''''7In and therefore 

Zro (a,I)exp( - i~77]ifPi)EY~.·.0· Furthermore, V>i""7In 
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(a,!) does not depend on the 7];'S and commutes with the 
multiplication by exp( - i~~7]ifPi)' 

Let us introduce 

J SI'- =-Zro(a,l)la=o, J.l=0,1,2. 
Jal'-

The abelianness of the translations and Eq. (1.6) imply 

J.l, v = 0,1,2 . 

If (2.1) is true, we have 
(2.2) 

(WI'- - * ki.1'- )T= isl'- . (2,3 ) 

Let us multiply the equation for J.l = ° by a functionj written 
as 

n 

f= Po + ~lkilPi + I Ikillkj\Pij + ... + II IkilR, 
i<j i= 1 

where PO,P;,Pij, ... ,R are polynomials in the components of 
k 1' .. k n , determined by requiring that 

is also a polynomial in the components ofk1, ... ,kn .1t is easy 
to see that there exists such an f the various polynomials 
verify a homogeneous linear system which contains one 
equation less than the number of unknowns. 

The proof given in Ref. 4 of the divisibility of distribu­
tions by polynomials can be extended to the distributions of 
Y~ ... o with minor modifications. Therefore we can proceed 
essentially as in Ref. 5 for proving (2.1). 

Proposition 2.1: Each equivalence class of solutions of 
( 1.6) contains a cocycle equal to zero on the semidirect 
product R3 ·SO(2). 

Proof: We get from (1.9) 

Zk (a,!) = Ak - exp i(a,k )Ak V ~"'7I.<a,!) , 

Ak = (T-Zro (O,Ak »)V71"">in(O,Ak ) . (2.4) 

We shall prove that (A k,j) is in Y 71 for any fEY 71," '7In' 
This will be done in several steps, which adjust to the present 
topological spaces the method of Ref. 5. 

( 1) (A k,j) is COO in t,fP. For, on the one hand, 

Zro(O,Ak)=Zro(o,lexopt ° I), 
exp( - t) 

and on the other hand, the elements of Y 71,'" 71n are, by con­
struction, differentiable vectors of the representation 

V7I ,." 7In' -------.... 
(2) (Ak,j) is Coo in t,fP. Indeed, 

v (0 I cos fP sin fP I ) 
71,"'7In ' -sinfP cosfP 

is replaced by 

71 ( ISin fP (sgn fP) Vn .• n O,sgn fP 
." 'on cos fP 

-~OSfPl) 
SlDfP 

= Vn '''n (0, 1 co~ fP 
," 'on - SIn fP 

sin fP I) 
cos fP 

(sgn fP ) 71 

X Vn ." n (0, 1 ° 
'" 'on sgn fP 
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By the action of 

V'7>''''7.(O,ISg~~ -s6~1), 
each I in Y'7 .... '7. becomes (sgn~)'7""'7"f= (sgn~)'9: 
Therefore 

(Ak,J) = (Ak,f) 

and we conclude as above. 
(3) Let Xbe an infinitesimal generator of f!JJ 3' Then, for 

each semi-norm q on Y'7' we can find a semi-norm p such 
that 

q(~ V'7(exPuX)/)<p(/)exPC~lul, jeY'7 
du r 

for some positive constant c~. This is true for r = 0 (cf. Ref. 
5) . We prove it for any r recurrently from the identity: 

d r dr-I 
- V'7 (exp uX)1 = -- V'7 (exp uX)dV'7 (X)/, 
du r dur- I 

where dV'7 (X) is a continuous operator on Y'7' 
Similarly, for each seminorm q on Y'7,''''7.' we can find 

a seminorm p such that 

q(::r V'7,"''7. (exp uX) I) 

<p (/)exp C~lul, IEY'7,''''7. 

for some positive constant C~. 
(4) Let;x be (d Idu)Z(exp uX) lu =0' From the coho­

mological equation, we get 

~ Z(exp uX) = Vn (exp uX); ¥) V ~.I.n (exp uX) , du r ., ." .,. 

where; ¥) is a continuous mapping of Y'7,''''7. into Y '7 

defined recurrently by 

; ¥) = dV'7 (X); ¥- I) dV'7,"''7. (X), ;~) =;x . 
(2.5) 

Proceeding as in Ref. 5, we prove that for each seminorm pin 
Y'7' we can find a seminorm q in Y'7,"''7. such that 

p(~ Z (exp UX)/) <q(/)exp crlul 
du r 

for some positive constant Cr' 

( 5) Let X be the infinitesimal generator of 

l
expt 0 I 

o exp( - t) 

and choose p ( I) = I I ro) I. With t = - pog 21 k I, we get 
from the above inequalities 

1 
( 

d r [Z ( I exp t 0 I ) 
dt r '" 0, 0 exp( - t) 

X V'7""'7.( 0, lex~ t exp(O_ t) I)],J) I 
<qr(/)exp YrllOglkl1 

for some semi-norm qr in Y'7""'7n and some positive con­
stant Yr' As TEY~,,,.'7.' we have similarly 
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I (T~ V (olexpt 0 I) 1)1 
dt r '7,''''7. ' 0 exp( - t) , 

<qr(/)exp Yr 110glkll . 

Using the estimate of (3) when X is the infinitesimal gener­
ator of the compact subgroup SO(2), we deduce that for 
each seminormpon Y '7,"''7n' we can find aseminorm qs (on 
Y '7,'" '7) such that 

p(~ V'7 ''''7 (0,1 co~~ sin~l) ,J)<asqs(/) 
d~ s '. - sm ~ cos ~ 

for some positive constant as. 
Piecing together all these estimates, we get finally 

1 (a::;; s Ak ,J) 1 <qr,s (/)exp Yr.s 110glkll (2.6) 

for some positive constant Yr,s' 
(6) Let Po be the generator of the time translations. 

From (2,4) we get 

ilklAk - Ak dV'7""'7n (Po) = ;k (Po) . 

This implies, with Ikl = ! exp( - 2t) that 

(2.7) 

Let us assume it has been already shown that for all 
r' < r, « a r + Slat r a~ S)Ak,J) goes to zero faster than any 
power of 1I1kl when Ikl--- 00 or any power of Ikl when Ikl 
goes to zero. We will prove the same is true for 
«ar+slat r a~S)Ak,J). Let us denote by Hr,s) the right­
hand side of (2.7). By successive iterations, we get on the one 
hand, 

( 
ar+s ) + Ak dV': "'n (Po),J (ilkl) - m (2.8) 

at r a~ s ." .,. 

and, on the other hand, 

m-I 

- L (ilkl )P(S~S dV ,;/.-;;.1 (Po),J) (2.9) 
o 

for any integer m. 
By definition of;k (Po), 

( 
ar+s ) ---;'k (Po),J EY'7' 

at r a~ s 

The mappings 
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!--dV ,i/''''n (Po)/' !EY"' .. ··"'n 
are continuous mappings of Y "' .. ""'n into itself. According 

to (2.6) «ar+s/at r acpS)Ak,J) behaves at most as IkI Y
'" 

when Ikl-- 00 and Ikl- y,., for Ikl--O. Combining all that 
with the recurrence hypothesis, we get the conclusion we are 
looking for. 

(7) The continuity of the mapping!--> (Ak,J) derives 
from (2.8) and (2.9). Indeed, we have the estimates: 

m-I 

<lkIP+y-mqm(!) + I Ikl /- m+p 

p=o 

X I (nr,S) dV~~.~: 1 (Po),J) I, Ikl ~ 1, 

Ikl-
P I (a::;;s Ak,J) I 

m-I 

<lklm-p+Yqm(!) + I Ikl /- p 

1=0 

X I(t ~r,s) dV "'-/'~nl (Po),J)I, Ikl ~ 1, 

where t ~s contains only the derivatives 
(a r + SAk / at r acp s,J) for r' < r. Therefore we can get the 
proof by recurrence. 

Finally, we have still to prove the cancellation on SO(2) 
of the coboundary generated by Ak , which is equivalent to 
our statement: after substration of this coboundary from 
Zk (a,A) we get an equivalent cocycle identically zero on 
R3 ·S0 (2). Now we have, for 

I 
cos 0 

u= 
- sin 0 

sin e I : 
cos e 

( ( l
exp t 

= (sgn cos(cp + OW T - Zoo 0, 0 

( I 
exp t 

X V"' .... "'n 0, 0 

( I 
cos(w<p - 0) 

X Vn . n 0" 0 
." "n _ sm(w<p _ ) 

sin(w<p - 0) I) , 
cos(w<p - 0) 

(2.10) 

where w<p is given by 

w<p = cp + 0, - cp - 1T/2 < 0 < 1T/2 - cp, (cos(cp + 0) > 0), 

w<p = cp + 0 - 1T, 1T> 0> 1T/2 - cp, (cos(cp + 0) < 0), 

w<p = cp + 0 + 1T, -1T< 0< - cp -1T/2, (cos(cp + 0) <0). 

Therefore, the last term written in (2.10) is equal to 

( I 
cos cp 

V... 0, T{, 7]" _ sin cp 
sin cp I) 
cos cp 

for Icp + 0 I < 1T/2 and to 

sin cp I) 
cos cp 

for Icp + e I> 1T/2, But in this case the factor 
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( - I) "', + ... + 7]n is compensated by the factor 

(sgn cos(cp + 0»"'. Thus we have 

€7](k,u)A u -'k V 7]~.I''''n (O,u) =A k . 

From now on, we restrict ourselves to the consideration of 
the only cocycles identically zero on R3 ·SO(2). According 
to what we have just proved, the right-hand side of (1.9) is 
then reduced to its first term. 

III. DETERMINATION OF Z",(O,h),hEr.., 

We recall the two basic assumptions on the cocycle 
Z(a,A): (i) Z(a,A) is identically zero on R3 'SO(2); (ii) 
1] + 1]1 + ... + 1]n = 0, mod 2, for otherwize Z(a,A) is 
identically zero, Accordingly, we will have for aER3

, 

h=Elb ~I,E= ±1,XER: 

From the cohomological equation, we get 

! (Z.., (0, I ~ ~ I) ,J) 

= (s,vy"7],, (0,1~ ~I)!), !EY" ".n , 
I "'/1 

where the distribution S is given by 

S(kl, ... ,kn) = ~ z..,(o, 11 xl ;kl, ... ,kn)·1 
dx 0 1 x=o 

and verifies the identity 

( 1 - exp i( a,w - * k j ) ) S(kl, ... ,kn ) = O. (3.1 ) 

The cocycle Zoo (a,h) will be a coboundary if we can find 
TEY~",7]" such that Tverifies (3.1) and 

(T,dVT{" .. T{" (X)!) = (S,J), (3.2) 

where X is the infinitesimal generator of 

I~ xl 1 . 

Following (3.1), the supports of S and Tare contained 
in the manifold cpj = 0, i = 1, ... ,n. Thus, it is not restrictive 
to assume that the test functions are identically zero (with 
all their derivatives) outside some definite interval J of varia­
tions of each cp j, strictly contained in] - 1T /2, + 1T /2 [. Then 
we perform the following change of variables (with absorp­
tion of the Jacobian into the distributions): 

Xj = exp( - tj )sin CPi> rj = exp( - tj )cos CPi> 

i = 1, ... ,n, cpjEJC] - 1T/2, + 1T/2[, tjER 

and we replace each Y T{i by Y~i' with the following defini­
tion: 

!(rj,x j )EY~, 

when (i) !(rj,x j ) is Coo in r j , XjI and identically zero for 
Ix;lrjl >CJ 
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(ii) 

u+ v<p 

(3.3 ) 

Here, .Y~i is also a K(Mp ) space with properties (P) and 

(N). In the following we use the shortened notation .Y~, .. '7Jn 
for the tensor product .Y~, ® ••• ® .Y~n' 

In the new variables, (3.1) and (3.2) now read 

n aT 
LXi -=S, T,SE(.Y~""7J)" 
, ari 

where T is bound to verify, as S itself: 

(1- t ~)T= 0, (tX~)T= 0, 

(tX;7j)T= 0. 

We introduce spherical coordinates: 

rn = R cos (In _ " 

rj = R cos (Ji_' sin (Jj" . sin (In_'' 

i = 2, ... ,n - 1, 0<(Ji<1T12 

r, = R sin (J," . sin (In _ , 

and we put 

T=o(1-R)t, S=o(1-R)s. 

Then we have from (3.5) 

(3.4 ) 

(3.5) 

(txJ)t=o, (xn cos (In_' +Yn-' sin(Jn_,)t=O, 

(3.6) 

and similarly for s. As for (3.4), it now reads 

[ ( - X n sin (J n _, + Y n _, cos (J n _ , ) a(J a 
n-' 

n-2 ( Yi ) a ] + L. . - t=s, 
, sm (Ji+'" 'sm (In_' a(Ji 

(3.7) 

where the Yo i = l, ... ,n - 1, are orthogonal linear combina­
tions of x """X n _ , : 

i-I 

Yi = x, sin (J," . sin (Ji_' cos (Ji - L Xj cos (Jj_' 
2 

- Xi+' sin (Jj, 
n-2 

Y n _, = x, sin (J, ... sin (J n _ 2 + L Xj cos (Jj - , 
2 

X sin (Jj"'sin(Jn_2 +xn_, cos (In_2' (3.8) 

We denote by Sn the set of equations (3.6), (3.7). We prove 
now the following proposition. 

Proposition 3.1: For any given s verifying (3.6), we can 
find a solution t of (3.7) verifying (3.6). 

Proof: According to the second equation (3.5) and fol­
lowing the general structure of distributions over K(Mp ) 

spaces with properties (P) and (N) (Ref. 3), we have the 
finite expansion: 
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where the "coefficients" tP''''Pn «(J" ... ,(Jn _,) are distribu­
tions in ~'( [O,1T12] n -, ). Indeed, following (3.3) tp, ... p" 
«(J" ... ,(Jn _ ,) is defined on a space of Coo functions on 
[0, 1T 12]" -, going to zero faster than any power of 
(J,,1T/2 - (Jj as (Jj goes to zero or 1T12. But this space is easily 
identified to the space of C 00 functions on lRn 

- , identically 
zero outside the hypercube [O,1T12]" - '. Similarly, we have 

sP''''Pn «(J,,···,(Jn_' )E~'( [0,1T/2]n-'). (3.10) 

Substituting (3.9) and (3.10) in (3.6) and (3.7) we get a 
system equivalent to Sn and relating the unknowns 

tp, ... p" «(J" ... ,(Jn_') to the datasp''''Pn «(J" ... ,(Jn_')' 
The key of the proof of our proposition will be provided 

by the following recurrence hypothesis. 

Recurrence hypothesis: The proposition is true for all 
systems Sp, with p = 3, ... ,n - 1. 

We prove it now for p = n. 
(1) Let Nbe such that sP''''Pn «(J" ... ,(Jn_') is zero when 

Pn > N. We claim there exists a solution of Sn with the same 
property. 

It will be convenient to write (3.9), (3.10) in the short­
ened form: 

t= L tp(x" ... ,xn_,;(J" .. ·,(Jn_' )c5(P)(xn), 
p<N 

s= L sp(x" ... ,xn_,;(J" ... ,(Jn_,)c5(P)(xn)· 
p<N 

We get from (3.6) 

(p + 1) (p + 2)tp+2 + (~' xf) tp = 0, 

( 3.11) 

- (p + 1) cos (J n _ , t p +, + sin (J n _ ,y n _ , t p = 0, 
(3.12) 

and from (3.7) after using the last equation: 

(p + 1) (_a_ - cot (In_') tp+ 1 
a(Jn_' 

(
a n-3 Yj a ) 

+Yn-2--+L . . -
a(Jn_2 ,sm(Ji+, ... sm(Jn_2 a(Jj 

Xtp = sin (In_l sp. (3.13) 

Accordingly, we get for tN 

(
n-, ) 
~ x; t N = 0, Y n _ , t N = 0, 

(
a n-3 Yj a ) 

Yn-2--+ L . . - tN 
a(Jn_2 ,sm (Jj+ , ... sm (In_2 a(Jj 

= sin (J n _ , S N' (3.14) 

As sp verifies (3.12) also, we have necessarily 

C~' X7) SN = 0, Yn_,sN = 0. 

Going back to (3.8), we conclude that SN' tN satisfy the 
same set of equations s,t up to the replacement of n by n - 1. 
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According to the recurrence hypothesis, we can find tN' 

(2) The last equation (3.12) gives 

N! (COS 0n_1 )k 
tN k =----

- (N-k!) sinOn _ 1 

XIN ,k + t~_ k' k = 1, ... ,N, 

where 1 N,k is a distribution verifying 

(3.15 ) 

Y~_IIN,k = tN' (3.16) 

We need the following lemma. 
Lemma 3.1: The distributions IN,k in (3.15) can be de­

fined in such a way that the distributions t ~ verify (3.12). 
Proof The distributions t~ verify (3.12) if we have 

Yn_ 1I N,k = I N,k_I' (3.17) 

(

n - 1 ) cos
2 ° 1 

I N,k-2 + I xi . 20
n

- I N,k =0. (3.18) 
1 stn n-I 

With tN = t5(Yn -I )uN, we take I N,k in the form: 

[kl2l 
X I v,t5(k-2/)(Yn_I)/(k-21)!; 

1 

(3.19) 

(3,17) is obviously satisfied. As for (3.18), we remark that 
n-I n-I 

I X7= I Y7 
1 1 

so that by (3.17) we get 

I N ,k-2 + cos2 
On-I C~2 Y7) I N•k = O. (3.20) 

Substituting (3.19) in (3.20) and taking into account 

we obtain 

1= 1, ... , [ ~] . (3.21 ) 

But the distributions UN and v/ are finite linear combination 
of derivatives of £5(x l )" ·£5(xn _ 1 ), so that the division by 
the polynomiall:7 - 2Y7 is meaningful. Therefore, (3.21) can 
be solved in term of UN and the resulting IN ,k verify (3.17) 
and (3.18). 

Let us go back to the main proof. Ifwe substitute (3.15) 
in (3.13), we get the same system for t ~ as for tp with the 
only following differences: (i) t~ = 0 by construction; (ii) 
the right-hand sides sin On _ I sp are replaced by distribu­
tions W such that W = 0 forp;;;.N - 1. Therefore the exis-p p 

tence of a solution t of Sn for some N will result recurrently 
of the existence of a solution for N = O. But this is already 
contained in the recurrence hypothesis. 

Finally it remains to prove the proposition for n = 3. 
We introduce, as above, the spherical coordinates R, ° I' 

O2 and we put 

Z3 = XI sin 01 sin O2 + X2 sin O2 cos 0 1 + X3 cos °2, 
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Z = XI cos 0 1 - X2 sin 0 1 + i cos 02(XI sin 0 1 

+ X2 cos ( 1 ) - iX3 sin °2, 

Then (3.6) is written 

(~+zz)t=O, Z3t=0 

and similarly for s. As for (3.7), it becomes 

( a ., ° a) _(a z - - I sm 2 - t + z -
aOI a02 aOI 

+ i sin O2 ~) t = 2 sin 02S. 
a02 

(3.22) 

(3.23 ) 

(3.24 ) 

According to (3.23), we have the following finite expansions 
for t and s: 

t = £5(Z3)(to£5(z») + I (t p+ £5(p,O) (z) + t p- £5(O,P) (z»), 
p>1 

s = £5(Z3) (so£5(z) ) + I (Sp+ t5(P,O) (z) + Sp- £5(O,P) (z»), 
p>1 

(3.25 ) 

where tp±,sl belong to g)'([0,1T12f) and £5(P,O),t5(Q,P) are 
the derivatives of t5(z) = £5(z + z/2)£5(z - z/2i) of order p 
in z and Z, respectively. Taking into account (3.23), the de­
pendence of z, Z3 on °1, O2 and the relations 

zt5(p,q)(z) = - pt5(P-I,q)(Z), z£5(P·Q)(z) = - qt5(p,q-I)(Z) 

we get after substitution of (3.25) into (3.24) and the re­
placement of t l by vl = sinP 02t p± and of sp± by 
ul = sinP 02sl: 

p;;;.l, 

(3.26) 

andforp = 0 

aVI+ .' avt av, .' av l-
-- - I sm O2 --+ --+ I sm O2 --
aOI aOI aOI a02 

= - 2 sin2 02UO' (3.27 ) 

According to Appendix A, each Eq. (3.26) has at least one 
solution in g)'( [0,1T12]2). As for (3.27) it can be solved by 
quadrature if we impose the supplementary condition 

~ (vt - v, ) = o. 
a02 

Thus we conclude the proof of Proposition 3.1. As a mere 
corollary of it, we can state the essential result of this paper. 

Theorem 1: The extension of a massless representation 
. of the Poincare group in 2 + 1 dimensions with helicity 1/12, 
1/ = 0,1 defined in the space Y'1 isomorphic to the space of 
functions on ]R2 with rapid decrease at infinity and at the 
origin by the tensor product of n massless representations 
with helicity 1/;12, i, = 1,00.,1/ defined in Y'1;' is always tri­
vial for n;;;.3. 

Proof' According to (1.9) and Proposition (3.1), we 
have 
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ZR (a,A) = TV"' .... "'n (O,A k ) - €"'(A,k) 

X TV"' .... "'n (O,Ah-,d v ;;,1.",. (O,A) 

where Tin Y~"""'n verifies (3.1). 
Using the structure of T as displayed above, we show 

that 

TV"" .. "'. (O,A k )E.Y (Y "' .. . ",.;Y",). 

IV. APPLICATIONS AND CONCLUSIVE REMARKS 

As pointed out in the introduction, the theorem above 
has the following immediate consequence. 

Theorem 2: The equivalence classes of the formal non­
linear representations of g; 3 with irreducible physical repre­
sentation as linear term are isomorphic to the classes of ex­
tension of this linear term by its symmetrical tensor product. 

Proof: For the massive representations, we know from 
Ref. 5 that any nonlinear formal representation is nonlinear­
ly equivalent to the representation itself. Similarly for the 
massless representation with helicity 1/2 according to the 
results in Ref. 2 and the present paper. So we have only to 
discuss the case of the massless representation with helicity 
zero. 

We recall that a formal nonlinear representation is given 
by the following expansion: 

(a,A) 

j(k) .... Vo(a,A)j(k) 

(Z~ (a,A), Vo(a,A)j® Vo(a,A)j) 
n-terms 

+ L (Z~ (a,A),vo(a,A)j®'" ® Vo(a,A)j). 
n>2 

Let us suppose we have built two representations with the 
same cocycle Z ~ (a,A). Then the difference of the third 
terms of the expansion is a solution of the homogeneous 
equations, i.e., a cocycle of extension of Vo(a,A) by its sym­
metrical third power. We know by Theorem 1 that this cocy­
de is a coboundary, so that we can transform the second 
formal representation in an equivalent representation identi­
cal to the first representation as for the first three terms of the 
expansion (see Appendix B). Then we know the difference 
of the fourth term is a coboundary and another nonlinear 
transform makes it equal to zero, etc. The infinite product of 
nonlinear transforms we need to achieve the identification is 
convergent in the space of formal series, for the nth term in 
the product does not change the (n - 1) first terms of the 
expansion: it defines a formal nonlinear transform which 
identifies the two original representations. This technique of 
proof has already been used in Ref. 6. 

Remark 1: The set of nonlinear formal representations 
of g; 3 we have just obtained appears to be a very restricted 
set. But is would take a long time to exhaust all the possibili­
ties: we can take as a linear term a direct sum of irreducible 
representations or of indecomposable representations. 
Owing to the nonlinearity, the resulting nonlinear represen­
tations cannot be deduced from the nonlinear representa­
tions built for each component separately. 
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Remark 2: The theorem cannot be extended to the 
spaces g; '" of Ref. 2. The point is that the dual of g; ",," ''''n 
contains distributions of infinite order. Consequentlyexpan­
sion (3.9) is no longer finite but must satisfy the rather 
strong condition of local finiteness. Let us consider the case 
n = 3. We can proceed as in the third part of the proof of 
Proposition 3.1, so that we have finally to solve the system 
(3.26), (3.27) with uf ,vf in g; / (]0,17/2 [z). Let us take as 
data: 

up+ = ap 8(p + wl )8(0) -17/4), p>l, apEC, 

Uo = 0, up- = 0, p>l, 

in the variables O),w) = log tgO/2 (see Appendix A). The 
requirement oflocal finiteness is obviously verified. Then we 
have, with;- = 0) + iw l : 

v/+ t = 4ap (e P + e-p)-2(~ _ ~ _ iP)-t 
l7(p + 1) 4 

+ W/ (~), p>I, 

vp-+ I = W p- (~), p> 1, 

where W fare antiholomorphic function in the strip 
B = ]0,17/2 [ XR_. 

The local finiteness of expansion (3.9) means that for a 
given compact Kin B, the restriction of v p± to K is identically 
zero for p sufficiently large. Therefore, we have on K for such 
p: 

W/ = (4ap /17(p + I»)(eP + e-P)-z(~ -17/4 - ip)-I. 

The uniqueness of the analytical extension contradicts the 
antiholomorphyof W p+ on B. Thus although we can solve 
(3.26), (3.27), the solution must be rejected because it does 
not verify the local finiteness condition. Thus we have a 
counter-example to Proposition 3.1. 
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APPENDIX A: SOLUTION OF (3.26) 

First we replace the test functionsjby sin Ozjand the 
variable Oz by WI: 

WI = log tan O2 lUIER_. 

The space g; ([0,17/2]2) is mapped onto the space Y I (B) of 
Coo functions on R2, identically zero outside the strip 
B = [0,17/2] XR_ and going to zero at infinity on the lines 
OJ = Cte with all their derivatives faster that any power of 
exp WI' The topology of Y I (B) is defined by the family of 
semi-norms: 

Then we have to prove that, for given up+ in Y; (B), the 
following equation: 
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av/+ I 4 2 
--= ---(expwi +exp (-WI »)-

at p+ 1 

X u/, t = 01 + iWI 

has at least a solution vp++ I in Y; (B). 
According to Cor. 4, chap. 18 in Ref. 7, it is equivalent to 

prove that if hn = aln / at goes to zero in Y 1 (B), then In 
goes to zero in Y I (B). 

Following Ref. 8 we have 

I' =~i hn(t',{;') df-'d7-'+ (7-) 
In I- 1-' ~ ~ f/Jn ~ , 

1T c ~-~ 

where f/Jn ((;) is some antiholomorphic function. But by de­
finition, hn (t',{;') is orthogonal to any antiholomorphic 
function on B, in particular to 1/ ({; - (;') when tEtE. There­
fore f/Jn ({;) is identically zero outside B and the uniqueness 
ofthe analytical extension implies f/Jn ({;) = O. Thus we can 
write 

In = ~ r hn (t',{;,') dt'd{;' 
1T Jc t - t 

= _ ~ r hn (t + 1/,{; + 77) d1/ d77. 
1Tl 1/ 

Accordingly, we obtain with 1/ = P exp (ia): 

I 
aU+'1n I 

exp( - pwl) ao~awr 

1 [ l1T/2cosa 
.;;;;- da pdp exp(p sin a) 

1T -1T/2 0 

( - pet + 1/ - (; - 77») 
Xexp 2i 

X n (t + 1/,t + 77) 
I 

aU+"h - I 
ao r aWl 

But we have 

1 [l1T/2COS2 1 
- da pdpexp(ppsina) =-, 
1T -1T/2 0 2p 

so that we get 

IVn lip';;;; 1/2Pllhn lip 
and/n goes to zero in Y I (B) with hn • 

APPENDIX B: DEVICE USED IN PROOF OF THEOREM 2 

For the sake of completeness, we give here the general 
device used in the proof of theorem 2 (see Ref. 6). 
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Let G be a group, V(g) a representation of G in some 
linear topological space E. We consider the nonlinear formal 
representation of G given by the expansion: 

00 n-times 

1- V(g)1 - L zn(g) V(g)/®'" ® V(g)/, gEG, lEE, 
2 

(Bl) 

where as usual ® denotes the projective tensor product and 
n-times 

zn (g) is a linear mapping of E ® ... ® E into E. 
p-times 

Let A be a mapping of E ® ... ® E into E. We consider 

the nonlinear mapping of E into E given by 
p-times 

I-f/J =1 +AI®'" ®I (B2) 

This nonlinear mapping has a formal inverse: 
p-times 

1= f/J -Af/J®'" ®f/J + .... (B3) 

Substituting f/J to I in (B 1) by (B3) and transforming the 
resulting expansion by (B2), we get a realization of the for­
mal representation in term of f/J. In this realization, the 
(p - 1) first terms are unchanged and the pth term is written 

p-times 

ZP(g) +A - V(g)AV(g-l) ® ... ® V(g-I) 

as it is shown easily by direct calculation. 
Using successive transforms as (B2), we can drive out 

all the coboundaries in (B 1 ) . 
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Microscopic collective nuclear models with horizontal mixture 
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By accounting for the difference in the spin and isospin projection among nucleons, the 
Sp( 6,R) dynamical symmetry of the nuclear collective model is amplified in parallel with a 
horizontal extension of the instrinic shell structure. The generating kernels for the extended 
symplectic model basis functions are constructed in the form of a shortened coherent state. 
Analytical expressions for the microscopic Hamiltonian matrix elements, including central and 
tensor interactions, are obtained between the coherent states indicated. 

I. INTRODUCTION 

The problem of calculating the Hamilton operator ma­
trix elements with respect to the basis functions of symplec­
tic and unitary group irreducible representations (irreps) is 
of permanent importance in the theory of systems with a 
fi . . I b I 14 mte partlc e num er. - The field of corresponding phys-
ical applications covers collective motion studies,4-10 effec­
tive Hamiltonian construction,I,8,15-18 nuclear and atomic 
spectroscopy,6,8,9,IS,19 and other branches. The most compli­
cated part of the problem indicated is to determine the po­
tential energy operator matrix elements; reaching this stage 
several researchers reject the indispensible microscopic ap­
proach in favor of the phenomenological Hamiltonians in 
the polynomial form of the Lie algebra genera-
t 1,4810121617 Th l' ors. " , .. e present paper rea lzes a program of 
constructing the generating kernel for the matrix elements of 
two-body interaction operators (central and tensor forces) 
between the symplectic nuclear model states admitting var­
ious (both regular and irregular) occupation of the valence 
nucleon shell. As one can note, the composing of intrinsic 
subspace by means of several shell occupations essentially 
amplifies the model basis compared with the conventional 
Sp(6,R) model.4 Really, the complementarity between the 
intrinsic and collective motion2,3 requires the whole space of 
states to be made up of different Sp (6,R) irreps. Following 
Park et aI., 12 we suppose that making use of the basis states of 
a single Sp ( 6,R) configuration is no more successful even for 
the s-d shell, so the exit through the light nuclei region with 
realistic Hamiltonians needs mixed representation calcula­
tions. The assumption is based on essential physical argu­
ments. First, the dominant SU (3) irrep spans up to 80% of 
the full shell basis in the beginning of the 2s-1 d shell. This 
result of Akiyama et al.20 with a microscopic Hamiltonian 
affirmed the significance of intrinsic configuration mixing 
for light and medium nuclei. The analogous conclusion was 
stated by Draayer et al.21 who had diagonalized a semiem­
pirical Hamiltonian for 2°Ne in the space of mixed Sp (6,R) 
representations. The experimental data for the systems of 
18-20 nucleons22 also testify that the quantity of collective 
bands in real spectra notably exceeds the one irrep predic­
tions. Then, the intrinsic SU (3) symmetry is characteristic 
only for the nuclei with rotational spectra. The intrinsic 
symmetry of the coupled rotor-vibrator-type corresponds to 
the higher dimension unitary groups and hence the space of 

states for such nuclei occurs to be reducible with respect to 
the SU (3) group. The idea was successfully realized in phe­
nomenological interacting boson approximation with 
SU(6) symmetry.23,24 And, finally, one notes that the 
Sp (6,R) configurations are inevitably mixed by the spin­
orbit and tensor interaction. 

In the version of the symplectic model developed below, 
the transfer to the mixed irreps results from the dynamical 
symmetry extension. The latter is achieved by dividing the 
nucleon system into four interacting subsystems according 
to the spin and isospin projection of nucleons. The basis 
states of every subsystem are transformed by the Sp(6,R) 
irrep, and, consequently, the dynamical symmetry of the 
whole system is determined by the direct product. The ex­
pansion of the latter, besides the dominant Sp(6,R) irrep, 
incorporates representations with the same number of quan­
ta in the lowest shell state. Besides the vertical mixing of the 
SU (3) irreps within the Sp (6,R) one, the discussed exten­
sion of the Sp (6,R) model space fixes the horizontal mixing. 
Such mixing is necessary to set a correct structure on the 
low-energy spectrum region.21 So one may expect the collec­
tive model with horizontal mixture to improve the descrip­
tion of the real nuclei by revising the conception of the intrin­
sic motion. 

As a chief tool to obtain the explicit analytical formulas 
for the matrix elements of the physical operators, we utilize 
the generating kernel technique. 5,7,14 Section II begins with a 
review of some results from Refs. 5 and 7 on making use of 
shortened coherent states as the generator functions in the 
framework of the Sp( 6,R) model with the regular occupa­
tion of the valence shell. Thereupon the extension scheme is 
considered in its application to the generating kernels for the 
basis state overlaps and kinetic energy matrix elements. 

In Sees. III and IVan algorithm to calculate the gener­
ating kernel for the two-body central interaction operator 
matrix elements is developed. In Sec. V the previous results 
are modified for the case of tensor nuclear forces. In Sec. VI 
the formulas derived are detailed for several cases of physical 
interest. Section VII contains the conclusion. 

II. GENERATING INVARIANTS OF EXTENDED 
SYMPLECTIC MODEL 

The version of the generator function method used in 
the present paper was developed by Vasilevsky et al.s in ap-
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plication to the conventional Sp( 6,R) model. They pro­
posed to make use of a shortened coherent state as a generat­
ing kernel for the basis states of the symplectic group irrep. 
The shortened coherent state, in contrast to the general case, 
is constructed over the lowest SU (3) irrep only by means of 
the raising generators of the Sp(6,R) algebra.25 Hence, it 
contains nine generating coordinates versus twenty one for 
the "true" coherent state. The basis states may be selected 
out of the coherent state (henceforth we omit the word 
"shortened"), generally speaking, by performing reiterated 
differentiation with respect to the generating coordinates. 
By taking the matrix elements of the physical operators 
between the coherent states, one obtains the corresponding 
generating kernels which depend only on the set of the gener­
ating coordinates. Then, either the standard method of solv­
ing the Hill-Wheeler equationIO or the above pointed differ­
entiation routine reduces the problem to the usual 
diagonalization of matrices. 

The generator function technique is quite practicable to 
obtain analytical expressions for the matrix elements ofvar­
ious operators between the many-particle oscillator func­
tions with arbitrary values of quantum numbers. Seemingly 
it is simpler, at least for highly excited states, than the gen­
eral approach based on the fractional parentage decomposi­
tion,26.27 on account ofthe latter needs recursive calculations 
with a large set of Wigner coefficients of the symmetric and 
unitary groups. Besides, as it was noted in Ref. 7, there exists 
a way by using the generating kernels to estimate an asymp­
totic behavior of the corresponding matrix elements at the 
number of oscillator quanta increasing to infinity, and con­
sequently, to eliminate the convergence problem for the os­
cillator expansion. However, in the case of essentially anti­
symmetrized spatial Young pattern, or, which is the same, 
an extremely irregular shell occupation, making use of the 
parentage coefficients is vital to construct the coherent state. 
So we leave the latter case beyond our discussion and appre­
ciate the necessity of a generalized algorithm reasonably 
compound of both the approaches. 

Following Refs. 5 and 7, Sp(6,R) irrep coherent states 
that generate the oscillator basis can be constructed over the 
oscillator SU (3) multiplets: 

A 

Ib;U) =exp{Trace(bA+)}lu), (2.1) 

where A + = liAr; II, r, S = T,3 is the symmetric matrix of 
collective quantum creation operators (here 

for the system of A nucleons, ai~ are oscillator quantum 
creation operators), b = Ilbrsll is the symmetric matrix of 
collective excitation generator coordinates. The latter are, 
generally speaking, complex variables. Nevertheless, to fit 
the generator function one always may assign real values to 
them. Let the ket (2.1) belong to the [0"10"20"3] irrep of 
Sp(6,R) group. If this state is treated as a generating invar­
iant for the oscillator basis of the minimal approximation of 
generalized hyperspherical functions method6 (i.e., for col­
lective wave functions of fixed O(A - 1) symmetry 
[ h /2/3 J), the symplectic and orthogonal group irrep in­
dices relation3 is written as 
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O"i=~/;+!(A-1), i= 1,3. 
The SU (3) multiplet lu) quantum numbers are defined, be­
sides the/; indices, also by means ofSU(3) :JSO(3) reduc­
tion ones: 

Nmin =h + iz + h, A =h - /2' f-l =iz - 1;, LMa, 

where Nmin is the total number of quanta, (Af-l) is Elliott's 
notation for the SU (3) numbers, I LM and a are the values of 
orbital angular momentum, its projection and multiplicity 
index, respectively. The u = (UI,U2,U3 ) symbol denotes an 
orthogonal matrix composed of three vectors of the Carte­
sian axes orientation. The initial orientation u = E (where E 
is the unit matrix of the third order) determines the lowest­
weight state of the (Af-l) irrep. Three independent generator 
coordinates, parametrizing the matrix, provide the reduc­
tion onto the SOC 3) group, e.g., by means of the Peierls­
Y occoz projection technique.28 

We introduce, following Filippov et al.,7 the single-par­
ticle states 

(rln,v,u) = (r /22nn!)-1/2;v 

xexp( - ~ r 2) IT Hnk (ukr) , (2.2) 
2 k= I 

where n = {n l,n2,n3} are the occupation numbers, 
n == n I + n2 + n3, n! == n I !n2!n3!' ; v is the spin-isopin function 
with projection values v = {mJ. The distance scale is cho-

sen normed to the oscillator radius ro = ~fz/m(iJ. If the nu­
cleon shells are filled in a regular manner, i.e., the valence 
nucleon state is expressed through the Young pattern, fully 
symmetrized over the antisymmetrization due to a fixed spin 
and isospin projection, then the single-particle kets (2.2) 
form a Slater determinant of the whole system state. So the 
partition numbers/; are identified with the total numbers of 
quanta along the Cartesian axes. By passing to Jacobi co­
ordinates in Eq. (2.2) one isolates the center-of-mass factor. 
The translationally invariant part of the Slater determinant 
coincides with the SU (3) irrep generator function I u) ofEq. 
(2.1 ). 

Now we proceed to abandon the operator form of the 
Sp( 6,R) irrep coherent state (2.1) in favor of the coordinate 
form. Let us denote the eigenvalues of matrix b of the collec­
tive generator coordinates by 131' 132' and 133' Then the coher­
ent state of the Sp(6,R) irrep with quantum numbers 

[0"10"zlT3] = [!h + !(A - 1),!iz + !(A - 1), 

!h+!(A-l)] 
is expressed through the translationally invariant part of the 
Slater determinant composed of the single-particle orbitals 

(rlb;n,v,u) = exp{ - r1),(E - b)-Ir}(r/n,v,u) (2.3) 

and supplied with factor TIk (1 - 13k) - 2a., (The superscript 
T with vectors and matrices means their transposition). 
Such a state is defined by three Sp(6,R) quantum numbers 
and nine generator coordinates. Three of the latter are re­
sponsible for the intrinsic state description, and the other for 
the monopole and quadrupole collective excitations. 

As far as the generator function for the basis state is 
identified with the coherent state, the matrix elements of an 
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arbitrary operator Fbetween the coherent states, i.e., 

(b;ivIF Ib;u) , 

are treated as the generating kernels. We denote the corre­
sponding generating coordinates of the coherent bra and ket 
in a different manner to emphasize that conjugated bases are 
yielded by the independent generator functions. 

For a single or two-particle operator F the calculation of 
the matrix elements between the determinant functions (h;v I 
and Ib;u) can be performed according to the L6wdin algo­
rithm.29 Describing nucleon interactions through effective 
two-body potentials we assume that to calculate such matrix 
elements is quite sufficient for solving the problems of practi­
cal significance. We put off the construction of the potential 
energy operator generating matrix elements until the next 
section and now turn to the case of one-body operators. 

The coherent state overlaps 

(h;vlb;u) 

are the simplest generating matrix elements. They contain 
information on the structure of the basis functions and nor­
malization coefficients. Analytic expressions for the over­
laps are to be found 7 by generalizing the Elliott formula I for 
the overlap integrals of definite SU (3) -symmetry oscillator 
functions: 

(v[fdd3] lu[fdd3]) 

= (UIVI»); -J,( [U IU2] [V IV2])J, -/', (2.4) 

where lu[ .t;hh]) and (v[ .t;hh] I are the Slater determi­
nants composed of the corresponding one-particle kets (2.2) 
and bras. (Square brackets henceforth symbolize the vector 
product.) Note that a linear transformation of the coordi­
nate system extends the lowest SU (3) irrep coherent state to 
the Sp (6,R) irrep one. 

Every overlap of oscillator orbitals (2.3) 

(h;fi,v,vlb;n,v,u) = (h;fi,vlb;n,u)ovv 

implies the integration of an exponential factor 

exp( - rTBr) , 

B = E + beE - b)-I + h(E - h)-I. 

One can perform a linear coordinate transformation 

conserving bilinear forms 

(2.5a) 

(2.5b) 

(2.6) 

There oscillator reper matrices u' and v' are no longer or­
thogonal. To make the Elliott formula (2.4) applicable one 
employs the Gram-Schmidt orthonormalization technique 
presented as a triangular transformation 

u'=u"£, v'=v"i, (2.7) 

where £ and i are the upper triangular matrices, u" and v" 
are the new orthogonal ones. The next calculations will need 
only diagonal elements of the transformation matrices: 
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Ell = lu; I, 
'[u;u~] I 

E33 = 
l(u;u~ui)1 

E22 = 
lu; I 

, 
I [u;u~] I 

, 

(2.8) 

Ell = Iv; I, E22 = 
I [v; vi] I 

E33 = 
I (v; vi vi) I 

Iv; I 
, 

I [v; vi] I 

The determinant form of the Sp( 6,R) irrep coherent states 
employed and the condition that nucleon shells are regularly 
filled allow us to obtain the Ib;u[ fd2f3]) determinant com­
posed of orbitals (2.3) from the lu[flhh]) determinant 
using a simple substitution for the parameters of one-particle 
states (2.2): 

(2.9) 

After performing an analogous substitution for the bras, one 
reaches the expression sought for 

(h;v[fdd3] Ib;u[flhh]) 

= (v" [.t;hh] lu"[.t;hh)) 

X IBI-AI2(EllEll)/'(E22E22) J,(E33E33 )I, , (2.10) 

where the multiplier depending on the matrix B determinant 
represents the Jacobian of transition (2.6) to spatial coordi­
natesx. Taking the relations (2.4), (2.7), (2.8), and (2.10) 
into account, we obtain 

(h;v[fdd3] Ib;u[flhh]) 

= IBI-A/2(uiv; )/, -I, 

X ([u;u;] [v;v; P J,-h{(uiu;u; )(viv;v; )}/', 

(2.11) 

where the parentheses with two vector arguments indicate a 
scalar product, and those with three vector arguments indi­
cate a mixed one. Choosing the new notation 

11 = IBIIE - bilE - hi = IE - bhl :=D(h,b), (2.12a) 

(2.12b) 

% = 11· ( [u; u; ] [vi v; ] ) = IE - bilE - hl'vjBu3 

(2.12c) 

(it is easily seen that 11, J(, and % are polynomials on the 
matrix elements ofb and h), using 

(u;u;ui)(viv;vi) = IBI- 1 

and excluding the center-of-mass motion by normalizing 
factor 111/2, we come from (2.11) to the Sp (6,R) [0'10'20'3] 

irrep coherent state overlap 
_ J( I, -1,% J, -I, 

(b;vlb;u) = 111,+(1I2)(A-I) (2.13) 

Formula (2.13) derived in Ref. 7 is applicable if nucleon 
shells are occupied in the regular manner. But the regular 
occupation is preferred only for the lightest nuclei; an in­
crease in the nucleon number results in holes in the shell 
configurations being energetically preferred.3D

•
31 To incor­

porate the irregular shell occupation, as it was discussed in 
the Introduction, one has to account for the horizontal mix­
ing. 

The extended symplectic model proposed in the present 
paper describes nucleon systems with horizontal mixture in 
an open shell. Realizing it, one preserves some advantages of 
the above considered variant of the Sp (6,R) model with reg-
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ular shell occupation: the usage of a generating invariant in 
Slater determinant form and, consequently, the existence of 
a simple transformation connecting the Sp (6,R) and SU (3 ) 

coherent states. In the extended model the system of A nu­
cleons is treated as divided into four interacting subsystems, 
each of them containing nucleons in a fixed spin-isospin 
state v. The subsystems are built up in a regular way; the 
corresponding intrinsic configuration is characterized by the 
total numbers of quanta/vI ,/v2'/v3 along the oscillator axes 
[in the extended SU (3) model Elliott indices (A.vILv) 
= (Il'l - Iv2 '/v2 - IV3 ) are sufficient] . 

Some comment is required for the previous paragraph. 
Note that every subsystem is unambiguously characterized 
by the fully antisymmetric spatial Young pattern. For the p­
shell the space symmetry coincides with the intrinsic state 
U (3) partition [Il'l IV2/v3 ] . For the higher shell one classi­
fies the oscillator quanta, generally speaking, by several par­
titions. Henceforth we consider the subsystem v imparted by 
a fixed [Il'l IV21v3 ] partition and, consequently, the whole 
system labeled by a set of four partitions. The latter condi­
tion is based on a physical assumption of the relatively weak 
coupling of subspaces with the fixed partition set. Really, 
one can divide the full Hamiltonian as follows: 

H=Ho+ 2: H v + H res , 
v 

where Ho is the Sp(6,R) invariant contribution of the entire 
system, Hv are the corrections due to the independent sub­
systems, and H res is the residual term corresponding to the 
interaction of the subsystems. Contrary to the other terms, 
H res is originated only by the valence nucleon interaction 
and, for that reason, is expected to be rather small. Hence the 
cross matrix elements between the states with different parti­
tion sets take a nonzero value only on the smallest term of the 
Hamiltonian. 

The formulas for coherent states and their overlaps in 
the extended model generalize formulas (2.2)-(2.13) quite 
easily. The single-particle kets of the intrinsic state of the 
subsystem v are obtained from states (2.4) by replacing the 
oscillator reper matrices 

u ..... uv; (rln,v,u) ..... (rln,v,ul' ) . (2.14) 

The matrix U l' is supposed to be constructed from the vector 
columns uvl , U l'2 ' U V3 ' The bras undergo an analogous modi­
fication. The collective matrices B (2.Sb) remain un­
changed, reflecting the physical assumption about the defin­
ing role of the intrinsic configurations in the structure of a 
nuclear system. If necessary, an additional mixture in collec­
tive occupation may be injected into the model without spe­
cial difficulties (but this will cause an extraordinary calcula­
tion inconvenience in applications to the concrete nuclei). 

Returning to the extended Sp (6,R) model generating 
kernels we generalize formula (2.13) according to the 
scheme (2.14): 

_ II 1 fvl - fV2 % fV2 - fV3 

(b'vlb'u) = v v v 
" .6..f.+(1/2)(A-I) 

(2.1Sa) 

1 v = .6. 'Vl'l TB-Iu YI o:=Mv (b,v;b,u) , (2.15b) 

% Y = IE - bilE - bl'v~Buv3 o:=Kv(b,v;b,u) , (2.I5c) 
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where 

/; = Ill';> i= 1,3. 

Now we deal with the kinetic energy operator Tmatrix 
elements. Let us denote by a the set ofthe quantum numbers 
of a normalized basis function. Using the virial theorem for 
the harmonic oscillator, one can deduce 

(aITla) = - (1i2/2m) (al p2la) (1 - 2baii ) (2.16) 

to connect the desired matrix elements with the elements of 
squared hyperradius operator 

A 1 (A )2 p2 = I r 7 - - I r i 
i~1 A i~1 

A formula for the generating kernels of the p2 matrix in the 
Sp ( 6,R) model with a regularly occupied open shell was also 
derived in Ref. 7. Generalized to the broadened model, it 
looks like 

(b;vlp2 Ib;u) = {It + h + J;, + ~(A - 1) 

a + 2: (Il'l - /v2) -a In1 v(y) 
v y 

+(lvI+A-l)~ln.6.(Y)}1 ' 
2 ay y~o 

(2.17a) 

1 ( ) = Mv((1 - y)b + yE,v;(1 - y)b + yE,u) 
v y , 

Mv (yE,E;yE,E) 

(2.I7b) 

% ( ) = Ky((1- y)b + yE,v;(1- y)b + yE,u) 
v y , 

Kv(yE,E;yE,E) 

.6.(y) = D((l - y)b + yE;(l - y)b + yE) , 

D(yE;yE) 

(2.l7c) 

(2.17d) 

where the functional dependence of M v , K v , and D was de­
fined by (2.15b), (2.ISc), and (2.12a). 

III. POTENTIAL ENERGY MATRIX GENERATING 
KERNELS. EXPONENTIAL GENERATING FUNCTION 
FOR PARTIAL EXPANSION 

In the present and subsequent sections we derive analyt­
ic expressions for the generating kernels of the matrix of 
Wigner nucleon-nucleon interaction operator 

"- [YCri - r .)2] "-
Uc = . L Wo exp - J 0:= I V( ri - rj ) , 

I <J<A 2 i <j<.A 

(3.1 ) 

where y is a parameter settling the interaction range. One 
can generalize the following results to the case of potentials 
summing several Gaussian functions in a trivial manner. To 
work with the potentials including other radial dependence, 
one has to integrate over the parameter y with a definite 
weight function. 
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In accordance with Lowdin's algorithm,29 we write the 
"'-

two-body operator Uc matrix elements between the determi-
nant functions (b;vl and Ib;u) in the form of 

(b;vl Uc Ib;u) = (b;vlb;u) 

XLwo[W,;t (y) - Wri:(Y)] , (3.2a) 
vi' 

W,;t(y) = II drldr2Pv(rl,rl)pv(r2,r2) 

xexp[ - ~ (r l - r2)2] , 

Wri,(Y) = II drldr2Py(rl>r2)pv(r2,rl) 

xexp[ - ~ (r l - r2)2] , 

(3.2b) 

(3.2c) 

where w,;t (y), W ri, (y) are the integrals of direct and ex­
change nucleon interaction between the subsystems v and ii, 
Pv (r l ,r2) is the single-particle spatial density matrix in the 
subsystem v. 

We guess the construction of density matrices of single­
particle orbitals (rlb;n,v,uv) and (b;n,v,uv Ir) to be inexpe­
dient, because the latter are nonorthogonal, if the quantum 
numbers nand ii belong to the same shell (in the case v# ii 
the orbitals are orthogonal1ike the corresponding spin-iso­
spin functions). So we prefer to orthogonalize the employed 
orbitals beforehand. Then their overlap matrix becomes di-, 

agonal, providing undoubted advantages for further trans­
formation. 

To solve the stated problem, we use the technique of 
partial expansion generating functions applied in Ref. 7 to 
the SU (3) model. One can present the single-particle states 
(2.2) as a derivative of an exponent with respect to the com­
ponents of the vector parameter tv = {tV) ,tY2 ,tv3 }: 

(rln, v,uv ) = 1T-3/4{;vD(n,tv) 

xexp{ - t~ + 2rTuytv -!r 2l!tv=O' (3.3a) 

D(n,tv ) = (rn!)-1/2 an'an'a
n

, (3.3b) 
at ~l at ~~at ~~ 

The expression (3.3) makes use of the generating func­
tion for Hermite polynomials. A passage to an analogous 
representation for the single-particle orbitals of the symplec­
tic model takes place as a result of the spatial transformation 
(2.5)-(2.9) 

(rlb;n,v,uv) -(;v1T-3/4D(n,ty) 

Xexp{ - t; + 2XTu~tv - !X2l!tv=o. (3.4) 

The factor depending on the elements of the triangular ma­
trix Ev is omitted in formula (3.4), because it contributes 
only to the coherent state overlap [see (3.2)], but the subse­
quent calculations involve the direct W,;t (y) and exchange 
W,:i; (y) integrals. 

We define the new generating parameters {1" vi ,1" v2, 1",,3 } 

= 'Tv by the following triangular transformation: 

(3.Sa) 

- (U~2 V~I )/(U~I V~I ) 1/2(U~3 V~3 ) 1/2 

(U~I V~I )/(U~I V~I ) 1/2(U~3 V~3) 1/2 (3.Sb) 

o 

Replacing in the formula (3.4) the differential operator D(n,tv ) (3.3b) by the operator D(n,Ty), we create new single­
particle orbitals 

It seems instrumental to pass within the exponent to parameters 'Tv simultaneously with the oscillator reper transformation 
which sets an invariant image of the vector u~tv: 

In the last relation the orthogonality ofthe matrix utI was used. In the same way we define the new bras 

2423 

(

lI(U" v" )1/2 1'1 1'1 

roy = 0 

o 

- (U~I v~ )/(U~I v:I ) 1/2(uv3 V~3) 1/2 

(U~I V~I )/(U~I V~I ) 1/2(U~3 v:3 ) 1/2 

o 
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(3.6a) 

(3.6b) 

(3.7a) 

(3.7b) 

(3.7c) 
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The matrices Uv and V v may be treated as consisting of 
vector columns 

u" U _ vI 
vI - (u" v" )1/2' 

vI vi 

v" 
U v3 = 1'3 ,Uv2 = [V 1'3 V 1'1] , 

(U~3 V~3) 1/2 

v" V _ vI 
vI - (u" v" )112' 

vi vi 

(3.8a) 

which, as is easily seen, are connected by the reciprocity 
relations 

(Uv;Vvk ) = 8;k' i,k = T,3. (3.8b) 

The matrices 

(3.9a) 

of the outer products of vectors U vk and V vk are projection 
ones: 

(3.9b) 

(3.9c) 

Equation (3.9c) may also be written with the help ofreper 
matrices 

UvVv
T =E. (3.10) 

One can show the orthogonality of orbitals (3.6b) and 
(3.7a). Really, 

xJ dx exp{ - {Uv'Tv)2 - (Vva v )2 

+ 2xT (Uv'Tv + Vvav ) 

- x
2}I"'v =av =o . 

Integrating and utilizing Eqs. (3.8), one gets 

( b;ii,v,uylb;n,v,uv ) ~8n,n,8n,n,8n,n, . 

The single-particle spatial density matrix built on Slater de­
terminants of the orthogonal orbitals (3.6b) and (3.7a) be­
comes additive with respect to single-particle states: 

(3.11a) 

where ny are the quantum numbers of the occupied single­
particle orbitals of the subsystem v, 
Pv (X I,X2;'T v,av ) 

= 1T- 3/2 exp{ - (Uv 'T,,)2 - (V"a,,)2 

+ 2X;U"Tv + 2xIVvav - !(xi + x~)}. (3.11b) 

The partial expansion generating function (3.11 b) of 
the density matrix of the subsystem v contains six generating 
parameters. Obviously, the generating functions of direct 
and exchange integrals obtained by substituting (3.11 b) into 
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(3.2b) and (3.2c) transform into 12 parametrical ones. Ex­
plicit integration taking (3.6) into account leads to 

IBII/2 
W!i,(r) = IB+rEII/2 

xexp( - Y~Q±YvV) , 

where Y vi' is a block vector 

Q+~('~E 
q-E -q 

q -q 

-q -q q 

-q -q q-E 

Q- ~( -". 

-q -q 

q q-E 

-q q-E q 

q-E -q -q 

q = !r(B + rE)-I. 

( 3.12a) 

(3.12b) 

-.) -q 

q~E ' 

'-j -q 
(3.12c) -q , 

q 

(3.12d) 

To derive (3.12), the well-known integraJ32 was applied: 

(3.13 ) 

where C is a positively defined symmetrical matrix of nth 
order, and 1"'1 are the determinant bars. Taking (2.5b), 
(2.12a), and (2.17b) into account, one notes that 

IBI !:1 
IB + rEI (1 + r)3!:1(r) 

(3.14 ) 

Equations (3.12) and (3.14) generalize the result ofFi­
lippov et al. 7 for the SU (3) model with regular shell occupa­
tion to the extended Sp ( 6,R) model. The presence of 12 gen­
erating parameters makes the differentiation of the 
exponential generating function on the right-hand side of 
(3.12a) sufficiently complicate. It seems expedient to trans­
form the expression obtained to'reduce the number of gener­
ating parameters. The next section deals with such a pro­
gram. 

IV. POTENTIAL ENERGY MATRIX GENERATING 
KERNELS. DETERMINANT GENERATING FUNCTION 
FOR PARTIAL EXPANSION 

As one sees by analyzing formula (3.11 b) for the partial 
expansion generating function, the possibility to occupy 
each of three Cartesian axes with oscillator quanta is pro­
vided by two generating parameters. We define a new gener­
ating function so that the k th axis occupation numbers nvk 

are generated only with the help of one parameter gvk' 

k = 1,3, 
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( .G ) - ~ g n'g n'g n .. Pv X 1'X2' v - L.J vl v2 V.l 

n 

xD(n,T y )D(n,O"y) 

XPy(X I,X2;Ty,O"y) ITv=Uv=O' (4.1) 

with arbitrary non-negative integer numbers n l ,n2,n3 • Here 
the generating parameters are collected not in vectors, as in 
the previous discussion, but in diagonal matrices 

Gy = diag(gvl ,gY2,gY3)' 

Using formula (3.3b), we rewrite (4.1) as follows: 

Pv(XI,X2;Gy) = exp{~ (~)T Gv~} 
2 JTy JO"v 

XPy(XI,X2;Ty,O"y) ITv=Uv=O' (4.2) 

On the right-hand side of (4.2) we denote such variables as 
~,1): 

and define the vector differential operator 

one obtains 

Then (4.2) passes into 

py (X I,X2;Gy) 

:~) J . 

Ut] 

=~'Py(XI,X2;~+1)/2, ~-1)/2) Is='l=o, 

One can deduce from (3.13) if C = E 

eZ' = 1T- n12 J dy exp( - y2 + 2yTZ ). 

(4.3) 

(4.4 ) 

The operator transformation (4.4) is justified when the op­
erator z is restricted with respect to the norm in the investi­
gated function space. In our case the functions (3.11 b) are 
analytic, and the transformation (4.4) really takes place. 
Performing it on the right side of (4.3) and substituting the 
auxiliary vector y as a block 

y = (~',), 

Py(XI,X2;Gy) =1T-
3 J J d~'d1)'exp{ _~'2_1)'2_ [~ UyG!:2(~'+i1)')r - [~ VyG!!2(~'-i1)')r 

+ 2Xr[ ~ UvG!:2(~' + ;1)')] + 2Xr[ ~ VvG!:2(~' - i1)')] - ~ (xi + X~)}. 

Returning to the variables 

Ty = ~ G!!2(~' + i1)'), CT = _1_ G lI2 (I:' - i1)') v .Jiy~ , 

we write down the result for the generating function 

Pv (XI,X2;Gy) = (~ r (gylgv2gy3) - I 

X J J dT y dO"y exp( - 20"~Gy- IT y) 

( 4.5) 

The generating functions (4.1) and (3.11 b) happened 
to be connected by the integral transformation (4.5), ex­
cluding the superfluous generating parameters. By analogy 
to (4.1), we define, on the basis of (3.12a), the generating 
function for direct and exchange integrals 

W ± ( ·G G ) - IBI 1/2 ~ ~ II nk ilk 
y, y, "-IB EII/2~~ gyk g"k + Y n n k 

xD(n,T y )D(n,O"v )D(ii,T" )D(ii,O",,) 

Xexp( - Y:"Q±Yy,,), 

Then, using (4.5), (3.10), (3.12), and (3.13), we can write 

W ± (y;Gy,G,,) 

2425 

IBII/2 

IB + yEII/2IS~"Q± (Gy,Gv)SYVII/2IGyGvl ' 
(4.6a) 
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where SvV is a quasidiagonal matrix 

Q ± (Gy, Gv ) is a block matrix [see (3.12c)], 

Q± (Gy,Gv) 

(0 r -T 0 

r,~} 
y 

r -I 0 0 
~Q± + ~ 0 0 

0 r-- I y 

rv = UyGy Vy T, rv=uvGvVv
T

• 

Taking into account [see (3.10)] that 

ISvvl = 1, 

(4.6b) 

(4.6c) 

( 4.6d) 

we focus on the transformation of the determinants 
IQ+(Gv , Gv)l and IQ-(Gv , Gv)l. Really, these determi­
nants have the 12th order, while the other ones in Eq. (4.6a) 
have the third order, in accordance with the physical space 
dimension. We use the IQ+ (Gv , Gv ) I example to consider a 
possible way to decrease the order of the determinants of 
interest. The initial form, as one can see from (3.12) and 
(4.6c), is 
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q q - E + r" -T -q -q 

IQ+(G",G,,)I = 
q-E+r,,-I q -q -q 

q-E+r" -T (4.7a) 
-q -q -q 

-q -q q-E+r,,-I q 

With the help of linear operations on block lines and columns that leave the determinant value unchanged, one transforms 
(4.7a), for example, to 

2E-r" -T -r" -T 0 E-r" -T 0 

0 2E - r v -I - r" -I 0 E-r" -I 
IQ+(G",G,,) 1= (4.7b) 

E-r" -T 0 q q 

o E-r,,-I q q 

The form (4. 7b) is fitted better than (4.7) to the Schur's algorithm reducing the calculation of the 2nth-order determi­
nant to nth-order ones33 

I~ :1 = IAIID-CA-IBI· ( 4.8) 

Vsing formula (4.8) and taking identity 

(E - r" -1)(2E - r" -I - rv -I)(E - r" -I) = - (V"H" V" T + VvH" Vv T)-I, 

H" = G,,(E - G,,)-I 

(4.9a) 

(4.9b) 

into account, we obtain a sixth-order determinant 

IQ+ (G",G,,) I 
= 12E - r" - I - r" -1112E - r" -I - r v -II 

I 
(V"H"Vv T + VvH"V" T)-J 

X _ (VvH"V"T + VvHvVvT)-J - (V"H"Vv
T + VvH"V"T)-1 

(4.10) 

Application offormula (4.8) together with the identity 

12E - r" - J - r v -II 
= -IGvl-JIG"I-IIE-GvIIE-Gvl 

X IVv TVvH" + Hv VV TV"I 

transfers (4.10) into 

IQ+(G",Gv)1 

= ( -1)2IG,,12IGvI2IE - G,,121E - Gvl2 

xIE+ (VvHvVvT + VvHvVvT)q 

+ (V"H"Vv T + VvHvV " T)ql. (4.11 ) 

Substituting (4.11) into (4.6a) and remembering a defini­
tion (3.12d), we reach the following result: 

W+(y;Gv,Gv) 

IBII/2 

IE - GvIlE- Gvl 

X IB + yE + L(UvHv V" T + V"H" Vv T) 
2 

+ ~ (V"H"Vv T + V"HvVv T) 1-1/2. (4.12) 

Vsing the generating function for Laguerre polynomials 

1 ( gz) 00 n --exp --- = L gLn(z), 
l-g l-g n=O 

we rewrite (4.12) in the form of 
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I 
W+(y;G",G,,) 

= IBII/2 L L IT gvk nkgvk flk 

n n k 

xIB+yE+ ~(V"H"V"T+VvHvVvT) 

+ ~(V"H"VvT +V"H"Uv
T)I-I/2IH,=Hv =0' 

(4.13 ) 

In Eq. (4.13) Hvk andHvk (the elements of diagonal matri­
ces Hv and H,,) are treated as independent variables, in con­
trast to Eq. (4.12) where these symbols denoted the definite 
functions (4.9b) ofthe parameters g"k and g"k' 

Comparing (4.13) with (3.l2a), one gets the desired 
formula for direct integrals 

W.;t (y) 

= IBII12LIITL (-~)L (-~) 
n,. n" k nvk aHk n.. aRk 

I y T - T 
X B + l(E + VvHVv + VvHVv ) 

+ ~ (E + V"HU" T + V"HUv T) 1-1/2IH=H =0' 

(4.l4a) 
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The exchange integrals need a more complicated expression: 

W ri. (r) 

- IB II/z "" "" IT L ( -~)L ( -~) - ~ ~ nvk aH nvk aH 
~ ~ k k k 

x I (E + UvHV v T + u;:Jiv" T) 

X (E + VvHUv T + V"HU" T) I-I/z 

X IB + ~ (E + UvHVv T + U"HV" T)-I 

w,;t (r) = IBI I/z t ~ IJ Lnvk( - a!JLnvk ( - a~J 

In Eqs. (4.14), we introduce the symbols for generating pa­
rameters simplified as compared to (4.13). One can write 
these equations in another manner using the projection ma­
trices (3.9) 

X IB + ~ ~[( ~ + HI) (Pvl + Pv/) + (~ + HI) (P"I + P,,/)] 1-
lIz

IHk=Hk=o, ( 4.1Sa) 

w~(r)=IBII/Zt~IJLnvk( - a!JLn .. ( - a~J 

X 1 ~ [ (~ + HI)P vi + (~ + HI)P VI] 1- liZ 1 ~ [ (~ + HI )p 1'/ + (~ + HI)P ,,/ ] 1- liZ 

xIB+ ~{~[(~ +HI)PvI+(~ +HI)PVl]}-1 

+ ~ {~[ (~ + HI)P 1'/ + (~ + HI)P ,,/]) - 11- liZ 1 Hk = Hk = o· (4.1Sb) 

Equations (2.1Sa), (3.2a), and (4.1S) solve the prob­
lem of constructing the generating kernels of the Wigner 
interaction matrix in the extended symplectic model. As one 
can see from (4.1S), the sought for generating kernels are 
obtained by the differentiation of the corresponding deter­
minant generating function of partial expansion with respect 
to, generally speaking, six parameters. (In the case of identi­
cal subsystems v and ii, three independent generating param­
eters are sufficient, as will be shown in Sec. VI.) Equations 
(4.1S) are much simpler than (3.12) with the exponential 
generating function: moreover, their determinant form 
makes them similar to (2.22) and (2.24). The similarity 
becomes more manifest if one notes that "extra" vectors U vZ 
and V vZ [see (3. 8a)] always may be excluded from (4.1S) 
by means of unit expansion (3.9c), and the matrices P vi and 
P 1'3 may be expressed using the initial generator coordinates 
and the blocks (2.1S): 

P =~B-I/2U vTB- I / Z 
vl....// vI vi , 

v 

P _ IE - bilE - b I BI/z T BI/Z 
1'3 - vv3 uv3 • %1' 

The correction of Eqs. (4.1S) for potentials with spin­
isospin dependence and their subsequent analysis in the 
limiting cases of physical interest will be presented in Sec. 
VI. And now we proceed to generalize the result ofthe pres­
ent section on static nucleon interactions possessing no 
spherical symmetry. 
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I 
V. POTENTIAL ENERGY MATRIX GENERATING 
KERNELS. TENSOR INTERACTION 

Let us consider a two-body tensor interaction operator 
in the A nucleon system 

A A A 

U, = L V(r j - r)Sij , (S.la) 
i<j<A 

A (Sj,rj - rj ) (Sj,rj - rj ) _ S 
Sij = 3 ( )Z (Sj' j) 

rj - rj 

= ~ [3 (Sj + Sj,rj - rj)z _ (Sj + S.)Z] , (S.lb) 
2 (rj_rj)z J 

where V(r j - rj ) are the two-body potentials [see (3.1)], 
Sj and Sj are the spin operators of ith and jth nucleons. 
Transfering the correction on isospin dependence to Sec. VI, 
here we deal only with the contribution of unit spin nucleon 
pairs. In accordance with the radial dependence of the po­
tential (3.1), we define direct and exchange integrals as fol­
lows: 

W'~v(r) = - ! (S(1) :kY f" dy' f f drldrz 

Xpv (rl,r l )p" (rz,rz) 

xexp [ - y' (r l - rz)z + ik(r l - r z)] 1 

2 k=O 

(S.2a) 
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xPV (r l ,r2 )pv (r2,r l ) 

xexp[ - L (r l - r2 )2 + ik(r l - r2 )] I 
2 k=O 

(5.2b) 

where S( 1) is a unit spin operator, and k is the independent 
vector generating parameter. The introduction of parameter 
k (Ref. 34) allows us to generalize the results of Sees. III and 
IV to spherically nonsymmetric potentials. 

The problem (5.2) will be solved if one finds analytic 
expressions for the integrals 

W1(y,k) = f f drldr2Pv(rl,rl)pv(r2,r2) 

xexp[ - ~ (r l - r 2 )2 + ik(r l - r2 )] , 

( 5.3a) 

Wri,(y,k) = f f drldr2Pv(rl,r2)pv(r2,rl) 

xexp[ - ~ (rl - r 2)2 + ik(rl - r 2)] , 

(5.3b) 

precisely up to the second order of infinitesimal k. Substitut­
ing in (5.3) the spatial density matrices represented as 
(3.11), one obtains 

xD(nv,Tv )D(nv,O'v) 

xexp[ - Y~vQ±Yvv + ikTZ±Yvv 

-..!.. kTZk] (5.4a) 
2 ' 

where Z ± are block row matrices 

Z ± = (z, ± z, - z, + z) , 

Z = E - 2q = B(B + yE) -I . 

(5.4b) 

(5.4c) 

Passing from the representation (5.4) which is based on 
the exponential generating function to the representation 
with the determinant generating function, one has to inte­
grate over Tv, 0' v , Tv' 0' v [see (4.5) ]. The presence of a term 
linear in Y vV within the subintegral exponent causes, accord­
ing to (3.13), enormously complicated calculations of ad­
joint matrix to Q ± . 

However, it can be noted that to solve the stated prob­
lem, one does not need exact analytic expressions for the 
integrals W,* ( y,k). The necessary precision 0 ( 1 k 13

) would 
be maintained, if within the exponent one replaces 

Really, the terms of odd order with respect to k disappear 
when integrated with an even weight function 
exp ( - Y~ Q ± Y vv ); and in the second order in k the Taylor 
series of the left- and right-hand side exponents of (5.5) co­
incide. By taking the structure of the matrices (3.12c) and 
(5.4b) into account one notices that an admissible expres­
sion for expq kT zk) w,* (y,k) can be derived by replacing 
in (3.12a) 

where the matrices Q ± (k) are to be obtained from Q ± 

replacing blocks 

q-+q(k) = q + zkkT 
Z. 

Making an analogous replacement in formula (4.11), we 
generalize (4.15) to 

+..!.. L [HI (Pvl + P5) + HI (Pvl + Pft) ][yE + (D + yE) -IBkkTB] 1- 1/2 IH
k

= 8 k =0 , 

2 1 

(5.6a) 

Wvi.(y,k) =exp [ - ~ k TB(B+YE)-lk]IBI I/2 

X~~IJLnK( - a~JLnVk( - a~J\~[(~ +HI)PVI+(++HI)PVI]\-I 

xIB+yE+ ~ [YE+(B+rE)-IBkkTB]{[~(~ +HI,)Pvl ' +(~ + Hr)PVl,r I 

+ [L (..!.. + Hr)P5' + (..!.. + H,,)p5,] -I _ 2E} \-11
2
\ ___ . 

I' 2 2 Hk-Hk-O 

(5.6b) 
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As a matter off act, we note that Eqs. (5.6) can be ob­
tained from (4.15) with the same precision of 0 ( 1 k 13

) by a 
simple substitution 

I T B -+ B - - Bkk B. 
Y 

So the direct and exchange tensor interaction integrals 
are written as 

3 ( a )2 fOO Wt~(Y) = -"4 S(1) ak y dy' W,:=,,(y',k)lk=O 

_HS(1»)2W~(y), (5.7) 

where the functions W vet (y,k) have been defined in (5.6). 
In the last section of the present paper the results of Sees. 

II, IV, and V are generalized to a more realistic situation 
when the potential magnitudes depend on the nucleon pair 
spin-isospin numbers; the cases of closed shells and regular­
ly filled open shells are considered in the symplectic and 
unitary nuclear models. 

VI. GENERATING KERNELS OF REALISTIC NUCLEAR 
HAMILTONIAN MATRIX 

Let the nucleon potential of a realistic Hamiltonian take 
a form of 

where Sand T are the nucleon pair spin and isospin, 

S = ~ (Sr) 2 _ ~ S2 
2 r2 2 

(6.lb) 

is the tensor operator, 9 s and 9 T are the projection opera­
tors. The results of Sees. II, IV, and V allow us to infer that 
the investigated Hamiltonian (without Coulomb interac­
tion) matrix elements between the generating invariants of 
the extended Sp(6,R) model take the form of 

(b;vIH Ib;u) = (b;vIT + Uc + Ut Ib;u) , (6.2a) 

(b;vl Uc Ib;u) 

= (b;vlb;u) I I W~,,(yc) 
g vV' 

I 

X I [ C f/~! t2i7 C 0;! D2T P 
S.T=O 

xgS+ T+ IW~S+ 1,2T+ I, (6.2b) 

(b;vl Ut Ib;u) = (b;vlb;u) 

= II (SO'+uIW~vV(Yt)ISO'+U)ls=1 
g vv 

(
3 -) ~ [CTr+i' ]22T+I X - + 0'0' ~ 112 r 112 i' W t , 
4 T=O 

(6.2c) 

where g is the interaction type symbol ( + 1 for the direct 
interaction, - 1 for the exchange one), {O'r} and {uf} are 
the spin and isospin projections of an in4ividual nucleon for 
the subsystems v and ii, respectively, C}':',..,j,m, is the Wigner 
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coefficient of the SU(2) group. The integrals W!,,(y) and 
W~vV(y) are defined by Eqs. (4.15) and (5.7). The matrix 
elements of the tensor interaction integrals between the unit 
spin basis states [see (6.2c)] may be calculated by means of 
the Wigner-Eckart theorem.35 Equations (2.16) and (2.17) 
indicate the way,!..,o obtain the matrix elements of the kinetic 
energy operator T. 

The calculations of the characteristics of the concrete 
nucleon system on the full basis of the extended symplectic 
model are expected to be an extraordinarily difficult prob­
lem. Nevertheless, one can often meet some applications of 
physical interest (for example, studies on magical nuclei, 
"breathing," quadrupole, and "presession" modes in de­
formed nuclei, nuclei with mixed shell configurations in the 
unitary model, and so on) where only separate details ofthe 
immense world of nuclear motion are observed in their 
brightest, exposed form. In such cases it is sufficient to em­
ploy only a part of the available basis, then Eqs. (6.2) be­
come simplified and make practical utilization easier. 

(A) The simplest problem in the framework of shell 
treatment seems to be the description of nuclei with closed 
nucleon shells (light magic, etc.). The potential energy oper­
ator includes only the central interaction. 

We make use ofEqs. (4.15). Then, using the summation 
formulas for generalized Laguerre polynomials,36 

I L k , (XI )Lk , (x2)Lk , (x3) = L! (XI + X2 + x 3) , 
k"k"k,;.O 

( 6.3a) 
n 

I L~(x)=L~+I(X), (6.3b) 
k=O 

we note that 

(6.4) 

where N v is the subsystem v upper shell number connected 
with the total numbers of quanta by the relation 

• = (Nv +3)! k=TI 
Jvk (N

v 
- 1)!3!' , . 

Redefining the generating parameters 

H =! + 1(HI + H2 + H 3), 

hi =HI -H2,h3 =H2 -H3' 

one notes that 

~ ~(~ + HI) (PvI +P~) 
=HE+!hl(Pvl +P~) -!h3(PV3 +P~) 

(6.5a) 

-1 (hi - h3 )E, (6.5b) 

a a a a -+-+-=-. (6.5c) 
aHI aH2 aH3 aH 

Substituting (6.4), (6. 5b), (6. 5c) into (4.15a), one obtains 
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w-t(y) = IBII/2L3 (_~)L3(_ ~) 
vv N" aH N" aH 

- -1/2 xIB+y(H+H)EI IH~ii~1I2' 

Finally we pass to one generating parameter H + il-Hand 
derive using (3.14): 

w+( )-L 3 (_~)L3 (-~) 
"v Y - N" aH N" aH 

( 
11 )1121 

X (1 + yH)311(yH) H~ I . 

(6.6a) 

Similarly, an answer for the exchange integrals follows from 
(4.15b): 

- _ 3 (_~)L3 (_~) w "v(y) -LNv aH N" aH 

x- . (6.6b) 1 ( !l. )1121 
H3 (1 + yIH)3!l.(yIH) H~ I 

Equations (6.6) reproduce the result for closed nuclear 
shells in the Sp (6,R) model obtained by Vasilevsky et al.5 It 

I 

where the symboll:~" means a summation only with respect 
to occupied states of the open shell of the subsystem v. Note 
that in the scope of the conventional Sp(6,R) model the 
integrals of direct and exchange interaction are defined by 
the similar expressions, contrary to the extended model 
where the calculation of the exchange integral is much more 
difficult [cf. (4.14)]. 

By annihilating all elements of the collective generator 
coordinate matrices band b, except bll and bll , the Sp( 6,R) 
generating kernels are reduced to the Sp (2,R) limit of Filip­
pov et al.37 

The conventional Sp(2,R) model, or, that is the same, 
"the stretched Sp( 6,R) approximation," 10.12 is used to de­
scribe the longitudinal quadrupole vibrations. 

(C) The light and medium weakly deformed nuclei ad­
mit the SU (3) model description I of the low-energy spec­
trum region. The Hamiltonian matrix elements in the ex­
tended SU (3) model are obtained by annihilating the 
matrices band b in Eqs. (6.2) and subsequent projecting 
onto the states with fixed angular momentum value. 

The expressions for the direct and exchange integrals in 
the unitary model are much simpler than in the symplectic 
model. This circumstance makes it possible to apply the ex­
tended SU (3) model as a first approximation in studying 
nuclei with the horizontal mixture of the open nucleon shell 
configurations. 
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is seen that the Hamiltonian matrix elements in this case do 
not depend on the oscillator repers uv ' Vv orientation, re­
flecting the symmetry inherent to the situation. 

(B) The structure ofthe light and almost magic medi­
um nuclei is often defined by the regularly occupied nucleon 
shells. An admissible quantitative description of such nuclei 
is achieved in the standard Sp(6,R) model. The Hamilto­
nian matrix elements on Sp(6,R) irrep coherent states can 
be obtained from corresponding formulas for the extended 
model by passing to reper matrices U and V universal for all 
subsystems. Then instead of six generating parameters only 
three are necessary: 

I + Hk + ilk -Hk, k = T,3 . 
As a result of the condition (3.10), we can justify the matrix 
identity 

( )

-1 1 
IHIPI =I-PI . 

I I HI 
Utilizing the identity together with summation formulas 
(6.3), we pass from (4.15) to expressions for the direct and 
exchange integrals in the Sp(6,R) model: 

(6.7) 

I 
VII. CONCLUSION 

In the present paper the extended version of the sym­
plectic and unitary nuclear models is proposed, in the frame­
work of which one can develop consistent microscopic re­
search of the nucleon systems with an arbitrary occupation 
of the valence shell. We have considered the structure of the 
extended Sp( 6,R) model coherent states generating the ba­
sis of many-particle oscillator functions and constructed the 
microscopic Hamiltonian (including central and tensor nu­
cleon interaction) matrix elements between these states. 

The application of the symplectic model with horizontal 
mixture appreciably broadens the group of questions in the 
microscopic theory of collective motion of nucleon systems 
to be investigated (note that the results of the present paper 
may also be generalized to the other many-body quantum 
systems with characteristic shell structure, for example, 
atomic ones). 

The possibility is provided to study the dynamics of pas­
sages between the different shell configurations of valence 
nucleons, the influence of these passages on atomic nuclei 
shape and spectra. 

The extended unitary model is accomodated to describe 
the low-energy region of the spectrum. The comparative 
simplicity of the model enables us to expect a greater number 
of analytic results of its utilization, for example, the con­
struction of effective nuclear Hamiltonians. It seems possi-
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ble to apply the unitary model to microscopic substantiation 
and correction of the phenomenological nuclear shell theory 
predictions, for example, the shell state occupation 
scheme?O.31 We note that the model indicated realizes a mi­
croscopic approach to describe the same processes as the 
interacting proton and neutron boson model with a dynami­
cal symmetry group SU (6) ® SU (6) proposed by Otsuka, 
Arima, and Iachell038 for even-even nuclei. Therefore the 
extended unitary model may be transformed in order to pre­
dict microscopic values of the interacting boson model pa­
rameters and to estimate the calculational precision of the 
model. 

The determinant form of the Hamiltonian matrix ele­
ments obtained in the paper allows a generalization to higher 
dimension models, Sp (2d,R) and SU (d), d> 3. These mod­
els may be useful in studies of unified, both collective and 
intrinsic, nuclear dynamics. 
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Radiative transfer theory for inhomogeneous media with random extinction 
and scattering coefficients 
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The small-angle scattering approximation of the scalar radiative transfer equation is examined 
in the case where the extinction and scattering coefficients have a component that is a 
deterministic function of position along the propagation path and a component that is a 
random function of position transverse to the propagation direction. It is found that the 
resulting stochastic radiative transfer equation can be reduced to a system of two stochastic 
integrodifferential equations for the average and fluctuating components of the radiant 
intensity. The system is solved to yield two transfer equations: one that describes the average 
radiant intensity and one that describes the spatial correlation function of the intensity 
fluctuations. The integrodifferential equation for the average intensity is then solved and 
applied to a simple propagation scenario; it is found that the fluctuations in the extinction and 
scattering coefficients reduce the effects due to the average values of these parameters, and also 
that the effect of these is greater near the point of observation than near the point of 
transmission of the radiation. An approximate solution is also derived for the equation giving 
the correlation function. The equations developed here should find application in problems 
involving short wavelength electromagnetic wave propagation through media possessing 
variable characteristics of turbulence and turbidity, such as in plasmas, the atmosphere, and 
the ocean. 

I. INTRODUCTION 

Radiative transfer theory, which deals with the propa­
gation of "intensities" (i.e., photometric intensity, neutron 
flux intensity, etc.) began as a phenomenological theory 
based on observations of light propagation in foggy atmo­
spheres published by Schuster in 1905. 1 Since that time, ra­
diative transfer theory and its attendant equation, the radia­
tive transfer equation (RTE), have gradually been put on a 
more rigorous basis2 and have found application in several 
diverse areas such as atmospheric and underwater visibil­
ity,3 optics of papers and photographic emulsions,4 and the 
propagation of radiant energy in turbulent plasmas,5 plan­
etary atmospheres, stars, and galaxies. 6 Also, because the 
RTE is equivalent to the Maxwell-Boltzmann collision 
equation used in the kinetic theory of gases, it has also been 
applied to many problems in kinetic theory 7 and in neutron 
transport theory. 8 

Until very recently, in all of the applications of the var­
ious forms of the RTE, an important aspect seems to have 
been overlooked that can be characteristic of many propaga­
tion problems: in particular, many random propagation me­
dia that are characterized by quantities (in general, func­
tions of some random process, e.g., scattering and 
absorption) that can themselves be random quantities, the 
statistics of which are spatially inhomogeneous throughout 
the medium. The significance of this circumstance seems to 
have first been noted by Levermore and co-workers9

•
10 and 

Vanderhaegen 11.12 in the analysis of transport processes in 
random binary mixtures. 

The random nature of the scattering media, usually 
characterized in transfer theory by spatial averaged extinc­
tion and scattering coefficients, may be such that these coef-

ficients themselves are random functions of position and 
thus also have spatially fluctuating components that can be 
characterized by prevailing statistical parameters. For ex­
ample, in the case of imaging through atmospheric aerosols, 
the concentration of the aerosols can have significant vari­
ation across the propagation path, thus adding a fluctuating 
component to the average extinction and scattering coeffi­
cients that would normally be used in the RTE. Or, in the 
case of neutron propagation through bulk media, the media 
may have some random distribution of scattering character­
istics that can give rise to a scattering coefficient character­
ized by a spatial average over the media with a spatially vary­
ing component. The same scenario can be envisioned in the 
case of turbulent plasmas. Such circumstances suggest that 
one should consider the various forms of the RTE with ex­
tinction and scattering coefficients that are random func­
tions of position in the propagating medium and modify 
these forms accordingly. 

It is the purpose of this paper to introduce stochastic 
extinction and scattering coefficients into one form of the 
RTE, viz., the well known small scattering angle approxima­
tion, which finds use in atmospheric and underwater image 
propagation as well as propagation in turbulent plasmas. 
The treatment given here is a more general analysis of a more 
restricted form of the R TE equation than given in the work 
cited above. 9

-
12 In Sec. II, Gaussian random functions are 

introduced into the RTE for the extinction and scattering 
coefficients and the resulting stochastic RTE is reduced to a 
system of two stochastic integrodifferential equations that 
describe the average and fluctuating parts of the radiant in­
tensity. Transfer equations are then obtained in Sec. III that 
describe the propagation of the average in tensity and a statis­
tic of the random intensity, i.e., the spatial correlation func-
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tion of the intensity, where the statistics of the propagation 
parameters are given by spatial correlation functions of ex­
tinction and scattering that are taken to have a 8-function 
component in the direction of propagation. These transfer 
equations are then solved in Sec. IV; an exact solution is 
obtained for the average intensity, the properties of which 
are expounded upon, and an approximate solution is derived 
for the intensity correlation function. Finally in Sec. V, it is 
discussed how this stochastic approach to radiative transfer 
theory can be applied to situations more general than those 
described by the assumptions made here (i.e., Gaussian sta­
tistics of the random extinction field and 8 correlation in the 
propagation direction) and to less restricted forms of the 
RTE. 

II. DEVELOPMENT OF A STOCHASTIC RADIATIVE 
TRANSFER EQUATION FOR SMALL SCATTERING 
ANGLES 

In an inhomogeneous medium void of volumetric 
sources, a radiance distribution function (specific intensity) 
I(R,n) at a point R in the medium describing transfer in a 
direction specified by the unit vector n is described by the 
general form ofthe RTE, viz., 

n·Vl(R;n) + E(R)I(R;n) 

= i as (R;n;n')I(R;n')dOJ, 
4" 

(2.1 ) 

where E(R) is the position dependent extinction coefficient 
and as (R;n,n') is the position-dependent generalized vol­
ume scattering cross section normalized such that 

i as (R;n,n')dOJ = 1, (2.2) 
4" 

where dOJ is an element of solid angle subtending the scatter­
ing angle defined by nand n'. The scattering cross section is 
related to the more fundamental scattering coefficient a(R) 
and the scattering phase functionj(o,o';R), also taken to be 
position dependent, through the relationship 

as (R;o,o') = a(R)j(0,0';R)/41T. (2.3) 

Considering highly anisotropic scattering cases where the 
scattering takes place predominantly in the small solid angle 
about the direction 0, in particular, when the condition 

n=i fas(R;o,o')dOJ~I, y=cos-1(0·0'), (2.4) 
4" 

is satisfied, one can expand the unit vector 0 into its perpen­
dicular component 01 and its longitudinal component nz , 

where nz ~ 1 since 

nz = y(1-10112):::::1-loJ 12/2~1 

because 1011 is small. Upon further assuming that one can 
write 

j(o,o';R) = j(01 - o~;R), 

and noting that this function gives an appreciable contribu­
tion to the integrand on the right side of Eq. (2.1) only for 
101 - o~ I ~ 1, Eq. (2.1) can be transformed to its small-an­
gle scattering form, i.e., 
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00 

= II as (r,z; 101 - o~ I )1(r,z;nl )do~, (2.5) 

where R is decomposed into its transverse and longitudinal 
components, rand z, respectively. This form of the RTE, 
along with its prevailing assumptions, finds considerable ap­
plications in problems involving electromagnetic wave prop­
agation in random media. 

Let c(r,z) and a(r,z) be random functions that are tak-
en to be written in the form 

c(r,z) = (c(z» + E'(r,z), (c(r,z» = 0, 

a(r,z) = (a(z» + o-(r,z), (a(r,z» = 0, (2.6) 

(c(z», (a(z» > 1E'(r,z) I, Io-(r,z) I, 

where the ensemble averages ( ... ) are deterministic func­
tions only of the longitudinal coordinate z, and the fluctuat­
ing parts, E'(r,z) and o-(r,z), are zero-mean Gaussian ran­
dom functions only in the variable r but can also have 
deterministic factors in the coordinate z. Substituting Eq. 
(2.6) into Eqs. (2.5) and (2.3) and rearranging terms yields 
the relationship 

fRl = '01, (2.7) 

where fR and '0 are, respectively, the deterministic and sto­
chastic radiative transfer operators defined by 

fRl= [! + 0l,Vr + (E(Z» ]1 
00 

-II (as(z;101-0~1»I'do~ (2.8) 

and 
00 

'01 = - E'(r,z)1 + I I 0-s (r,z; 101 - o~ 1)1' do~, (2.9) 

where 1=I(r,z;ol) and I'=I(r,z;o~). Averaging Eq. (2.7) 
and noting the deterministic nature of the operator fR simply 
gives 

fR(1) = ('01), (2.10) 

the formal solution of which yields the average intensity (I) 
and can be taken to define that quantity. Decomposing the 
total intensity into its average and fluctuating components, 
viz., 

l(r,z;01) = (I(r,z;01» + I(r,z;ol)' (2.11 ) 

and substituting this expression into Eq. (2.7), averaging, 
and using Eq. (2.10) yield the fact that fR(7 > = 0 and thus 
(7) =0. 

It now remains to develop an expression for the random 
part of the total intensity, viz., I(r,z;01)' that together with 
Eqs. (2.10) and (2.11 ) will give a closed system of equations 
for the problem. Solving Eq. (2.11) for I, applying the opera­
tor fR to the result, averaging, and employing Eqs. (2.7) and 
(2.10) yield 

fRI = '01 - ('01). (2.12) 
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Consider now the term (::SI). Substituting Eq. (2.11) into 
Eq. (2.9), averaging, and using the fact that 
(£'(r,z» = (u(r,z» =O,onefindsthat(~I) = (~7).Thus 

fR7=~I-(~7). (2.13) 

Equations (2.10) and (2.13) form a system of stochastic 
integrodifferential equations that collectively form the sto­
chastic radiative theory to describe propagation problems in 
situations where the extinction and scattering coefficients 
are Gaussian random functions. The system of equations 
(2.10) and (2.13) can be solved for (I) and 7; in the latter 
case, since 7 is a random function, one can only obtain ex­
pressions of the various statistical quantities that govern the 
intensity fluctuations. This forms the subject of the following 
section. 

III. SOLUTION OF THE SYSTEM OF STOCHASTIC 
INTEGRODIFFERENTIAL TRANSFER EQUATIONS 

A. Transfer equation for the average intensity 

The solution of the system of equations commences with 
the first equation, i.e., Eq. (2.10), which, written out in full, 
is 

[! + n1 -Vr + (c(z» ] (I(r,z;n1 » 

"" 
- II (US(z;IOl-n~I»(I(r,z;o~»do~ 

- (i'(,,zll(,,z;., l 

+ I[ US (,,z;\n, - n; \)1(, ,z;.; ldn) (3.1 l 

Since no random function in the variable 01 has been ad­
mitted into the problem, it is permissible to apply the Fourier 
transform in this variable to the equation. Thus, defining 

"" 
(J(r,z;q» = II (I(r,z;Ol) )exp( - iq-Ol ) dOl , 

"" 
J(r,z;q) = I I7(r,Z;01 )exp( - iq-Ol ) dOl , 

Eq. (3.1) becomes 

[i. + iVr~ + (c(z»] (J(r,z;q» az aq 
- (~s (z,q» (J(r,z;q» 

= (~(r,z;q)J(r,z;q», 

where 

2434 

~(r,z;q) = - £'(r,z) + ~s(r,z;q), 
(~s(z;q» = (u(z»P(q,z), 

~s(r,z;q) = u(r,z)P(q,z) , 

"" 
P(q,z) = 4~ II f(n1 ,z)exp( - iq-Ol )d01 · 
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(3.2) 

(3.3 ) 

(3.4 ) 

Since £' and ~s are Gaussian random functions, so, too, is ~. 
One can now employ the Novikov theorem 13 to evaluate the 
product (~(r,z;q)J(r,z;q». This theorem states that for a 
zero-mean Gaussian random function feR) and a corre­
sponding functional G[f], 

(f(R)G [f]) = f"" .. ·f"" (f(R)f(R'»(~)dR" 
- "" - "" c5f(R') 

where c5!c5f(R') is a variational derivative and the integra­
tion is taken over the entire space that defines R. It is at this 
point where the statistics that govern ~ enter into the prob­
lem. In the case of the right-hand member of Eq. (3.3), ap­
plication of the theorem gives 

(~(r,z;q)J(r,z;q» = I I I B", (r,r';z,z';q,q') 

where 

x ( ~J(r,z;q) )dr' dz' dq', 
c5~(r',z';q') 

B", (r,r';z,z';q,q') = (~(r,z;q)~(r',z';q'» 

(3.5) 

is the spatial correlation function of the linear combination 
of the random propagation parameters. As shown in Appen­
dix A, for a statistically homogeneous (in the coordinate r) 
correlation function of ~ that has a c5-function component in 
the longitudinal z direction, and with the help ofEq. (2.13), 
one finds that 

(~(r,z;q)J(r,z;q» = A", (O,z;q) (J(r,z;q», (3.6) 

where A", (r - r',z;q) is the two-dimensional (transverse) 
correlation function related to the full three-dimensional 
one, i.e., B", (r - r',z - z';q,q'), via 

A", (r - r',z;q,q') = SoL B", (r - r',z - z';q,q')dz', 

(3.7a) 

where 

A", (r - r',z,z';q,q') 

= Au (r - r') - AEU (r - r')P(q' ,I') 

- Au£ (r - r')P(q,z) + Auu(r - r')P(q,z)P(q',z'), 
(3.7b) 

with 

A", (r - r',z;q,q') ;;:A", (r - r',z,z;q,q') 

and 

A", (r - r',z;q) ;;:A", (r - r',z;q,q) 

which relates the two-dimensional correlation of the com­
posite random function ~ to those of the fundamental extinc­
tion and scattering parameters. 

It is very important to note that use of the c5-correlation 
assumption, as pointed out in Appendix A, places specific 
requirements on the spatial extent and level of the fluctu­
ations £'(r,z) and u(r,z); in particular, letting 10 and Lo de­
note, respectively, the smallest and largest spatial extent of 
the fluctuations, and letting k = 217"/..1 be the wave number 
of the wave field of wavelength A, sufficient conditions to be 
satisfied are A ~ '0 , L ~ Lo, ..1a ~ 1, and 

«(£'(r,z»)2),«(u(r,zW) ~ l!(kLo), 
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where L is the total length of propagation and a is the coeffi­
cient of absorption, a = (c) - (0'). 

ty field that results from the extinction and scattering pa­
rameter fluctuations incorporated in the volume scattering 
factor H¢ (r - r',z;ln1 - n~ I), which is given by Substituting Eq. (3.6) into Eq. (3.3) gives an equation 

closed in the quantity (J(r,z;q». Taking the inverse Fourier 
transform of this equation yields a radiative transfer equa­
tion for the average radiant intensity, viz., 

00 

H¢ (r,z;n1) = (2~ YI I A¢ (r,z;q)exp(in1·q)dq. (3.9) 

[~ + n1 ,Vr + (c(z» ] (I(r,z;n1 » Before discussing the solution ofEq. (3.8), Eqs. (2.10) and 
(2.13) will now be solved to give a relation, companion to 
that of Eq. (3.8), governing the correlation of the intensity 
fluctuations 1. 

00 

-I I (us (z; In1 - n~ I» (I(r,z;n~ ) )dn~ 

00 

= II H¢(O,z;ln1-n~I)(I(r,z;n~»dn~, (3.8) 

B. Transfer equation for the correlation of the intensity 
fluctuations 

where the source term is the scattering of the average intensi-

The second equation of the system obtained in Sec. II is, 
upon using the definitions of Eqs. (2.8) and (2.9) in Eq. 
(2.13 ), 

00 

[:z + n1 .Vr + (c(z» ]I(r,z;n1 ) - I I (us (z;ln1 - n~ I) )I(r,z;n~ )dn~ 

00 

- .s(r,z)I(r,z;n1 ) + I I Us (r,z;ln1 - n~ I )I(r,z;n~ )dn~ + (.s(r,z)I(r,z;n1 ) - I I Us (r,z;ln1 - n~ I )I(r,z;n~ )dn~). 

(3.10) 

As was done with Eq. (3.1), this equation can be Fourier transformed with respect to the variable n1. Thus, remembering the 
definitions ofEq. (3.2), one can transform Eq. (3.10) and rearrange terms to obtain 

aJ(r,z'q) aJ(r,z;q) - - -------'-', ~= - iVr • + (tP(z;q»J(r,z;q) + tP(r,z;q)J(r,z;q) - (tP(r,z;q)J(r,z;q», (3.11) 
az aq 

where, in addition to the quantities already defined, 

(tP(z;q» = - (c(z» + (~s(z;q». 
The formal solution ofEq. (3.11) is a random function and it is therefore desired to obtain some statistical characterization of 
it, e.g., the correlation function 

BJ (r l,r2;z;ql,q2) = O(rl,z;ql)J(r2,z;q2»' 

To get an expression for this function from Eq. (3.11), one writes Eq. (3.11) in the variables r, and ql' multiplies the resulting 
equation by J(r2,z;q2), and adds to this result an identical equation with the subscripts Ofrl and r2 and those of q, and q2 
interchanged. Writing the total Fourier transformed intensity in terms of its average and fluctuating parts, i.e., 
J(r,z;q) = (J(r,z;q» + J(r2,z;q2)' this entire result can be simplified to give 

aB(r"r2;z;q"q2) _ i[Vr : ~ + Vr,' ~]BJ (r"r2;z;q"q2) + (tP(z;q,» + (tP(Z;q2» )BJ (r"r2;z;ql,q2) 
az aq, - aq2 

+ (~(rl,z;ql )J(r2,z;q2» (J(rl,z;ql» + (~(rl,z;ql )J(rZ,z;q2)J(rl,z;ql» 

+ (~(rZ,z;q2)J(rl,z;ql» (J(rZ,z;q2» + (~(r2,z;q2)J(rl,z;ql )J(r2,z;qz». (3.12) 

One must now find expressions for the ensemble averages of the products that appear in the last four terms ofEq. (3.12). 
As shown in Appendix B, one can derive the following relationships making use of the Novikov theorem and the results of 
Appendix A: 

(~(rl,z;ql )J(rZ,z;q2» = A¢ (r l - r2,z;ql,q2) (J(r2,z;q2»' (3.13) 

(¢(rZ,z;q2)J(rl,z;q2» = A¢ (rz - rl,z;qz,ql) (J(rl,z;ql»' 

(~(rl,z;ql )J(r2,z;q2)J(rl,z;ql» = [A¢ (r l - r2,z;ql,q2) + A¢ (O,z;ql) ]BJ (r l,r2;z;ql,q2)' 

(~(r2,z;q2)J(rl,z;ql )J(r2,z;q2» = [A¢ (r2 - r l,z;q2,ql) + A¢ (O,Z;q2) ]BJ (r l,r2;z;ql,q2)' 

(3.14) 

(3.15 ) 

(3.16 ) 

If, in addition to the assumption introduced earlier of homogeneity of the statistics of ¢, one admits the additional assumption 
that isotropy (in the coordinate r) prevails, i.e., A¢ (r2 - r l;z;q2,ql) = A¢ (r l - r2;z;ql,q2), one obtains, after substitution of 
Eqs. (3.13)-(3.16) into Eq. (3.12) and a rearrangement of terms, 
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[~ + i(Vr, 0 ~ + Vr,"~) + 2(E(z) >]BJ az aq, aq2 
= (~S(Z;q) > + (~S(Z;q2» )B, + [A~ (O,z;q,) + 2A~ (r, - r2;q"q2) + A~ (0,Z;q2) ]BJ 

+ 2A~ (r, - r2;z;q"q2) (J(r"z;q,» (J(r2,z;q2»' (3.17) 

It is now desired to relate the correlation function B J to that of the intensity fluctuations 

BI = BI{r"r2;z;nll ,n12 ) =: (1(r"z;nll )1(r2,z;n12 »· 

From the second relationship ofEq. (3.2) and the definition of the correlation function B J, one has the Fourier transform pair 

'" 00 

B J (r"r2;z;q"q2) = f f f fBI (r"r2;z;nll ,n12 )exp( - iq,onll - iq2on12 )dnll dn12 , 

00 00 
(3.18 ) 

BI(r"r2;z;nll ,n12 ) = (2~ tf f f f BJ (r"r2;z;q"q2)exp(iq,onll + iq2on12 )dq, dq2 

that exists between the correlations of J(r,z;q) and the random intensity component l(r,z;q). Thus applying the inverse 
transform of Eq. (3.18) to Eq. (3.17) yields a transfer equation that governs the correlation of intensity fluctuations, viz., 

00 

[! + nll oVr, + n12 oVr, + 2(E(z» ]BI - f f (us (z;lnli - n~, I) )BI (n~, )dn~, 

00 00 

- f f (us (z;lnn - n~21) )B(n~2 )dn~2 - f f H~ (O,z;lnli - n~, I )BI (n~, )dn~ 

00 00 00 

- 2 f f f f H~ (r, - r2,z;lnli - n~,I, In12 - n~21 )BI(n~, ,n~2 )dn~, dn~2 - f f H", (O,z;ln12 - n~21 )BI(n~2 )dn~2 

00 00 

= 2 f f f J H", (r, - r2'z; Inll - n~, I, lou - n~21) (I(n~l » (I(n~2 ) )dn~, n~2' (3.19 ) 

where, for the convenience of notation, BI(n~\) 

=:BI (r"r2;z;nI, ,n12 ), etc., and (l(nI,» =: (I(r\,z;nI, », 
etc.,H",(r-r',z;lnl -n~l) is as given in Eq. (3.9) and 

H", (r, - r2,z;nll ,n12 ) 

00 00 

= (2~ tJ J J J A",(r1 - r2,z;q"qz) 

(3.20) 

The interpretation ofEq. (3.19) is straightforward; the 
second and third members on the left side of the equation 
describe the average contributions of the scattering into the 
direction nll and nn, respectively; the fourth and sixth 
members describe the contribution that the fluctuations of 
extinction and scattering have on radiation propagating into 
the directions nll and 0 12 , respectively; and the fifth member 
gives the effect of the cross correlated fluctuations at two 
points r, and rz of the extinction and scattering on propaga­
tion into the directions n11 and n12 . The source term of Eq. 
(3.19) is the cross-correlated fluctuations of scattering and 
extinction at r, and r2, due to the average fields (l(r"z;nl» 
and (1(r2,z;n~2»' into the directions nll and n12 . 
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IV. SOLUTION OF THE TRANSFER EQUATIONS FOR 
THE AVERAGE INTENSITY AND THE CORRELATION 
FUNCTION OF THE ASSOCIATED FLUCTUATIONS 

The solution to Eq. (3.8), the stochastic transfer equa­
tion for the average radiant intensity, is straightforward. '4 

Fourier transforming the equation with respect to the vari­
ables rand n 1, solving the resulting first-order differential 
equation via the method of characteristics, '5 employing Eq. 
(3.7b), and rearranging terms yield 

F(K,L;q) 

= F(K,O;q + tc.L)exp [ - SoL {(£(z» - ACE (O,z)}dz 

+ SoL {(O'(z» - 2Aeu (O,z) }P(q + K(L - z),z)dz 

+ SaL Auu (0,z)P 2(q + K(L -Z),Z)dZ], (4.1 ) 

where 
00 00 

(I(r,z;nl » = (2~ )J J J J F(K,Z;q) 

xexp(iKor + iqoOl )dK dq (4.2) 
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and L is the total propagation distance in the turbulent medi­
um. As can be easily seen from this solution, the form is 
analogous to that of the well nonstochastic small scattering 
angle case, and thus possesses the same overall properties, 
but with some obvious differences in its composition. The 
first two terms in the exponential of Eq. (4.1) indicate that 
the random fluctuations of the extinction and scattering 
within the medium, characterized by the two-dimensional 
correlation functions AEE and Aw , tend to negate the effects 
presented by the attendant average quantities, i.e., (E(Z» 
and (O"(z». The implications that this has on particular 
propagation problems are specific to those problems and will 
be left to future investigations dealing with these specific 
problems. However, a simple generic example will be given 
here that demonstrates the implications that result due to the 
two major aspects that have been incorporated into the pres­
ent theory, i.e., ~he random fluctuations of the extinction and 
scattering parameters and the variations of these parameters 
along the longitudinal propagation path. 

At the outset, consider, instead of the radiant intensity, 
the illumination distribution S(r,z) at a point r a distance Z 

from the source. In the case, for example, of a narrow direc­
tional beam of electromagnetic radiation undergoing strong 
anisotropic scattering, which is that assumed to prevail in 
the small scattering angle case here, one has 

S(r,z) = r (I(r,z;nl ) )cos(nl"n)dn 
J41T 

00 

::::: f f (I(r,z;nl ) )dnl , (4.3) 

where n is an element of solid angle centered at r extending 
toward the source. Applying this to Eq. (4.2) gives 

00 

S(r,z) = (2~ Yf f F(K,z;O)exp(iIC'f)dK. (4.4) 

Thus one now need only consider the simpler case of Eq. 
( 4.1) evaluated at q = 0 and still have a physically meaning­
ful quantity. 

Let the scattering and extinction take place along a frac­
tionallength 11 of the propagation path that begins at some 
intermediate point Zo and let (E(z» and (O"(z» as well as 
the fluctuations in these quantities, represented by the two­
dimensional correlation functionsAij (O,z), iJ = E,O", be con­
stant over the length 11. Such a distance can be modeled by 

(E(Z» = (E)t(Z), (O"(z» = (O")t(z), 

Aij (O,z) = Aij (O)t(z), ( 4.5) 

t(z) = 8(z - zo) - 8(z - (zo - 11»), 

where 8 (z) is the Hea viside function and, by construction of 
the problem, 0 < Zo < L - 11, where the origin is taken to be 
placed at the source of radiation. Applying these restrictions 
and Eq. (4.5) to Eq. (4.1) yields 

F(K,L;O) = F(K,O;KL)exp [ - (E)11 + Aee (0)11 

{z,> + to 
+ {(O") - 2A EU (O)} Jz P(K(L - z»)dz 

z,> 

iZ,>+to ] 
+Auu(O) p 2(K(L -z»)dz. (4.6) 

z,> 

Let the scattering phase function/(nl ,z) also be constant in 
the region 11 and, to keep the problem simple, let it be given 
by'6 

/(nl ) = 4ap Wo exp( - apni), (4.7) 

where Wo is the single particle albedo and ap:::::D 2/ A 2 for a 
particle of diameter D scattering radiation of wavelength A. 
Substituting Eq. (4.7) into the last relation of Eq~ (3.4) and 
evaluating the integral in the polar plane ofnl gives 

P(q) = Woexp( _q2/4ap ). (4.8) 

Substituting Eq. (4.8) into Eq. (4.6) and performing the 
integrals yield the result 

F(K,L;O) = F(K,O;KL)exp [( - (E) + Aee (0»)11 + (foW o/2C, (K»){( (0") - 2AEU (0) )(<<I>(C, (K)(L - zo)) 

- «I>(CI (K)(L - Zo - 11»)) + (WOCI (K)/C2 (K) )Auu (0)(<<I>(C2 (K)(L - zo») - «I>(C2 (K)(L - Zo - 11)))}] , 
(4.9) 

where «1>(",) is the error integral, C, (K) =K/(2y a p )' and C2 (K) =K/Y (2ap )' Two extreme cases of this situation will now 
be considered where K;>O as well as CI , C2 ;>0 is assumed. 

Taking Zo = 0 places the scattering layer at the source of the radiation and, when the condition L;> 11 prevails, one finds, 
by the fact that «1>("') -1 for large values of its argument, that Eq. (4.9) becomes 

F(K,L;O) = F(K,O;KL)exp[( - (E) + Aee (0»)11], (4.10) 

showing that only the K-independent extinction modifies the propagating spatial spectrum F(K,L;O). However, at the other 
extreme where 11 = L - zo, i.e., where the scattering layer is at the point of observation, Eq. (4.9) becomes 

F(K,L;O) = F(K,O;KL)exp [( - (E) + Aee (0»)11 + (foWo/2C, (K») 

(4.11 ) 

which shows the large effect on the modification of the spectrum F(K,L;O) which, via the relation ofEq. (4.4), indicates that 
the illumination distribution is broadened. Thus, as is well known, the scattering layer has its strongest effect when the layer, 
in particular, the fluctuations Aij of the scattering parameters, is close to the point of observation. 

The solution of Eq. (3.19) is not so straightforward and an approximate expression will be derived. The form of Eq. 
(3.19) is not amenable to the Fourier convolution solution that was applied to Eq. (3.8) due to the presence of the term r I - r2 
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in the arguments of two of the H", factors. However, if one limits the desired solutions to those values ofrl and r2, where r l, 
r2 <Pc, where Pc is the characteristic length scale of the fluctuations Aij' one can assume that 
H", (r - r/,z;jnl - nr j) ::::;H", (O,z;jn1 - nr j) thus lending to Eq. (3.19) a solution (albeit, an approximate one) via Fourier 
convolution and the method of characterisics as used earlier. The result is 

G(ICI,1C2;L;qlOq2) = 2 SaL A",(O,Z;ql(Z),q2(Z»)(F(ICI,Z;ql(Z»)(F(1C2,Z;q2(Z))) 

xexp[ - i L

{2(E(Z'» - (O'(Z'»(P(ql(Z'),z') + P(Q2(Z'),Z')) 

- (A", (O,z';QI (z'») + ZA",(O,Z';QI(Z'),Q2(Z'») +A",(O,Z';Q2(Z'»))}dz']dz, (4.12 ) 

where 

with Ql (z) = Ql + IC I (L - z) and similarly for Q2' The prop­
erties of this solution will not be dealt with here; its analysis 
would be greatly facilitated if the form of the correlation 
functions Aij is known, which, of course, is specific to the 
particular propagation problem. 

V. LIMITS OF APPLICABILITY OF THE RESULTS AND 
THEIR POSSIBLE EXTENSION 

Summarizing the assumptions made throughout the 
foregoing, the results obtained here hold for scattering me­
dia characterized by overall propagation parameters that are 
taken to be zero-mean Gaussian random variables that are D­
correlated in the direction of propagation and propagation 
situations that are described by the small-angle scattering 
approximation to the radiative transfer equation and, of 
course, satisfy the restrictions attendant in the use of D corre­
lation. Such scenarios are applicable to many propagation 
problems. There are, however, two major extensions that 
can be made to the theory. The first logical step would be to 
apply the small-angle scattering formulation, i.e., Eq. (2.5), 
to situations where the medium fluctuations are governed by 
arbitrary statistics rather than the special Gaussian case con­
sidered here. This, of course, prohibits the use of the Novi­
kov theorem and requires the use of an approach based on 
characteristic functionals of the propagation statistics. Re­
tention of the assumption of the D-correlatedness of the me­
dium fluctuations could be justified since the requirements 
of the small-angle formulation are a subset of those of D cor-

I 

B", (r,r';z,z';Q,Q') = B",(r - r',z,z';q,q') 

(4.13 ) 

relation. This will form the subject of a future publication. 
The second extension would be to employ the full form 

of the radiative transfer equation, i.e., Eq. (2.1), in a similar 
analysis. One would necessarily need to use an approach 
different to the one given here since the use of the causality 
condition, employed in Appendix A, Eq. (A4), which great­
ly facilitated the analysis there, is no longer valid. In fact, 
questions of causality in general could be expected to ham­
per such a development. It is possible to simply introduce 
stochastic descriptions of extinction and scattering coeffi­
cients into the well known treatments of Eq. (2.1) in an 
analysis involving characteristic functionals. This, however, 
will require further investigation. 

APPENDIX A: DERIVATION OF EQ. (3.6) 

The evaluation of the Novikov theorem in this case is 
facilitated by first applying the realistic assumptions that 
( 1) statistical homogeneity in the spatial coordinate r of (p 
prevails and (2) that the resulting correlation function is D­
correlated in the longitudinal z direction. The latter assump­
tion places restrictions on the fluctuations of the medium. 17 

These conditions, which are sufficient ones, are A ~ 10 , 

L>Lo, Aa~ 1, and «(€(r,z) )2),«(tT(r,z) )2) ~ l!(kLo), where 
a = (E) - (0') is the coefficient of absorption, L is the total 
distance of propagation, Lo is the largest spatial extent of the 
fluctuations (sometimes called the outer scale), 10 is that of 
the smallest spatial extent (sometimes called the inner 
scale), and k is the wave number, k = 21T/A, where A is the 
wavelength. Thus one has the following development: 

= BEE (r - r',z,z') - B EU (r - r',z,z')P(q',z') - BUE (r - r',z,z')P(q,z) + Buu(r - r',z,z')P(q,z)P(q',z') 

= {A EE (r - r',z,z') - AEU(r - r',z,z')P(q',z') - Au£ (r - r',z,z')P(q,z) + Auu(r - r',z,z') 

XP(q,z)P(q',z')}D(z - z'), (AI) 
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where the definition of ¢(r,z;q) from Eq. (3.4) was used in 
the expansion of the correlation function B;, thus giving rise 
to the corresponding correlation and cross-correlation func­
tions Bij' for iJ = C,O'. The 8-correlation component is then 
factored out of the B ij functions giving rise to associated two­
dimensional correlation functionsAij' Noting that the abso­
lute z dependence exists in the factors P( q,z), one can define 
a composite two-dimensional correlation A; (r - r',z,z'; 
q,q') to represent the quantity within the braces ofEq. (A1). 
Integration of Eq. (A1) over the coordinate z' gives Eq. 
(3.7a). 

Substituting Eq. (A1) into Eq. (3.5) and performing 
the z' integration gives 

(¢(r,z;q)J,(r ,z;q» 

= ffA (r - r' Z'q q,)( 8!(r,z;q) )dr'dq" (A2) 
; , " f:,/, ( , . ') 

U'f' r ,z,q 

It now remains to determine the average of the variational 
derivative as indicated in Eq. (A2). To this end, one must 
now consider the second equation of the system of equations 
obtained in Sec. II, viz., Eq. (2.13). Using the definitions of 
Eqs. (2.S) and (2.9) inEq. (2.13) and applying the Fourier 
transform defined by Eq. (3.2) [for the same reasons it was 
allowed to be applied to Eq. (3.1) ], solving for the derivative 
aJ(r,z;q)/az, and integrating along the z coordinate from 0 
to z, one obtains 

J(r,z;q) - J(r,O;q) 

= - i r V
r

" aJ(r,z';q) dz' + (z(q,(z';q»J(r,z';q)dz' 
Jo aq Jo 

+ f ¢(r,z';q)J(r,z';q)dz' 

-f (¢(r,z';q)J(r,z';q) )dz'. (A3) 

Formally, one can solve this equation iteratively and find 
that the quantity J(r,z;q) is a function of the coordinatezfor 
only those values z' such that z' < z. The values z' of z, where 
z' > z, do not enter into the solution. Thus fluctuations of the 
composite propagation parameter ¢ (r,z;q) at positions z' < z 
can only influence the quantity J(r,z;q); for the variational 
derivatives that must be considered in the sequel, this "cau­
sality condition" implies 

8J(r,z;q) _ 0 ' (A4) _ - , z >z. 
8q,(r',z';q') 

Taking the variational derivative of Eq. (A3) and employ­
ing the fact that 

~¢(r,z;q) = 8(r - r')8(z - z')8(q - q'), (AS) 
8q,(r',z';q') 

one obtains 

~J(r,z;q) = _ i r V
r

" ~( 8!(r,z";q) )dZ" + r (q,(z";q» 8!(r,z";q) dz" 
8q,(r',z';q') Jz· aq 8¢(r',z';q') Jz. 8q,(r',z';q') 

+ f[ 8(r - r')8(z" - z')8(q - q')J(r,zll;q) + ¢(r,z";q) :Jg~:::,» ]dZ" 

-f[ (8(r - r')8(z" -z')8(q - q')J(r,z";q) + ¢(r,z";q) :Jg:::::.») ]dz'" (A6) 

Finally, noting that the variational derivative desired in Eq. 
(A2) is related to the one given in Eq. (A6) via the relation 

8!(r,z;q) = lim ~J(r,z;q) , (A7) 
8¢(r',z;q') z'_z 8¢(r',z';q') 

and using the fact that the first, second, fourth, and sixth 
terms ofEq. (A6) converge to zero upon evoking the limit 
indicated in Eq. (A 7), and that the fifth term gives zero since 
(l) = 0, thus making (1) = 0, one obtains 

8J(r,z;q) 

8¢(r',z;q') 

= lim r 8(r,r')8(z" - z')8(q - q')J(r,z";q)dz" z'-zJz' 
= 8(r - r')8(q - q')J(r,z;q). (AS) 

Taking the ensemble average of this expression, substituting 
the result into Eq. (A2), and performing the required inte­
grals, one obtains the result of Eq. (3.6) noting that the 
quantity A; (r - r',z;q,q') becomes independent of the q' 
variable. 
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APPENDIX B: DERIVATION OF EQS. (3.13H3.16) 

The derivation ofEq. (3.13) commences with the Novi­
kov theorem, which, in the case ofthe 8-correlated random 
functions ¢, gives 

<¢(r"z;q, )J(r2,z;q2» 

= f f A", (r,r',z;q,q') 

X (8~(r~'Z;q~) )dr'dq" 
8¢(r ,z;q ) 

(B1 ) 

This expression can also be obtained directly from Eq. (A2) 
by evaluating J at the points r2 and q2' One must now evalu­
ate the indicated variational derivative. This, too, can be ob­
tained directly from a previous result in Appendix A, in par­
ticular, Eq. (AS), simply by letting r = r2 and q = q2' viz., 

8J(r2,z;q2) f:( ') f:( ')J (B2) - =u r2-r u q2-q (r2,z;q2)' 
8q,(r',z;q') 

Taking the ensemble average of this result, substituting it 
into Eq. (B1), and performing the required integrations 
yield 
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(~(r),z;q) )J(r2,z;q2» = A", (r) - r2,z;q),q2) (J(r2,z;q2»' 

which is the result of Eq. (3.13). 
Equation (3.14) follows similarly and can be obtained 

from Eq. (3.13) by a simple transcription ofr) and r2 and q) 
and q2' 

The derivation ofEq. (3.15) requires one to employ the 
Novikov theorem once again, which gives, for the 8-correlat­
ed assumption made in the foregoing, 

(~(r),z;q) )J(r2,z;q2)J(r),z;q)) 

= f fA", (r) - r',z;ql>q2) 

x/80(r2,~q2~J(~)oZ;q)}) dr' dq'. 
\ 8¢(r ,z;q ) 

(B3) 

Expanding the variational derivative of the product and us­
ing the result ofEq. (B2) yield 

80(r2,z;q2)J(r),z;q) } 
8~(r',z;q') 

= 8(r2 - r')8(q2 - q')J(r2,z;q2)J(r),z;q) 

+ 8(r) - r')8(q) - q')J(r),z;q)J(r2,z;q2)' (B4) 

Substituting this into Eq. (B3) and performing the integra­
tions and using the various definitions given earlier give 

(~(r),z;q) )J(r2,z;q2)J(r),z;q)) 

2440 

= [A",(r) - r2,z;q),q2) + A", (O,z;q)] 

XBj (rl>r2;z;q),q2)' 

J. Math. Phys., Vol. 30, No.1 0, October 1989 

which is Eq. (3.15). 
Equation (3.16) follows a similar way and can be ob­

tained directly by transcribing r) and r2 and q) and q2 along 
with the application of the assumption of isotropy of the ~ 
statistics. 
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Intervals of electrohydrodynamic Rayleigh-Taylor instability. 
I. Effect of a tangential periodic field 
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The intervals of electrohydrodynamic Rayleigh-Taylor instability influenced by a periodic 
tangential field are considered. It is shown that a linear model of the interface is governed by 
Hill's differential equation. Characteristic values and intervals of stability are discussed. The 
special case of the Mathieu differential equation type is obtained. 

I. INTRODUCTION 

Problems of electrohydrodynamic stability have been 
considered by many authors. (See Melcher, 1.2 Woodson and 
Melcher,3 Mohamed and Elshehawey,4-6 Elshehawey,1 EI­
shehawey et al. 8 EI Dabe et al., 9 and Mohamed et al. 10.11 and 
the references therein.) There are some physical situations 
when one needs a limited band of wavenumbers to achieve 
instability; at the same time, for values of wave numbers less 
or greater than this band stability is required. For example, 
in biophysics 12 the cell membrane is formed by a number of 
adjacent cells if they are subjected to a periodic field. Also, 
the membrane breaks down if a field at a given strength is 
applied to it. Also, if a force varying periodically with time 
acts on a mass in such a manner that the force tends to move 
the mass back into a position of equilibrium in proportion to 
the dislocation of the mass, one might expect the mass to be 
confined to a neighborhood of the position of equilibrium. In 
particular, once the force is strong enough to achieve this 
effect, one would expect a stronger force to be even more 
efficient for this purpose. An increase of the restraining force 
may cause the mass to oscillate with wider and wider ampli­
tudes. The theory of the intervals of instability provides the 
precise description of this phenomenon. 

In the present paper, we shall confine ourselves to giving 
a general description of the so-called regions of absolute sta­
bility since in most previous cases, the results are based on 
numerical computations. 

II. FORMULATION OF THE PROBLEM 

Consider two semi-infinite dielectric inviscid fluids sep­
arated by the plane y = O. The upper and lower densities of 
the fluids are p(2) and p(l), respectively. The fluids are in­
fluenced by a periodic electric field 

Eo = E * Eo(t)ex , So" E ~ (t)dt = 0, (2.1) 

where ex is the unit vector in the x direction. We shall con­
sider all "functions E ~ (t) of class P" which are defined by 

[1T So" IE~(tWdt ] lip = 1, (2.2) 

where p = 1,2,3, ... , or p = 00. If p = 00, (2.2) means that 

a) On leave from the Department of Mathematics, Faculty of Education, 
Ain Shams University, Heliopolis, Cairo, Egypt. 

maxlE~ (t) I = 1. (2.3 ) 

We assume that E ~ (t) is continuous except for a finite num­
berofpoints, whereE~ (t) may have ajump. We dimension­
alize the various quantities using the characteristic length 
L = (t /p(l)g) 1/2 and the characteristic time (L /g) 112. The 
motion considered here is irrotational and there exists a ve­
locity potential 4> such that v = V4>. 

The velocity potential 4> satisifies 
J 24>(2).(1) J 24>(2),(1) 
-"-:--+ =0 

Jx2 Jy2 

such that 

IV4>(2)1~0, asy~oo, 

I V4>(1) I ~O, asy~ - 00. 

The surface deflection is expressed as 

y = S(x,t). 

Then, 

n=VF/[VF·VF]1/2= -Sx(S~ + 1)-1/2ex 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

+ (S~ + 1)-I/2ey (2.8) 
is the unit normal n to the surface, and F = 0 is the equation 
to the surface of separation. 

The condition that the interface is moving with the fluid 
leads to 

St - 4>~2),(I) + 4>~2),(\)Sx = 0, at y = S. (2.9) 

We assume that the quasistatic approximation is valid 
and we introduce the electrostatic potential \{J(2),(1) such that 

E(2),O) = E * Eo (t) ex - V\{J(2).(1). ( 2.10) 

Therefore, the differential equation satisfied by \{J(2),O) is 
the Laplace equation 

(2.11) 

along with the following boundary conditions. 
(i) The tangential component ofthe electric field is con­

tinuous at the interface 

n 1\ (E(2) - E(1) = 0, at y = S, 

which leads to 

(2.12) 

Sx (\{J~2) - \{J~I» + (\{J~2) - \{J~I» = 0, at y = S. (2.13) 
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(ii) The normal electric displacement is continuous at 
the interface y = s(x,!): 

(2.14 ) 

and hence, 

Equations (2.4 )-(2.16) will be solved using the method 
of multiple scale. 13 

We introduce the scales Xn and Tn defined by 

(2.17) 

We may also expand S, 'I'(2),(]), and 4>(2),(]) in the form 

3 

S(x,!) = L ~Sn(XO,Xl,X2; To, T I, T2) + O(E4
), (2.18) 

n=l 

3 

'I'~2).(I) (X,y,t) = L En 'lI~2).(I) (XO' XI' X 2 ; y; To, T I, T2) 
n~1 

(2.19) 

3 

4>~2)·(I)(X,y,t) = L En4>~2),(1)(XO,Xl,X2;y; To, T I • T2) 
n=l 

(2.20) 

We now substitute from Eqs. (2.18 )-(2.20) into (2.4)­
(2.16) and equate coefficients of like powers of E. 

The problem considered here is the intervals of the lin­
ear electrohydrodynamic stability of a single interface 
stressed by a tangential periodic electric field. The effect of 
nonlinearity on the problem at hand will not be discussed 
here and will be the subject of a subsequent paper. 

The solution of the first-order problem for traveling 
waves with respect to the variable Xo that decays far from the 
interface is 

SI = D(XI,x2; t)e ikXo + 15(XI, X2; t)e - ikXo, 

'1'\2) = [iE * Eo(t) (fl2) _ fI])/(fl2) + fI]) ] 

X [D(X
I

, X2; t)e
ikXo - ky -15 e - ikXo - ky ], 

'1'\1) = [iE*Eo(t)(fl2) _ flI)/(fl2) + fI])) 

X [D(X
1

, X2; t)e
ikXo + ky -15 e - ikXo + ky ], 
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(2.21) 

(2.22) 

(2.23) 

Sx (fl2)'I'~2) _ fll)'I'~\) _ (fl2) 'I'~2) _ fll) 'I'~I) 

=SxE *EoU)(fl2)-fll), at y=s, 

where fl2),(I) is the dielectric constant. 

(2.15 ) 

(iii) The normal hydrodynamic stress is balanced by the 
normal electric stress. The balance condition is then2 

(2.16) 

(2.24) 

(2.25) 

As a special case ofEq. (2.26), which is the well-known 
dispersion relation, if we replace the periodic electric field by 
a constant field, we obtain the same result given in Ref. 4 for 
the linear system, where 

Kc = ~p - 1 (cosh BE - sinh BE), 

sinh BE = aEl2~p - 1, 

a
E 

= E*2(fl2) _ flI)2/(fl2) + fll). 

III. THE HILL EQUATION 

We put Eq. (2.26) in the standard form 

a2~ + [A+Q(t)]D=O, 
at 

where 

A = [kl(l +p)](l-p + k 2
), 

QU) =f3E~(t), 

(3.1 ) 

(3.2) 

(3.3 ) 

(3.4 ) 

where A is a parameter depending on the ratio density p and 
wavenumber k. Here, f3 > 0 and Q( t) is a real periodic func­
tion of t with period 1T. 

Here, we determine the values of A for which the solu­
tions ofthe Hill equation (3.1) are stable. (See Refs. 14-17 
and the references therein. ) Following the methods of Mag-
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nus and Winkler,16 one can show that for the given Hill 
equation (3.1) there belong two monotonically increasing 
infinite sequences of real numbers 

Ao, AI' A2"'" 

A ;,A~,A3,A~, ... 

(3.5 ) 

(3.6) 

such that Eq. (3.1) has a solution of period 1r iff A = ,tn, 
n = 0,1,2, ... and a solution of period 21riffA = A ~, n = 1,2, 
3, .... 

The An and A ~ satisfy the inequalities 

AO <A; <A ~ <AI <A2 <A 3 <A ~ <A3<A4 < ... 

and the relations 

lim A ~ - \) = 0, 
n- 00 

lim (A ~ ) - I = 0. 
n- 00 

The solutions of (3.1) are stable in the intervals 

(3.7) 

(3.8) 

(Ao,A;), (A ~,AI)' (A2,A. 3)' (A ~,A3)' .... (3.9) 

At the endpoints of the intervals (3.9) the solutions of 
(3.1) are in general unstable: This is always true for A = Ao. 
The solutions of (3.1) are stable for A = A 2 .. + lor 
A = A 2n + 2 iff A 2" + I = A 2n + 2 and they are stable for 
A = A ~" + I or A = A ;" + z iff A in + I = A ~" + 2 • For complex 
values of A, Eq. (3.1) always has unstable solutions and it 
cannot happen sincep and k are real here [see Eq. (3.2)]. 

TheA n are the roots of .i(A) = 2 and theA ~ are those of 
.i(A) = - 2, where 

.i(A) =DI (1r,A) +D~(1r,A). (3.10) 

The intervals of instability ( - 00, Ao) will always be 
present (the zeroth interval of instability) and we define 
(A ;, A;) as the first interval of instability. 

We observe that neither an interval of stability nor an 
interval of instability can ever shrink to a point. The intervals 
of stability can never disappear, but two of them can com­

bine to a single one if A 2" + I = A 2n + 2 or A 2n + I = A ~" + 2 • 

However, the interval of instability (with the exception of 
the zeroth intervals) may disappear altogether. This takes 
place if Q ( t) = /3 E ~ ( t) is a constant (i.e., for the case of the 
constant tangential electric field given in Ref. 6). 

A region in the real ..t, /3 plane will be called a region of 
absolute stability for functions of class p if for any point in 
this region (3.1) will have stable solutions for all functions 
Q(t) =/3 E~(t),where E~(t)belongstotheclassp. 

Let n = 0, 1, 2, .... The region of absolute stability for 
the functions E ~ (t) of class 1 is bounded by the curves 

/3n + I = ± [4(n + 1) [f /1r] cot[ 1rf,.f 12(n + 1)], 

n2<A«n+1)2, 

/3n = ± U(1 - nlf,.f), A> 1, n;;;d, 

A=O, forn=0(i.e.,p=l+k 1
). 

(3.11 ) 

and is such that none of these curves is contained in its interi­
or. 

The open region bounded by the curves (3 . .11) is maxi-
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mal; for any point outside or on the boundary of this region, 
there exists a function E ~ (t) of class 1 such that not all 
solutions of (3.1) are bounded. Also, let m be a real variable, 
D<:mz < I, and let 

M = s, E = ~ 1 - m2 sin Zs ds. i
TTI2 d i"/2 

o ~1-m2sints 0 

(3.12) 

Then the curves defined for n = 0, 1,2, ... by 

/3 n + I = ± 8.3 -1/21r-2(n + I) 2M [M2(m2 - I) 

+ 2ME(2 - ml) _ 3E 2] lIZ, 

An+ I = 41r- 2(n + l)2[M2(m2 - 1) 

+ 2ME], A>O, 

(3.13 ) 

(3.14 ) 

bound the region of absolute stability of the functions of class 
2. The boundary points do not belong to the region since for 

A + /3 E~ (t) = 41r-2(n + 1)2M2(1 + m2) 

_ 81r-2(n + 1 )2m1M2 

xsn2(2(n + I)Mtl1r), (3.15 ) 

the differential equation (3.1) has only one periodic solution 
(and therefore, at least one unbounded solution). 

The periodic solution (with period 1r or 2 1r) is 

Dp = sn 1', l' = 2(n + 1 )Mt 11r, (3.16) 

where sn l' is the Jacobian elliptic function with module m 
and period 4M. 

Also, for the functions of class 00, the region of absolute 
stability is bounded by the curves 

(A'n+1 +/3n+I)I/2tan[1r~A"+1 +/3n+,/4(n+ 1)] 
= (An + I - /3 .. + I ) 1/2 

(3.17 ) 

where n = 0, 1,2, ... and where the region does not contain 
any of these curves in its interior. If one of the square roots 
should be imaginary, the functions tan and cot have to be 
replaced by the corresponding hyperbolic functions, i.e., 

Also, if a and b are real numbers and 

a2<..t + /3 E~ (t) <b 2, (3.19 ) 

then the solutions of (3.1) will be stable for all possible 
A + /3E ~ (t) satisfying this condition iff the interval (a2

, b 2) 
does not contain the square of an integer. 

IV. THE MATHIEU EQUATION 

If we take A = [k 1(1 + p)] (1 - p + k 2) as (3.2) and 

E ~ (t) = cos 21, (4.1 ) 

- k 2E*2(t-2) - t-11)2 /3 
q = 2(1 + p)(t-Z) + t-I) = -"2' ( 4.2) 

Eq. (3.1) becomes 
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aZD 
--2 + [A - 2q cos 2t ]D = 0, at 

which is the Mathieu differential equation. IS 

(4.3) 

According to the Floquet theorem, 17 the general period­
ic solution of the Mathieu differential equation given by 
(4.3) can be written as 

Dp (XI' X2, t) = FI (XI' X 2 )e'"'H( t) 

+ F2 (XI , X2 )e-f'IH( - t), (4.4) 

where H(t) is a periodic function in t of period 211" or 11"; 
FI (XI' Xz), F2 (XI, Xz) are arbitrary constants; and J-L is a 
parameter given by the relation 

sinz iJ-L11" = A(0)sin2 ~11"JT. (4.5) 

Here, A(O) is an infinite Hill determinant depending on A 
and q (see Ref. 18) and takes the form 

A(O) = 1 -11",.1, Z coq11"A 2;4/T(A -1). (4.6) 

It is seen from Eq. (4.4) that if J-L is pure imaginary, the 
solution for Dp will be bounded as t-+ 00 and the system is 
stable. The characteristic curves of the Mathieu functions 
and the regions of stability and instability are discussed in 
Ref. 18. In the (A,q) plane, the regions in which the values of 
A and q yield imaginary values of J-L are the stable regions. 18 

On the other hand, if J-L is real, the solution for D p will tend to 
00 as t-+ 00. 

The unstable regions [in the (A,q) plane] are the re­
gions in which the values of A and q correspond to real values 
of J-L; the boundary curves of these regions are symmetric 
about the A axis. On the other hand, we assume that 

q = _ k2E*2(~2) _ ~1)2;2(1 + p)(€(2) + ~I) 

are small (which is a good approximation to high-frequency 
fields or large wavenumbers). Then following Morse and 
Feshbach 14 one can show that the solution of Eq. (4.3) will 
be bounded at t -+ 00 provided that q and A satisfy the in­
equality 

4q2 - 32(1-A)q + 32,.1,(1 -A) >0 (4.7) 

or 

k 4E *4(€(2) _ €(I)4 16k 2 E *2(€(2) _ €(l)Z(1 - A) 

(1 +p)2(~2)+€(1)2 + (1 +p)(€(2) + €O) 

+ 32,.1, (1 - A) > O. (4.8) 

Also, if PE6 (t) + A > 0 and 
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(4.9) 

then the solutions of the Mathieu equation (4.3) are stable. 
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Global solution of the Boltzmann equation for rigid spheres and initial data 
close to a local Maxwellian 
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In this paper, which is an extension ofthe previous paper of one ofthe authors [Arch. Rat. 
Mech. Anal. 102, 231 (1988)], a global existence theorem is presented for the Boltzmann 
equation for initial data close to a local Maxwellian of a special type. Contrary to the previous 
result, the global existence is proved for rigid spheres and "hard" potentials with angular 
cutoff. 

I. INTRODUCTION 

After recent results of DiPerna and Lions, 1.2 the main 
problem of the Boltzmann equation, i.e., the existence of 
global solutions, seems to be solved. On the other hand, the 
problem of the uniqueness of the solution is open, and the 
asymptotic behavior of the gas density has been only partial­
ly investigated in a recent paper by Arkeryd.3 These facts 
still make different approaches justified. 

In the present paper we consider a particular case when 
initial data are not small but close to a given local Maxwel­
lian. We prove global existence and uniqueness for a corre­
sponding initial value problem. The paper is a continuation 
of the previous paper of one of the authors4 when similar 
results were obtained for soft interactions and Maxwellian 
potentials with angular cutoff. 

In the present paper we consider a gas of rigid spheres. 
Since, as it was observed earlier (cf. IlIner and Shinbroe), 
rigid spheres create some peculiar technical difficulties, we 
begin with the analysis of the Boltzmann equation for 
"hard" potentials with angular cutoff. Then, the rigid 
spheres result is obtained as a limit of solutions for hard 
potentials. The proof of existence is similar to that used in 
Ref. 4 and is based on the Kaniel and Shinbrot iteration 
scheme.5 What is worth noting is the fact that although we 
start with initial data close to a Maxwellian there is no trend 
to equilibrium. This shows a substantial difference between 
local and global Maxwellians for which the trend to equilib­
rium always holds. 

II. THE BOLTZMANN EQUATION 

Our aim is to solve an initial value problem of the non­
linear Boltzmann equation. In the absence of an external 
force field and with initial data defined in the whole space 
this problem can be written as follows: 

af+v'gradxf=J(f,j), xER 3
, vER 3

, tER+, (la) 
at 
f(x,v,O) = <p(x,v). (lb) 

For gas particles interacting by cutoff potentials or rigid 
sphere interactions the collision operator J can be split into 
gain and loss terms: 

af + v'gradxf= Q(f,f) - fR(f), . 
at 

where 

Q(f,g)(x,v,t) = ~ i B(q,B) [f(v; )g(v/) 
2 D 

(2) 

+ f(v')g(v; ) ]dv 1 dE dB, (3) 

R(f) = L B(q,B)f(vl)dv l dE dB. (4) 

Here (v,v l ) and (v/ ,v; ) denote the precollisional and post­
collisional velocities of the two colliding particles and 
q = VI - v is the relative velocity. Here 1/1 = rr - 2fJ is the 
scattering angle of the binary collision and E is the azimuthal 
angle of the plane in which the collision takes place. Conse­
quently D = R 3 X [0,rr/2] X [0,2rr]. 

To begin with, let us give essential notation and prelimi­
nary results. First, let us denote 

f#(x,v,t) =f(x + vr,v,t). 

Then Eq. (I) can be written as follows: 

a~; + f# R # ( f) = Q # ( f, f), (5a) 

(5b) 

Following the approach of Kaniel and Shinbrot we will solve 
Eq. (5) by the iterative scheme, 

al'! # # # 
Tt+ln R (Un_I) =Q (In-I,ln_I)' (6a) 

au,! # # # 
Tt+UII R (In-I)=Q (UII_pU II _ I ), (6b) 

III (0) = Un (0) = <p(X,V). (6c) 

To begin iterations we need a pair off unctions (Io,uo)' Fol­
lowing Kaniel and Shinbrot we say that such a pair satisfies 
the beginning condition if 

O.;;;Jo(t) </1 (t) <u I (t) <uo(t)· 

It is well known from the results ofKaniei and Shinbrot6 

that if <p>0 and (lo,uo) satisfy the beginning condition then 
the sequence of iterative solutions In is increasing and Un 
decreasing and both converge (in the L I sense) to a mild 
solution of (5). 
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III. GLOBAL EXISTENCE FOR HARD POTENTIALS 

In this section we shall prove that for initial data close to 
a special local Maxwellian it is possible to construct two 
functions Uo and 10 which satisfy the beginning condition. As 
we know, local Maxwellians are given in the form 

w(x,v,t) = (21TT) -3/2n exp( - Iv - uI 2/2T), (7) 

where n = n(x,t), U = u(x,t), and T = T(x,t) are the fluid­
dynamical parameters denoting the mass density, mean ve­
locity, and temperature of a gas (for a general discussion of 
local Maxwellians see Truesdell and Muncaster7

). 

For the purpose of this paper we shall assume U and T to 
be constant and n = n (x) = exp( - ax2). Hence our local 
Maxwellian has the form 

(8) 

is sufficient to show that the following inequalities hold: 

ul! (t) - cp - f ul! (s)R #(uo -lo)(s)ds>O (14) 

and 

cp -II! (t) - f II! (s)R #(uo -10) (s)ds>O. (15) 

Recalling the definitions of ul! and I I! and (9) we shall ver­
ify (14) and (15) if E(t) satisfies 

E+d f E(s)(1 +E(s»)F(x,v,s)ds<;E(t), (16) 

Given a steady Maxwellian W in the form (8) we want to where d is a given constant, E( t) <; 1 and 
solve the Cauchy problem (5) in space L '(R 6), or strictly ( 
speaking, in the subspace {!(x,v)EL '(R 6 ): O<;!(x,v) F(x,v,t) = J/3s(O)q(S-4)ISexp( -alx-qsI2) 

<;cw(x,v)} with an initial value cp(x,v), which is close to win 
the sense that Xexp( - {3vT )dv, dO dE. (17) 

(1 - E)W(X,V) <;Cp(x,v) <; (1 + E)W(X,V), (9) 

with E sufficiently small. 
As we know from the previous section, the essential step 

in solving the Cauchy problem (5) is the construction of the 
beginning condition. To this purpose, let us set 

ul! (x,v,t) = (1 + E(t»)W(x,v), 

II! (x,v,t) = (1 - E(t»)W(X,v), 

where the function E(t) will be specified later. 

( 10) 

Due to (8), we obtain for any constants c I' C2, C3, and c4 , 

Q # (clio + c2uo,cio + c4 U O ) 

= (c"0+czuo)#R#(cio+c4 uO )' (11) 

Applying ( 11) to the iteration scheme we obtain 

I r (t) = cp + i' [I I! (s)R # (lo)(s) 

-Ir (s)R #(uo)(s)]ds, 

ur(t) = cp + i' [ul!(s)R #(uo)(s) 

- ur (s)R # (lo)(s)] ds, 

(12) 

so that II - 10 and Uo - U I satisfy the following equations: 

(II -/o)#(t) 

=cp-II!(t)- i'11!(S)R#(Uo-/o)(S)dS 

(13) 

To prove that inequality ( 16) has solutions we first have 
to analyze the function F(x,v,t). 

Lemma 1: Let {3s (0) satisfy the "cutoff" hypothesis 
(1712 

Jo {3, (O)dO<;c. (18) 

Then for hard interactions 4 < s < 00 the following estimate 
holds: 

x~,~f" r'F(X,V,r)dr<;cp ( r' (ar + {3) (2 - ,)/4 dr)4/S (19) 
JIll Jto 

for every to,t, >0 and c p independent of s. 
Proof First, let us observe that 

-alx-qtI 2 -{3vi 

- [(at 2 + {3)q2 - 2(axt - {3v)'q + ax2 + {3v2l 

- [(at 2+(3)'/2q - (axt-{3v)/(at 2 +{3)' /2 l2 

- a{3(x + vt)2/(at 2 +{3). 
Using this equality and estimate (18) we get 

F(x,v,t) 

= f!s(O)q(S-4)IS 

X exp( - alx - qsI2)exp( - {3vT )dv, dO dE 

<;c( at 2 + {3) (2 - 2s)ls exp - a{3(x + vn 2 

(at 2 + {3) 

x l. (s-4)ls [q- (axt-{3v) ]2d q exp - q. 
R' (at 2 +{3)1/2 

Because (s - 4)1s < 1, we can use the triangle inequality: 

(Ial + Ib 1)(S-4)ls<;lal(S-4)ls + Ib l(s-4)/' 

In order to prove that Eqs. (13) possess positive solutions it to estimate the last integral, obtaining 
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1 (s-4)/sex - [q- (axt-{3v)2] d 
R,q P (at 2 + {3)1/2 q 

<1 {I q - (axt - {3v) 1 (s- 4)/s 
R' (at 2+{3)1/2 

+ 1 (axt - {3v) 1 (S_4)/S} 
(at 2 + {3) 1/2 

[ 
q - (axt - {3v) ]2d Xexp - q 

(at 2 + {3) 1/2 

-1 1 (axt-{3v) \(S-4)/S -
- 2 1/2 exp( i)dq 

R' (at + {3) 

+ LlS-4)/Sexp( _q2)dq 

<c 1 + . ( 1 

(axt-{3v) I(S-4)/S) 
(at 2 + {3) 1/2 

Hence we obtain 

F(x,v,t) 

<c(1 + l(axt-{3v)!(at 2 +/3) 1I2 1(S-4)/S) 

X (at 2 + {3) (2 - 2s)/s 

Xexp{ - a{3(x + vt)2!(at 2 +{3)} 

= P(X,v,t) (at 2 + [3) - (s + 2)/s, 

where 

P(x,v,t) 

= c{(at 2 + [3)(4-s)!s + I (axt - [3v)! 

(at 2 + {3) 3/21 (s - 4)15)} 

X exp{ - a[3(x + vt)2!(at 2 + [3)}. 

Using inequality (20) we get 

F'F(X,V,r)dr 

{f

" }(S-4)/S 
< I" P(x,v,r)5/(5-4) dr 

{ f" }4/S X )", (ar + /3) - (s+ 2)/4 dr . 

(20) 

To end the proof we have to show that the integral of 
P(x,v,t) is bounded independently of s. Indeed 

{F'p(x,v,r),/(5 - 4) dr} (s- 4)/s 

<c{f" (ar + /3) -I dr}(S-4)/S + c{ (" 1 (a;r - [3~~21 
I" )", (a + /3) 

[ 
-a[3s(x+vr)2] }(5-4)!.i 

Xexp dr. 
(s - 4 )(ar + /3) 

The first term in the right-hand side is bounded. To prove 
that also the second is bounded we make the following esti­
mate: 
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I (axr - {3v)!(ar + {3)3/21 

xexp[ - a{3s(x + vr)2!(s - 4) (ar + {3») 

< (alxlr + {3lvl )!(ar + {3)3/2 

Xexp[ - a{3s(lxl - Ivlr)2!(s - 4)(ar +{3») 

= ~ {( Ixl - Ivlr)!(ar + [3)} 
dr 

Xexp[ - a{3s( Ixl - Ivlr)2j(s - 4 )(ar + [3)]. 

With this inequality we obtain: 

f" 1 (axr - [3v) 1 [- a[3s(x + vr)2 ]d 
J,,, (ar+[3)3/2 exp (s-4)(ar+/3) r 

<foo exp[ - a[3sr ]dr<c, 
-00 (s-4) 

which shows that also the second term is bounded. 
Using the above lemma we can prove the following 

theorem. 
Theorem 1: Let 4 < s < 00. There exists €( t) which satis­

fies inequality (16). Then 10 and Uo defined by (10) are the 
beginning condition for the system of equations (6) and the 
limits of sequences I" and U" coincide, i.e., 

Ilu -/1I(t) = 0 (21) 

for every t>O. 
Here, as in the rest of the paper 11'11 denotes the L 1 norm. 
Proof Let us consider the following auxiliary problem: 

W" (t) = 2€ + M fK" (t,u)wn {u)du, (22) 

where 

[I
' ]4/ .• 

Kn (t,u) = - :u u (ar + /3) - (5+ 2)/4 dr + n - s/4 . 

The integral kernel K n is bounded and continuous. Thus Eq. 
(22) has a bounded, differentiable solution. Differentiating 
this equation we obtain 

w~ (t) = M (' - ~[i'(ar + [3) - (s+2)/4 dr 
Jo au at u 

(at 2+{3)-(s+2)/4 . 
+ n(4-5)/4s!4 MWn (t). 

Then integrating by parts we obtain 

w' (t) = 2€M~[ (' (ar + {3) - (s+ 2)/4 dr 
n dt Jo 

+ n - 5/4]415 

+ M r'~[ (' (ar + {3) - (5+2)/4 dr 
Jo at Ju 

+n-S/4]4/SW~(U)dU. (23) 

Equation (23) implies that w~ (I) >0, thus w" (I) is an in­
creasing function of t. Hence tending with t to infinity we 
obtain from (22), 

w,,(t)<2€M iOOK" (u)w,,(u)du. (24) 
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Now, ifrn (t,s) is the resolvent kernel associated toKn (t,s) , 
[r(t,s) is the resolvent kernel associated to K(t,s)], the 
method of successive approximations leads to the following 
bound for the solution: 

Wn (t)<;wn (00) = 2E( 1 + LX> rn (oo,S)dS) 

<;2E( 1 + 1" r( 00 ,S)dS). (25) 

On the other hand, Corollary 1 of Ref. 8, p. 53, ensures that 
fore oo,s)ds is bounded. Hence, choosing E sufficiently 
small we can make Wn (t) < 1. 

Integrating (22) by parts we obtain 

Wn (t) = 2E + 2EM [1' (ar + (3) - (s+ 2)/4 dr 

+n- S/4 ]4/S 

_ M +M I'[it (ar+13)-(S+2) /4 dr 
nWn Jo u 

+ n -SI4]4/2W~ (u)du. 

Since w;, is positive we can drop the term n - </4 to obtain 

wn(l +Mln) 

>2E + 2EM [1' (ar + (3) - (s+ 2)/4 dr rh 

+ M l' [L (ar + 13) - (s+ 2)/4 dr r'w;, (u)du. 

Then, due to Lemma 1, we have 

2EMil Wn (1 + Min) >2E + -- F(x,v,r)dr 
cp 0 

+ ~ L [L F(X'V,r)dr]w~ (u)du 

Mit >2E + - F(x,v,u)Wn (u)du 
Cp 0 

Mil >2E + - F(x,v,u) 
2cp 0 

XWn (u)(l + Wn (u»)du. 

Choosing M such that M 14cp > d [cf. (16) 1 and n>M we 
obtain: 

Wn (t»E + d l' F(x,v,u)wn (u) 

x(1 + wn(u»)du. 

Therefore, if n > M = 4c p d, W n (t) satisfies inequality (16). 
From Eqs. (6) it follows that 11/11 (1) and II u II (t) are 

bounded. Then subtracting ( 6b) from ( 6a) and tending with 
n to infinity we get the inequality 

(u -/)1i(t)<;cliJ(x,v) l' lIu -/11(r) 

X L 13s (e)liJ(x - qr,v 1 )dv , de dE dr. (26) 
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Applying to (26) the Holder inequality and using (18) we 
obtain 

Ilu -/11(t) 

<;C l' Ilu - III (r)F(x,v,r)dr 

<;c [1' (Ilu -/11(r»)'/4 drr
s 

[I' ](S-4)IS 
X Jo F(x,v,r)S/(s-4)dr 

<;C [1' (Ilu - III (r) )'/4 dr r'· 
Hence by the Gronwall lemma we get (21). 

• 
IV. EXISTENCE OF SOLUTIONS FOR RIGID SPHERES 

The analysis made in the preceding section does not take 
into account the rigid spheres model. In fact, for s = 00 in­
equality (16) does not hold for any E( t). On the other hand, 
the smallness condition (25) holds also for s = 00. This en­
ables us to hope that the result which is true for s < 00 can be 
extended to rigid spheres. 

To solve the initial value problem (1) for rigid spheres 
let us take initial data in the form 

(1- Eo)liJ(X,v) <;q:>(x,v) <; (1 + Eo)liJ(X,v), (27) 

where Eo is given by the following expression: 

Eo-I = 2 s~p exp{M [i= (ar + 13) - (s+ 2)/4 dr 

+ n- SI4 ]4IS}. 

Let us now introduce a sequence of collision kernels which 
approximate the rigid sphere kernel: 

Bn (q,e) = A cos e sin fJql - exp( - n') (28) 

and let!" (x,v,t) be a solution of the Boltzmann equation (l) 

with collision kernel (28) and initial data (27). Then the 
following lemma holds. 

Lemma 2: The sequenceln (x,v,t) is a Cauchy sequence 
in L I (R 6) for every t>O. 

Proof Let us denote by Qn and Rn the collision opera­
tors whose kernels are given by (28). Then for given n,m>no 
with m> n, we have 

r!!(t) =q:>+ l' Q'!!(ln,fn)(s)ds 

- 1'1'!!(S) R '!!(In )(s)ds, 

1!(t) =q:>+ l' Q!(/m,fm)(s)ds 

- 1'l! (s) R ! (1m )(s)ds. 
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Subtracting these two equations we obtain 

r Ifm - fn I#(t)dx dv 
JR O 

<2L.lL [Q!(fmJm) -Q!(fnJn)](S)dSldXdv 

+ 2 L.IL [Q!(fnJn) 

<2 Loll' [Q !(fmJm) - Q~(fnJn)] (S)dSldX dv -Q~(fnJn)](S)dsldXdV. (29) 

Consider the first of the above two integrals: 

We split the last integral into two parts corresponding to Ivl > nand Ivl <no Then we obtain 

r dx r dv rdslf!-f~l(s)r dVlql-eXp(-m')w(x-qs,vl) 
JR\ J1vi>,t Jo JR·1 

<c r dx r dv w(x,v) r dV I q - exp( - m'l exp( - pv~ ) <c r dvexp( - pv2 ) <c exp( - pn 2/2). 
JR' J1vl>n JR' J1v!>n 

For the part with Ivl<n we have 

r dx r dv r dslf! -f~l(s) r dVlql-eXp(-m')w(x-qs,vl)<c(1 +n) r ds r dxdvlf! -f~l(s). 
JR' J1vl<n Jo . JR' Jo JR" 

To estimate the second integral in (29) we utilize the fact thatf~(x,v,t) <2w(x,v). Then we proceed as follows: 

L.IL [Q! (fnJn) - Q ~(fnJn)] (S)dSldX dv 

<c r dx dv r ds r dv1lql - exp( - m'l _ ql - exp( - n') Iw(x - qS,v
I 
)w(x,v) 

JR" Jo JR"' 
<c L. dx dv exp( - ax~ - PV

2
) Lds exp( - alx - qsl2)q L, dqlq-exp( - m'l _ q- exp( - n'llexp( - :q2) 

<c r dqlq-exp(-m'l _q-eXP(-n'llexp( _ pq2). 
JR' 4 

In the above inequality we used the fact that 
pvi + pv2/2>pq2/4. For the last integral we have 

To estimate the second integral let us observe that for q> 1 
we have qP - I <pqP + I,p > O. Then 

r dqlq - exp( - m'l _ q - exp( - n') lexp ( - pq2) 
JR' 4 

= 47T LX> dq(q2 - exp( - m'l 

_ q2 -exp( _ n')exp ( - :q2) 

= 47T 11 dq(q2 - exp( - m') _ q2 - exp( - n') 

X exp ( - :q2) + 47T i'" dq(q2 - exp( - m') 

_ q2 - exp( - n'l )exp ( - :q2). 

The first integral can be evaluated straightforwardly, 

11 dq(q2 - exp( - m') _ q2 - exp( - n') )exp ( - :q2) 

<11 dq(q2 - exp( - m') _ q2 - exp( - n') 
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foc dq(q2 - exp( - m') _ q2 - exp( - n') )exp ( - :q2) 

= foc dq q2 - exp( - n') 

X (qexp( - n') - exp( - m') _ 1 )exp ( - :q2) 

< [exp( - n2) _ exp( _ m 2)] 1''' dq q3 exp ( - :q2). 

Summarizing all the above estimates we obtain 

L.IL [Q!(fnJn) 

- Q ~(fnJn)] (S)dSI dx dv<c 

X [exp( _n2
) -exp( _m2 )]. 

Hence from (29) the following estimate can be derived: 

Ilfm -J.,II(t)<cexp( -an2) 

+c(1 +n)i'llfm -fnll(s)ds. 
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Applying the Gronwall lemma we have 

111m -lnll(1)<:;cexp( -an2 )exp[c(1 +n)t]. 

Hence tending with no to infinity we obtain the assertion of 
the lemma. 

Now we can prove our main result. 
Theorem 2: Let I(x,v,t) be the limit of the sequence 

In (X,v,t) which exists due to Lemma 2. Then I(x,v,t) is a 
unique solution of the Boltzmann equation for rigid spheres. 

Proof First, we will show that/(x,v,t) solves the Boltz­
mann equation in the sense of L I. To this end let us observe 
that since In (X,v,t) <2w(x,v), then also I(x,v,t) <:;2w(x,v). 
Hence we have 

II I#(t) - rp - f J#(f,/)(S)dSII 

<:; I jJ#(t) - rp - f J#(f,/)(s)ds - (/~(1) - rp 

-f J~(ln,Jn )(S)dS) II 

<1I/#(t) - 1~(t)11 + Ilf J#(f,/)(s)ds 

-f J~(ln,Jn )(S)dSII· 

The first term tends to zero by definition. To prove that the 
second term converges to zero we have to apply similar esti­
mates as in Lemma 2, but with m = 00. 

To show that/(x,v,t) is a unique solution of the Boltz­
mann equation for rigid spheres let us assume that there 
exists another solution g(x,v,t) for which the estimate 
g(x,v,t) <:;cw(x,v) holds. Then subtracting g(x,v,t) from 
I(x,v,t) we obtain 

(I - g) # (1) <:;cw(x,t) f II I-gil (r) 

X Lf3s(B)W(X - qr,v 1 ) 

X dV 1 dB de dr. 

Applying the Holder inequality we obtain: 
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II I-gil (t) <:;c f II I-gil (r)F(x,v,r)dr 

[ r ]4/S <c Jo (11f-gll(r»)s/4dr 

[ r ](S-4)/S 
X Jo F(x,v,r)s/(s - 4) dr 

<:;c[f (III - gil (r»)S/4 drrs

• 

Hence by the Gronwall lemma we obtain 

11/-glI(t) =0. 
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ERRATUM 

Erratum: The hyperspin structure of unitary groups [J. Math. Phys. 29, 978 
(1988)] 

Christian Holm 
Institut/ur Theoretische Physik A, TU Clausthal, 3392 Clausthal, Federal Republic o/Germany 

(Received 4 April 1989; accepted for publication 19 April 1989) 

Since the publication of the above article subsequent re­
search,l motivated by a comment of Borowiec,2 has shown 
that the hyper-Christoffel connection [po 979, (2.9)] does 
not transform like a connection, and even worse, does not 
exist for most geometries. Subsequently formula (2.11) 
should be ignored. 

From the metricity condition (1) [p. 984, (4.2)] only 
follows that wa 

a = 0, it is not equivalent to ( 1 ). This in turn 
invalidates the lemma ofEq. (4.5), as well as Eqs. (4.8) and 
(4.11). The existence question of a torsion-free metric con-

nection is dealt with in Ref. 1. There it is shown that a gen­
eral Bergmann manifold does not possess such a connection. 

Nevertheless such a connection does exist for the geom­
etry of the unitary groups, so that the main results of the 
paper remain valid. 

Ie. Holm, "On the connection in Bergmann manifolds," to be published in 
Int. J. Theor. Phys. 

2A. Borowiec, "Some comment on geometry of hyper spin manifold," Wro­
clay preprint, 1988. 
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