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It is proven that an orthonormal basis of ondelettes can never have exponential localization in

both position space and momentum space.

I. INTRODUCTION

Orthonormal bases of ondelettes have been the most ef-
fective localizations of phase space to date. This is to be ex-
pected, since they are related to renormalization group
ideas."” For example, Meyer and his co-workers have con-
structed an orthonormal basis of ondelettes that are
Schwartz functions with compactly supported Fourier
transforms.> More recently, an orthonormal basis of com-
pactly supported class C ondelettes* have been constructed
for arbitrary &. Since compact support is impossible in both
position space and momentum space, it is natural to ask
whether ondelettes with exponential falloff in both position
space and momentum space exist. The answer is no, and this
no-go theorem is proven here. The key to our proof is based
on the intimate connection between smoothness properties
and moment properties, which (we show) must hold for
ondelettes.

Although one is usually interested in a basis of onde-
lettes, it makes sense to speak of an individual ondelette.

Definition: A square-integrable function ¢ on R? is an
ondelette if and only if the functions ¢, ,, defined by

@r.=L 9L " 'x+n) (1)

are mutually orthogonal for L = 2 ~’, reZ, and neZ.

One of the reasons for the current interest in various
bases of ondelettes is the amount of phase space localization
the ondelettes can have.>* Such orthonormal bases circum-
vent the strong uncertainty principle of Balian and Low,>”
s0 our no-go theorem for ondelettes should not be confused
with their no-go theorem. They consider the rather different
game of tiling phase space with functions of the form
€™ *f(x + n), and their uncertainty principle states that
for such a function f the standard deviations A;xand A, pin
position space and momentum space, respectively, cannot
both be finite.

Remark 1: Actually, our definition of “ondelettes” is
more restrictive than the popular one, which includes
frames* and continuous decompositions as well as orthonor-
mal bases.

Remark 2: Very recently, Bourgain® has tiled phase
space with functions of the form f,, (x + ») having the prop-
erty that A, x and A, p are not only both finite but also
bounded uniformly in meZ9. The general idea is to obtain
better phase space localization by sacrificing the discrete
translational symmetry of the basis in the momentum direc-
tions while simultaneously preserving uniformity in the
standard deviations. On the other hand, this new orthonor-
mal basis does not match the degree of phase space localiza-
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tion attainable by ondelette bases. Indeed, Bourgain’s phase
space localization is optimal because there is no basis
S (x + 1), such that

JdXIfmn(x)lz[l + x = (), 171" <, )
fdplfmn(p)|2[1+[p—(p)fmlz]“fkc (3)

for some £ > 0. This negative result is due to Steger.”

Yet another difference between our theorem and the Ba-
lian-Low theorem is that completeness of the basis plays a
vital role in any proof of their necessarily stronger conclu-
sion. Completeness plays no role in the proof of our ondelette
theorem.

Il. VANISHING MOMENTS

Before we prove the main lemma, we prove a special
case for which the intuition is clear.

Lemma I: Let @ be an ondelette for which $(p) is con-
tinuous and bounded and integrable. Then the zeroth-order
moment of ¢ must vanish.

Proof* We assume @(0) #0 and show how orthogonali-
ty leads to a contradiction. Since ?;3( p) isintegrable, we know
that ¢ (x) is a bounded continuous function that vanishes at
infinity. Pick a fixed scale L, =2 ~— ™ small enough to guar-
antee @(Lyn,) #0 for some d-tuple n, of integers, and set
Xo = Lgn,. Thus

Je"*o'l’a(p)dpzfp(xo);eo. (4)

Now consider a small scale L = 2 ~ " which will be chosen as
small as we need in the end. Obviously x, lies in the finer
lattice of points LZ: we simply define n, = 2"~ "n, and
note that

Ln, = x,. (5)
It follows from the orthogonality of ¢ and ¢, _, that

J €™"P(p) Pro(p)dp=0. (6)

On the other hand, the integral in question is just L7/? times

Je""“"’a(p) @(Lp)dp, (7)

and by dominated convergence and the continuity of @, (T)
approaches (0)@(x,) as L—0. This yields the desired
contradiction, because (7) would have to be nonzero for
some nonzero value of L. 0
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Remark: It is worth mentioning that the zeroth-order
moment vanishes for the more general ondelettes as well, but
for an entirely different reason. For frames and continuous
decompositions* the completeness property is used to verify
the property

fdpipl“la(p)|2< o, (8)

which seems essential to such expansions. We repeat that
completeness is not used in the orthonormal case.

We can easily extend the proof of Lemma 1 to prove the
more general lemma on vanishing moments.

Lemma 2: Let @ be an ondelette for which $(p) is class
CV+'and (1+ [p))"*'@(p) is integrable. Then all mo-
ments of ¢ of order <N must vanish.

Proof: By Lemma 1 we know the zeroth-order moment
vanishes. Suppose we have shown that all moments of order
<k — 1 vanish, where k is an integer <N, and assume there
are some nonzero k th-order moments. Thus

~ 1 gl
pp) = |aéka! e )

where R, (p) is the Taylor remainder and we use the stan-
dard multi-index notation. The zero set of the polynomial is
an algebraic hypersurface in R?, so the bounded continuous
function

(~ D" —parray 9
D*3)(0
laék - (D*p)(0) P @(x)

P+ Ry (p), 9

p=0

(10)

- f 3 l' (D) (0) p°(p)dp
al =k

cannot vanish identically because $(p) is also continuous.
We now pick a dyadic point x,, at which (10) is nonzero in
exactly the same way that we picked a dyadic point in the
proof of Lemma 1. There is a d-tuple n, of integers and a
scale Ly=2"" for which x, = Lyn, and for smaller
L =2"",n, isgivenby (5). Thus we have Eq. (6) and so—
given that (10) does not vanish at x,—all we need to show is
that we also have

fe""“’@(p) P(Lp) dp+0.

Applying (9) to @(Lp) we obtain

fe"’“""??(p) P(Lp)dp

(11)

= J e™? R, (Lp)(p)dp

sLt e S 2 D)0 pFpdp (12)

ol = & @l
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but by Taylor’s theorem we have

|R, (Lp)|<cL*+1p|*+! Ez sup |(D°P)(g)|
laf =

+1 lgi<ce,
(13)

for |p| <€l ~ . Italso follows from (9) and the boundedness
of (Lp) that we have a bound for large p, namely,

IR (Lp)|<e(1 + L*|p|". (14)

Since |p|** ' §(p) is integrable, we have the estimates

J‘ |@(p)|dp<ces ¥~ 'L*+), (15
lpl> el !

f |p|“¢(p) |dp<ces 'L (16)
pl>eLl !

as well. Combining (13)—(16) we easily conclude that the
first term in (12) is O(L** ). As the second term is a,L*
with a;7#0, we need only choose L small enough to realize
(11). O

Theorem: If @ is an ondelette, then it cannot have expo-
nential localization in both position space and momentum
space.

Proof: If @¢(x) and @(p) both have exponential decay,
then in particular @ is a Schwartz function. It follows from
Lemma 2 that a// moments of  vanish. But this means that
@(p) vanishes at p = 0 to infinite order, and so $(p) cannot
be real analytic. This contradicts the exponential decay as-
sumed for @ (x). a

Note added: The author has learned that Y. Meyer was
already aware of the connection between smoothness and
vanishing moments but that no consequences were ever pub-
licized.
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It is shown that the factoring property of the Tomimatsu-Sato metrics follows from the
structure of special Hankel determinants. A set of linear algebraic equations determining the
factors is found. The factors of the first five Tomimatsu—Sato metrics are tabulated.

I. INTRODUCTION

Motivated by a recent result' that the Tomimatsu-Sato
(TS) metrics can be factored over the field of integers, I
sought such a representation for higher TS metrics. Ernst’
and Hoenselaers® have made the first observation that
the § =1, 2, and 3 TS metric functions can be factored
in the form of the spectral decomposition [g ]
= [0 ] [Arn ] [Okn ] where the matrix A = [A,,, ] is di-
agonal and O = [0, ] is unimodular. I obtain here the fac-
tors of the § = 4and 8 = 5 TS metrics. The following pattern
now emerges: The TS metric functions (4) with an odd 6 can
be written

A=21p+ 1,0,

B=A+pr+ Ao,

26C = A pr — o,

D=A,2B—A) + 7 + A, 4,7, (H

where the factors p,o,7, and 7 are polynomials in pz, 7, a,
and b with integer coefficients. The even TS metrics have a
similar form,

A=p> + A, 4,0%

B=A+ pr+ Ao,

286C = pr — Ao,

D=A,12B—A) + A, + A, (2)

In these expressions,
A, =p’a, A,=¢b. (3)

In Sec. I11, the factoring property of the TS metric func-
tions will be related to the structure of certain Hankel deter-
minants. The homogeneous parts of 7 and 7 yield 26 polyno-
mials, to be called the primitive factors. The knowledge of the
primitive factors 7(8,r) and 7(8,r), where r=12,..,6,
alone enables one to generate the 6th TS solution. In Sec. IV,
the dual polynomials, defined by a pairwise interchange of
variables, are considered. The dual of a primitive factor can
be represented as a linear combination of either 7(8,7) or
7(8,7). One can use these linear algebraic relations to deter-
mine the values of the primitive factors. The factors of the
first five TS metrics will be given in Table I, and their primi-
tive factors are listed in Table II.
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il. TS METRICS
The TS metrics can be written in the form®
ds* = B (¥ _ d_xz)
52p25“2(a—b)52‘1\ b a
+ g, dx'dx*, k=34, 4)
where
g3 =bD /8B, g,.=2q(bC/B), g.=A/B, (5)
a=x*—1, b=y*—1, pPP+q¢*=1, 6)
AD — A,B? — 48°4,C2 =0, )

and § labels the solution of the vacuum gravitational equa-

tions. The first few solutions in the family are due to Kerr

(6 = 1) and Tomimatsu and Sato (6 = 2, 3, and 4) while

the metric functions for an arbitrary positive integer § were

given by Yamazaki,*

B=A4+G+H, C=(p/2gb6)(Q+ R — (6/pg)4), (8)
A =F(8),

8
G=2% (8,1 )F(8 —r),

r=1.

5 s
H=2px Y d(ra=' Y c(§r)F(& —7),

r=1 r=r
9
2ox . 8 (9
Q: _...p—q(s z q2bral—ﬂg(5,r,r:)
r=1r=1
XF(52 - r)r
5 & &
R=— z 2 (PPab'~" —g*h’a' ")
pPq r=1.-"=1
Xh(8,r,r YF(& — 1),
with the numerical coefficients
c(8,r) =8 (b+r—1n! p2r—1
’ (& — 12! ’
_ 2r —2)!
dinn=(-1)y"'————
) [2r='(r—n?
(10)
g(B,rr) = re(ryc(6,r) & td(t—r + 1)c(6,t)
v & ‘=7 r+t—1
hS.rr) = rr'e(r)c(8,r)c(d,r)
7 S(r+r—1)

Einstein’s vacuum field equations are a set of linear alge-
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TABLE L. Factors of TS metrics. TABLE 1. (continued)

& = 1(Kerr metric) 451202267 4 2560a%6°) + 5¢°b 2],

p=1 7= 4b{px[p*( — 50a" + 210a°b — 140a° — 3002*b7 + 1380a"b + 600>

o=1 + 140a7b3 — 26000762 + 1088a’5 4 1920a" + 1400a%*

r=2(px+ 1),

0 — 4880a°h2 — 29442° - 1280a° + 3360a°h > — 960ab
T=0.
—3072a°b + 2240a%b* + 1920a*62) + ¢*( — 1404*6° + 3002’57
6=2
Y ara — 40a°h " — 210a%6" + 120a%b7 + 48a%h° + 50ab®

p=pa+qb7

o= 2a—b) — 140ab* — 160ab” — 64ab® + 100b° + 2805* + 320b7 + 1285}

r=4la+ (@+2)(px+ )], + p( — 125a" + 700a° — 1125a%b 2 4 21002*b + 14004

7= —4b(px + 1). + 560a’h> — 4800a’h2 + 25600’ + 2800a°b> — 5600a%h*
5—3 — 4480a°b + 1280a® + 4480a°h? — 3072a%b + 2240a%h*

422

p=pa’ + @bt — 28b(a — b)(b— 3a), +1920a°65)

o =pla* + ¢?b* + 2p%a*(a — b) (a — 3b), 4+ @ — 175a°b® + 4002°bh 7 — 315a°b® + 100ab® + 1006°

7= (6a* 4+ 32a° + 32¢*)p’x + p*a*(18a 4 48a 4 32) +280b% + 32067 + 128h%)}.

+ 6470 (px + 1),
7 =4b{px[ — 6a(a — b) — da + 126 + 8] — 92°
+ 12ab + 125 + 8}.

TABLE II. The primitive factors.

5=1
6=4 (L) =1, 7(1,1)=0.
p = F(8) + 204,A,abla — b)*, R
o=4(a— b)[p?a*(a® - 4ab + 5b2) + ¢°b*(b? — 4ab + 5a%)], h
m(2,1) =a, 7(2,1)= —1b,
= (px + 1)[p’a*(8a” + 80a® + 192a + 128) :
2,2y =1, 7(2,2) =0
+ ¢*b*(120a° — 192a%b + 484> + 80ab? — 128ab 5_3
— 64a + 160h2 + 256b + 128)] T =t 4 1%, 7(3,1) = ab( - 2a + b,
+ p’a®(24@* + 80a + 64) + g’ab*(40a*> — 96ab 7(3,2) = p’d’, 7(3,2) = b2,
— 48a + 805 + 1285 + 64), (33 =pa, 3.3 =b.
7= 4b{(px + DN{P?[ — 202" + 484°b — 30a*h 6=4

m(4,1) = p’a’ + ¢ (5a’b* — 9a*h° 4 Sab*),
7(4,2) = p’a® + ¢°b°,

+ (a — b)(160a%b — 32a* + 964> + 160a°b
+ 1282%)] — 2¢°6 %}
+ p*(a — b)( — 20a° + 60a*h + 32a*

77(4,3) :pZaS +q2b5,
7(4,4) = p’a* + ¢°b°,

+ 80a°h + 64a™)}. (4,1) =p’(a — b)( — 52°h + 11a*h %) — 1b3(p’a* + ¢°b*),
5=5 7(4,2) = 6p’(a — b)a’b?,
p=(p’a"+qb%) + b*(b—a)[2¢"6°(2b* — 18ab* + 45a°b — 354°) 7(4,3) =1 p2(a — b) (@b + ?b ),
+ p*g*(175a%b° — 545a°b* + 713a% * — 535a7h > 7(4,4) = 4p*(a — b)a’b.
+ 2304%h — 504°) ], 5§=5
o= (pa" + ¢b°)° — a*(b—a)[2p'a"(2a’ — 18ba’ + 45b%a — 35b°) 7(5,1) = p'a' + 1g°b 2 + P35 * — 144a'b°

4 PP(175b%a" — 545b%a" 4 T13b % — 53567
+ 230b%a — 506°)],
m=2px|{p*(5a"* + 80a'' + 336¢'" + 5124° + 256a")

+ 252a°0° — 1924a°b7 + 63a*b®),
7(5,2) = p*a" + p*q*(28a°h® — 48a*b 7 + 21a°b %),
m(5,3) = p*a'"’ + p’¢*(16a°b° — 20a°b° + 5a°b %),

+ P2 (525a%b* — 1920a7b° + 480a"h? + 2800a°b 7(5,4) = p'a® + p’¢*(1a°b* — 14a°b® + 8a’h7),
—2560a°b > — 800a"b* — 19202°b7 + 7040a°b® + 6656a°b * 7(5,5) = p*a® + p*g*(15a°b* — 24a°b° + 102°b %),
+2560ab* + 525a*b* — 7680a°h7 — 5760a%b® + 30724%b 7(5,1) = 2b{p*( — 5a'° + 28a°h — 45a°h* + 1Pa’b?)
+ 38404°b* + 2800a°b ¥ — 2560a°h 7 — 10240a°6° + ¢ (~7a%° + 162’ — 9a7b® + 4ab®)},
+ 614436 % + 2800a%b® + 5120a%h7 + 2560a%h°®) + S¢°b 2] 7(5,2) = 2b{p*(3a*b — 24a’b* + 14a°b°) + 1¢°b°},
+ 2[p*(25a'% + 200a"" + 560a'® + 640a° + 256a®) 7(5,3) = 2b{p*(5a® — 10a®6> + 8a°b ) + 1g°b*},

+ p*¢*(875a*b* — 36000’ 5 + 6300a°h® — 5120a°b7 + 5600a°h® 7(5,4) = 26{p’(4a" — 7a*b + 3a'b’) + 1%},

+ 8960a°h° -+ 4480a°b* + 1575a*b* — 9600267 — 11200a°5® 7(5,5) = 2b{p*(5a° — 12a°b + 13a°b*) + 146 °}.

+ 3840a%b* + 420045 — 8960a°b ® — 61444°b° 4- 2800a°H
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braic relations for the unknown functions F, f(ry=p*a +¢b". (12)
5
z h(,r,P)f(r+7 — DF(& —r) Yamazaki’s solutions
r=1
=8LF(8), 7 =12..8 (11) F(8%) = M;s/N; (13)
where contain the Hankel determinant
}
S ()72 £(3)/3 f(5)/6
f2)/2 f(3)/3 :
M; = f(3‘)/3 (14)
f(5)/6 fQ6—-1)y/56-1)
I
. . S
and the normalizing factor is o= _1_ Z re(8,r)d(r)m(Br)b” ! Qan
1 % % cte 1/6 6 r=1
1 1 : and
2 3 s
Ne= |} p:% Z re(5,r)d(ry[a = ‘a(8,r) — Ab" " '1(6,r) ],
r=1
/6 - 1/(26 — 1) for 6 odd,
. 5
The function S re(d,r)d(ryr(8,r)a” =0,
re(r)c(8,r)F(8*—r) r=t
S
=(— 1)'—'det(f(s+t_ D/Gs+ 17— 1)), (15) Y re(8,nd(r)ym(8,r)a” =0, for s even. (22)
det(l/(s+1t— 1)) =
where r=12,..,6, s=12..,r—1r+1,.,86 and The primitive factors of the first five TS metrics are listed in

t=2,3,...,8, is the cofactor of F(5?) belonging to the element
in the rth row and first column.

ill. FACTOR STRUCTURE
It follows from Egs. (1), (2), and (8) that
G+ H =pr + 4,07, (16)

where the factors p and o are homogeneous polynomials.
Comparing (16) with Egs. (9) we see that the function H
contributes the terms linear in px while G is the sum of terms
without a factor px. Hence we can further decompose (16):

(17)

where 7, and 7, are polynomials in p?, g% a, and b with
integer coefficients. Both the function G and H is a linear
combination of the homogeneous polynomials F(& — r).
Thus considering terms in G and H of like homogeneity de-
gree, each of the polynomials (5% — r) must factorize in the
form

T =To+ pXT, T=7To+pPxXTY,

F(8 —r) =pm(8,r) + A,o7(8,7). (18)
We have
5
77'0=2 z c(5,r)17'(5,r), (19)
r=1
]
To=2 Y c(&n7(5,r). (20)

r=1
The primitive factors 7 (8,r) and 7(8,7) are polynomials
in pz, ¢, a, and b with rational coefficients. They completely
determine the TS functions. The factors satisfy the relations
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Table II.

IV. DUALS

Let PeZ be an arbitrary polynomial in a, b, px, and gy.
We introduce the involutory automorphism of the ring # of
these polynomials

C: PP
defined by the mutual substitutions
pXS —qy pPOg, as b

The image (or dual) under € of a polynomial P will be
denoted

P*=%P.

The Hankel determinants My are invariant under the
involution % :

My =M,
According to Egs. (9), we have
A*=A4, G*=G, R*= —R. (24)

In order to close the set of Yamazaki functions under the
action of ¥, we introduce the duals

(23)

I:H*’ P=Q* (25)
These potentials satisfy the algebraic constraint*
H?>+1*—-G?=24G. (26)

The Ernst potential of a TS space-time, given by
&= (H + i) /G, is self-dual,

Zoltan Perjés 2199



E=iE* (27)
The discrete symmetry properties of the factors can be

obtained by using the decomposition (1), (2}, and (18) of
the polynomials. We get

o*=p, p*=o, fordodd (28)
and

p*=p, o*= —o, fordeven (29)
Furthermore,

28p = my — Ay7o, for 6 odd (30)
and

28p = — A7 — Ay7o

for & even. 31

260 = Ty — o,

Some further properties of the factors are the following.

(i) The polynomial 7 contains an overall factor 4b.

(ii) The factors p and o of an odd TS space-time have
the form

p=f@B+1)° V"2 4+2¢(a—b)Z,

0'=f(6+ ])(5—1)/2__2p2(a_b)z*,
where the polynomial Z is of homogeneity degree (82 —3)/
2.

(iii) The factors p and o of an even TS space-time have
the structure

p=f(8)*+ (a— b)YV,

o= (a—-b)W,
where the polynomial ¥ is of degree §°/2 — 1 and W is of
degree 62/2 — 2.

Property (ii) has been verified to holdforé =1, 3,5, 7
and property (iii) holds for § = 2, 4, and 6.

The 26 primitive factors 7(8,r) and 7(6,r) and their
duals satisfy the set of 28 linear homogeneous algebraic rela-
tions

%-b" e (8,7 )Ym*(8,7)

k)
=N a" " h(S,rr)m(S,r),
r;l
%b =le(8,FYT*(5,r)

)
= - 2 arilh(sar)r,)f(ﬁﬁa)s

r=1
for & odd, (32)
and

%b T=1e(8,F )T (8,F)

Pl
=-3 a’ ~'h(8,r,F)m(5,r),

r=1
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ib = le(8,F)T* (8, )
1)
&
= — ¥ & W) (1),

r=1

for 6 even, (33)

where ¥ = 1,2,...,6. These equations have been found by in-
tuition. Substituting back in Eqs. (11) and using the symme-
try properties (30) and (31) of the factors, we find that the
field equations are satisfied.

The ratios of the primitive factors can be computed from
the linear algebraic equations (32), (33) and the corre-
sponding dual equations. The arbitrary factor of proportion-
ality does not enter the gravitational field quantities. The
functions p and o are given by

p=06[7*(6,1) —A,7(8,1)], foré odd, (34)
and

p= —8[A4,7(5,1) — A,7(6,1)],

o=06[n(8,1) —7*(5,1)], for S even. (35)

An obvious advantage of the field equations (32) and
(33) over (11) isthat they are linear algebraic relations with
constant coefficients for the functions a” '#(8,r) and
a"~ 'r(8,r). Since the matrix [m;, ] = [8(h(8,5,k)/c(8,k))]
is involutory, m* = 1, and both systems (34) and (35) are
symmetrically partitioned, their determinant vanishes. One
can form linear superpositions of the solutions. The coeffi-
cients of superposition are subject to the duality relations

¥ (8,8) = A,7(6,¢), for b odd, (36)
and

A7 (6,8) + A,7(8,t) =0,

T*(4,t) = 7(6,t), forbeven, (37

with r=2,3,...,6. These symmetry relations among the
primitive factors follow from the power structure of Egs.
(28)-(31).
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Some new similarity reductions of the Boussinesq equation, which arises in several physical
applications including shallow water waves and also is of considerable mathematical interest
because it is a soliton equation solvable by inverse scattering, are presented. These new
similarity reductions, including some new reductions to the first, second, and fourth Painlevé
equations, cannot be obtained using the standard Lie group method for finding group-invariant
solutions of partial differential equations; they are determined using a new and direct method

that involves no group theoretical techniques.

I. INTRODUCTION
The Boussinesq equation
u, +au,, +bW),, +cu,,, =0, (1.1)

where a, b, and c are constants and subscripts denote differ-
entiation, was introduced to Boussinesq in 1871 to describe
the propagation of long waves in shallow water' (see, also,
Ref. 2). The Boussinesq equation also arises in several other
physical applications including one-dimensional nonlinear
lattice waves,>* vibrations in a nonlinear string,’ and ion
sound waves in a plasma.®

It is well known (and was even to Boussinesq) that the
Boussinesq equation (1.1) has a bidirectional solitary wave
solution

3 +a
2b

1/2
Xsechz[%(ﬁﬁ) (x + y1) +x0] ,

u(x,t) =

where ¥ and x,, are constants.

Recently there has been considerable mathematical in-
terest in the Boussinesq equation, primarily because its
Cauchy problem (for initial data on the infinite line that
decays sufficiently rapidly) is solvable by inverse scatter-
ing,” through a third-order scattering problem (see, also,
Ref. 7).

The inverse scattering method was originally developed
by Gardner et al.? in order to solve the Cauchy problem for
the Korteweg—de Vries (KdV) equation. In effect, this
method reduces the solution of the nonlinear partial differ-
ential equation to that of a linear integral equation, and the
partial differential equation is usually then said to be com-
pletely integrable. Completely integrable partial differential
equations generally possess almost all of the following re-
markable properties: the existence of multisoliton solutions;
an infinite number of independent conservation laws and
symmetries, and recursion operators generating them; a bi-
Hamiltonian representation; a prolongation structure; a Lax
pair; Biacklund transformations; the Hirota bilinear repre-
sentation; the Painlevé property, etc. (cf. Ref. 9). However,
the precise relationship between these properties has yet to
be rigorously established.
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In this paper we study similarity reductions of the Bous-
sinesq equation. Without loss of generality we shall assume
thata =0, b=1,and c = + 1 in Eq. (1.1) since the equa-
tion

Uy, +% (uz)xx i Usxx == 0

(1.2)

is equivalent to Eq. (1.1) after suitable rescaling and transla-
tion of the variables. If the quantities in the equation are to be
interpreted as real, then the sign matters and we choose the
plus sign from here on only for convenience, and leave the
reader the trivial modifications required for the other sign.
However, if the quantities are interpreted as complex, then
the sign does not matter and our analysis is complete.

The classical method for finding similarity reductions of
a given partial differential equation is to use the Lie group
method of infinitesimal transformations (sometimes called
the method of group-invariant solutions), originally devel-
oped by Lie'® (see Refs. 11-14 for recent descriptions of this
method). Though the method is entirely algorithmic, it of-
ten involves a large amount of tedious algebra and auxiliary
calculations which are virtually unmanageable manualily.
Recently symbolic manipulation programs have been devel-
oped, especially in MACSYMA'> and REDUCE,® in order to
facilitate the determination of the associated similarity re-
ductions. (See Ref. 17 for a review of the use of computer
algebra to find symmetries of differential equations.)

Bluman and Cole'® proposed a generalization of Lie’s
method which they called the “nonclassical method of group-
invariant solutions,” which itself has been generalized by
Olver and Rosenau.'® All these methods determine Lie point
transformations of a given partial differential equation, i.e.,
transformations depending only on the independent and de-
pendent variables.

Noether?® recognized that Lie’s method could be gener-
alized by allowing the transformations to depend upon the
derivatives of the dependent variable as well as the indepen-
dent and dependent variables. The associated symmetries,
called Lie-Bicklund symmetries, can also be determined by
an algorithmic method (see Refs. 13 and 21).

In a recent paper, Bluman ef ¢/.?? introduce an algorith-
mic method which yields new classes of symmetries of a giv-
en partial differential equation that are neither Lie point nor
Lie—Bidcklund symmetries.
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A common characteristic of all these methods for find-
ing symmetries and associated similarity reductions of a giv-
en partial differential equation is the use of group theory.

In this paper we develop a new method of deriving simi-
larity reductions of partial differential equations and apply it
to the Boussinesq equation (1.2). The unusual characteristic
of this new method in comparison to the ones mentioned
above is that it does not use group theory (though we hope
that a group theoretic explanation of the method will be pos-
sible in due course®?). The basic idea is to seek a reduction of
a given partial differential equation in the form

u(xrt) = U(.x,t,UJ(Z(x,t))), (1.3)

which is the most general form for a similarity reduction (cf.
Bluman and Cole'!). Substituting this into the partial differ-
ential equation and demanding that the result be an ordinary
differential equation for w(z) imposes conditions upon U
and its derivatives that enable one to solve for U. For the
Boussinesq equation (1.2), it turns out to be sufficient to
take (1.3) in the special form

u(x,t) = a(xt) + Bx,wiz(x,t)). (1.4)

The outline of this paper is as follows: in Sec. I we
describe the previously known (classical and nonclassical)
similarity reductions of the Boussinesq equation; in Sec. III
we present our new method for finding similarity reductions
of a given partial differential equation and use it to obtain
new similarity reductions of the Boussinesq equation (1.2);
in Sec. IV we justify the use of the special form (1.4); and in
Sec. V we discuss our results.

. CLASSICAL AND NONCLASSICAL SIMILARITY
REDUCTIONS

First we sketch the derivation of the classical similarity
reductions of the Boussinesq equation using Lie group meth-
od as given by Bluman and Cole.'! Consider the one-param-
eter (&) Lie group of infinitesimal transformations in (x,z,u)
given by

&=x4+eX(x,t,u) + O(£7), (2.1a)
r=t+ eT(x,t,u) + O(), (2.1b)
7 =u+ eU(x,tu) + O(e?), (2.1¢)
e =u, +eU"+ 0(£?), (2.2a)
Nge = e + U™+ O(£%), (2.2b)
Negee = honnx + EU™ + O(7), (2-2¢)
N, =u, +eU"+ 0(eY), (2.2d)

where the functions U*, U™, U, and U" in (2.2) are
determined from Eqgs. (2.1) (cf. Ref. 11). The Boussinesq
equation (1.2) is invariant under this transformation if

Mer +3 () ge + Ngges = 0. (2.3)
By (2.1) and (2.2), to first order in &, this becomes
U+ uU+u, U+ 20, U+ U™ =0. 2.4)

Conditions on the infinitesimals X (x,z,u), T(x,t,u), and
U(x,t,u) are determined by equating coefficients of like de-
rivatives of monomials in %, and 4, and higher derivatives.
Solving these “determining equations” yields the following:
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X=ax+ B, U= - 2au, (2.5)

where a, 3, and ¥ are arbitrary constants (cf. Refs. 24 and
25). Similarity reductions are then obtained by solving the
characteristic equations

dx _ dt  du
X(x,t,u) T(xtu) Ulxtu)
Integration of these ordinary differential equations yields
the following cases.
Case (a), a=0: This is the traveling wave reduction
u(x,t) = f(z), z= yx — Bt, where f(z) satisfies

2oy 12 ad
ﬁf+2rzf+1/‘dzz

with A and B arbitrary constants of integration. For y =0,
this is a form of the first Painlevé equation (cf. Ince®®)

d*w

dz?
(or the Weierstrass elliptic function equation for 4 = 0).
This reduction of the Boussinesq equation to the first Painle-
vé equation is well known in connection with the Painlevé
conjecture (cf. Refs. 27 and 28) for soliton equations.

Case (b), as20; This is the scaling reduction

T=2at+7y,

Az + B, (2.6)

=6w?*+z 2.7

wngy =—8@ _,_  (+B/a)
[t+7/Qa)] [t+v/Qa)}'?
(2.8)
where g(z) satisfies
Z d% 7z dg d%g dg\* d‘
TR arereE () -
2.9)

This can be solved in terms of solutions of the fourth Painle-
vé equation

dw 1 ( dw) b
=— +——w + 4z’ 4+ 2(F —a w+—
dz? 2w\ dz ¢ )
(2. 10)
where a and b are arbitrary constants® (see also Appendix

A).

However, there also exist similarity reductions of the
Boussinesq equation that cannot be obtained by the classical
Lie group method. As noted by several authors, 24252 the
Boussinesq equation (1.2) possesses the similarity reduction

u(x,t) =f(z) —41%32, z=x+4At? (2.11)
where A is a constant and f(z) satisfies
f+f f+2/1f 8%+ A, (2.12)

with A a constant of integration. If, in (2.12), we make the
transformation

f(2)=n(E) +24& z=£6—A/(81%),
then 7(£) satisfies
d? d’n dn ( )
+n—+24| &E—+279)=0. (2.13)
dg> " T dE g

Solutions of Eq. (2.13) are known to be related through a
one-to-one transformation to solutions of the second Painle-
vé equation
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d*w
dz?

where a is an arbitrary constant®**—see, also, Appendix A.
[We remark that this equation also arises from the scaling
reduction

u(x,t) = (—3A) ~3q(&), E=x/( =343
of the KdV equation

=2uw +zw+a, (2.14)

u, +uu, +u, =0

—see Ref. 27.]
The infinitesimals that give rise to the similarity reduc-
tion (2.11) of the Boussinesq equation are

X(x,tu) =241, T(xtu)= —1, Ulxtu)=281%,
(2.15)

which are clearly not a special case of (2.5). Since Eqgs.
(2.15) describe a Lie point transformation of the Boussinesq
equation, Rosenau and Schwarzmeier® suggest it can be ob-
tained using the nonclassical method of Bluman and Cole'®
(see, also, Ref. 11). This method involves more algebra and
calculations than the classical Lie method; in fact, Olver and

Rosenau!® suggest that for some partial differential equa-
28 p |

tions, the determining equations for these nonclassical sym-
metries might be too difficult to solve explicitly. The princi-
pal reason for this is that although the determining equations
for the infinitesimals X, 7, and U in the classical method are
alinear system of equations (in X, 7, and U), in the nonclas-
sical method, they are a nonlinear system. Furthermore, for
some equations, such as the linear heat equation, it is well
known that the nonclassical method does not appear to yield
any more similarity reductions than the classical Lie method
does'® (see, also, Ref. 31).

1Il. NEW SIMILARITY REDUCTIONS

In this section we seek reductions of the Boussinesq
equation (1.2) in the form

u(x,t) = a(x,t) + B(x,t)w(z(x,t)), 3.1

where a(x,?), B(x,t), and z(x,t) are to be determined. {We
shall show in Sec. IV why it is sufficient to seek a similarity
reduction of the Boussinesq equation (1.2) in the form (3.1)
rather than the more general form (1.3).]

Substituting (3.1) into (1.2) and collecting coefficients
of monomials of w and its derivatives yields

Bz‘)‘c w" ” + [6ﬁzizxx + 4sz3( ] w"’ + [B(3z§x + 4zxzxxx) + lzﬁxzx zxx + 65)0:2;2( + aﬁzi + BZ?] w”
+ [BZXXXX + 4BXZXXX + 6BXXZXX + 4Bxxxzx + zaxﬁzx + zaBXzX + aBzXX + ZBIZI + lel]w’
+ [Beo + 20,8 + 0. + . B+ B, \w+ B°Zww” + B[4B,2, + Bz, Jww'

+ﬁzzi(w,)2+ [B)Z: +Bﬂxx]w2+ [au +aaxx +ai +axxxx] :0’

where : = d /dz. In order that this equation be an ordinary
differential equation for w(z) the ratios of coefficients of
different derivatives and powers of w(z) have to be functions
of z only. This gives a set of conditions for a(x,t), B(x,?),
and z(x,t) for which any solution will yield a similarity re-
duction.

Remark 1: We use the coefficient of w”” (i.e., fz*) as
the normalizing coefficient and therefore require that the
other coefficients be of the form Bz2 ' (z), where T is a func-
tion of z to be determined.

Remark 2: We reserve uppercase greek letters for unde-
termined functions of z so that after performing operations
(differentiation, integration, exponentiation, rescaling, etc.)
the result can be denoted by the same letter [e.g., the deriva-
tive of I'(z) will be called I"(z)].

Remark 3: There are three freedoms in the determina-
tion of «, 3, z and w we can exploit, without loss of genera-
lity, that are valuable in keeping the method manageable: (i)
if a(x,t) has the form a = ay(x,t) + B(x,t)Q2(z), then we
can take 2 =0 [by substituting w(z) - w(z) — Q(2)]; (ii) if
B(x,t) has the form S = B,(x,t)§}(z), then we can take
Q=1 [by substituting w(z)->w(z)/Q(z)]; and (iii) if
z(x,t) is determined by an equation of the form €(z)

= z4(x,t), where Q(z) is any invertible function, then we
can take 02(z) = z [by substitutingz—- Q" 1(z2)].

We shall now proceed to determine the general similar-
ity reductions of the Boussinesq equation using this method.
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(3.2)

r

The coefficients of ww” and (w')? yield the common
constraint

BiT (z) = B°Z,

where I'(2) is a function to be determined. Hence, using the
freedom mentioned in Remark 3(ii) above, we choose

B=2. (3.3)

"

The coefficient of w" yields
BT (2) = 4B, z; + 6Bz;2,,,

where I"(z) is another function to be determined. Hence
using (3.3) and rescaling T, we have

z.T'(z) +z.,/2, =0,
which upon integration gives
() +Inz, =0(1),

where O(¢) is a function of integration. Exponentiated this
becomes

z,T'(z) =0(1)

(recall Remark 2). Integrating again gives

(3.4)

[(z) =x0() + 2(¢),

with 2(¢) is another function of integration. By Remark
3(iii), we have

z=x06(t) + o(t), (3.5)
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where 8(¢) and o(¢) are to be determined. From Egs. (3.3)
and (3.5), we have

B=6%s.
The coefficient of w” yields
Bzir(z) =ﬁ(3z2 + 4ZXZXXX) + lzﬂx X XX
+ 6B..2; + Blaz; +z),

where I'(z) is to be determined, and by Eqgs. (3.5) and (3.6)
this simplifies to

(3.6)

2
0T (z) = ab? + (xig+——)
dt

Hence by Remark 3(i) above

L (cdo, doy
82(1) dt  dt)’

Let us see how Eq. (3.2) looks with the simplifications as
determined so far, viz. (3.5)-(3.7):

3.7

66{w”"+ww"+(w,)2}
d*¢ d’o\ , d?0
+02(x dr® dtz)w 7
2
dt)] ]

21/ do
“ﬁHsz+
6 d0( 6 da)]
b 1d6( 46  do\|"_,,

+94[a’t *ata

We continue to make this an ordinary differential equation
for w(z). Then the remaining coefficients yield

(3.8)

6°%,(z) =02( ‘;te d ‘2’) (3.9)
d?e

0%,(z) =20 — R (3.10)
d? 1 do  do\)?

o=~z |5 (= F+ )]

72(2) dt? 2] x dt + dt
6 [do( db do)]z
B Bl AL | 3.11
ML dt(xdt+dt (3.1

with ¥,(2), 7,(2), and ¥5(2) to be determined. First, since
z=x0(t) + o(t) and the right-hand side of Eq. (3.9) is lin-
ear in x, consequently ¥, (z) = Az + B, where 4 and B are
constants, and so

d®e
0[A(x0+0) +Bl =x— + (3.12)
[A( ) 1 e dt
Equating coefficients of powers of x gives
d?e
= A6?, (3.13)
de?
d?%o
= 6*(A40 + B). (3.14)
dr? )
It is then easily seen from Eqs. (3.10) and (3.11) that
v2(2) =24, y3(z) = —2(4z+ B)>.

[ The Boussinesq equation is special in that, having satisfied
Eq. (3.9), Egs. (3.10) and (3.11) are satisfied automatical-
ly; slight modifications of the equation would not have sig-
nificantly affected the application of the method until this
point when further restrictions, on é(z) and o(¢), would
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arise from (3.10)and (3.11), severely limiting the set of si-
milarity reductions. ]

We conclude that the general similarity reduction of the
Boussinesq equation (1.2) is given by
1 ( do )
—— | x—+—),(3.152
920 ( )

2 =02%(t -
u(x,t) (NHw(z) ” d

z(x,t) = x0(t) + o(2), (3.15b)

where 6(t) and o(t) satisfy Eqgs. (3.13) and (3.14), and
w(z) satisfies

w"” + ww” + (w')* + (4z + B)w' + 24w
=2(Az 4+ B)> (3.16)
It can be shown that of all the equations of the form
w"” 4+ ww” + (W) + A + g(2)w = h(2),

with f(z), g(z), and A(z) analytic, (3.16) is the most gen-
eral one having the Painlevé property, that is, having no
solutions with movable singularities except poles. In general,
(3.16) is equivalent to the fourth Painlevé equation; but,
when 4 = 0, it is equivalent to the second Painlevé equation,
and, when B = Q as well, it is equivalent to either first Painle-
vé equation of the Weierstrass elliptic function equation—
see Appendix A for details. We remark that it is nor essential
to our method that all ordinary differential equations arising
from similarity reductions are equivalent to one of the Pain-
levé equations (or more generally possess the Painlevé prop-
erty). The Boussinesq equation is a completely integrable
soliton equation for which the Painlevé conjecture?® asserts
that every ordinary differential equation arising from a simi-
larity reduction is necessarily of the Painlevé type, in agree-
ment with our results.

Henceforth, new symbols appearing in an equation ob-
tained by integration are generally understood to be arbi-
trary constants. Furthermore, whenever we set a constant to
be a specific value without further explanation, it is implied
that this is easily seen to be without loss of generality.

There are three cases to consider.

Case 1. A=0, B=0:In this case, the general solutions of
Egs. (3.13) and (3.14) are

0(t) =a,t+ay o(t) =bt+ b,

and the similarity reduction of the Boussinesq equation is

(1) = (a,t + ap)°w(z) — (i’ﬁ—"—‘)z (3.17a)
at + a,
z=x(a,t + ay) + byt + by, (3.17b)
where w(z) satisfies
w' +iw=cz+c, (3.17¢)

Equation (3.17c) is the same as Eq. (2.6) and so, as we
remarked in Sec. II, it is equivalent to either the first Painlevé
equation (2.7) or the Weierstrass elliptic function equation.
We note also that the traveling wave reduction arises as the
special case of (3.17) where a, = 0 and b, #0. However, if
a, =0, then we set @, = 1, a, = b; = b, = 0, and obtain the
similarity reduction

u(x,t) = t2w(z) — x*/t?, (3.18)

where w(z) satisfies Eq. (3.17c). This is a new reduction of
the Boussinesq equation to the first Painlevé equation.

z = Xxt,
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With z and w as invariants, Egs. (3.18) define the point
transformation group

(atu) - ('t u+ (V¥ — y~Hx/e?).
The infinitesimals associated with this are
X=—x, T=t U=2u+6x*/t? (3.19)

which clearly are not a special case of the infinitesimals ob-
tained by the classical Lie group method [cf. (2.5)].

Case 2. A=0, B50: In this case the general solution of
Egs. (3.13) and (3.14) are

o(t) = alt+ g,
% Ba[ *(at+ a,)° + byt + by, ifa,#0,
} Bait? + byt + b, ifa, =0.

Case (a). a; = 0: The similarity reduction of the Boussin-
esq equation is

o(t) =[

u(x,t) = agw(z) — (Bajt + b,)*/a3, (3.20a)

z=ayx + 4 Ba}t*+ byt + by, (3.20b)
where w(z) satisfies

w” + ww' + Bw=2B%2+c, (3.21)

Equation (3.21) is the same as Eq. (2.12) and so, as re-
marked in Sec. II, it is equivalent to the second Painlevé
equation (2.14)—see, also, Appendix A. We set a, =1,
b, = b, =0, in (3.20), in which case it just reduces to the
“nonclassical” similarity reduction (2.11) (cf. Refs. 19, 24,
25, and 29).

Case (b). a,50: The similarity reduction of the Boussin-
esq equation is

u(x,t) = (a,t + ay)*w(z)

ax+1B(ait+ay)’ +ab,\?
_( 1§ (A + do) “), (3.20a")
a,(at + ay)

z=x(a;t + ay) + [B/30a} ] (a,t + a5)® + bt + by,
(3.20b")

where w(z) satisfies (3.21). We set a, =1, a, = b, = b,
= 0, and obtain

u(x,ty = t?w(z) — (x + At3)%/t?, z=xt+ A5,
(3.22)

where w(z) satisfies (3.21) (we have also set B = 54). This
is another new reduction of the Boussinesq equation; this
time to the second Painlevé equation (2.14). The infinitesi-
mals associated with the transformation group defined by
(3.22) are

X=—(x+4it3), T=1,
(3.23)

U=2u+2(x +At3)(3x — 2At3)/t2

[We note that if A = O in (3.22) and (3.23), they reduce to
(3.18) and (3.19).]

Case 3. A0: In this case we can set B = 0in Eq. (3.14).
Multiplying Eq. (3.13) by d6 /dt and integrating gives

2
(ig.) =i,496+,40,

3.24
dt 3 ( )
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where A, is a constant. There are two possibilites.
Case (a). A,=0: Equation (3.24) has the solution

0(1) = co(t+ 1) "3, (3.25)
with ¢} = 3/(44). Substituting this into Eq. (3.14) and
solving yields

o(1) = ¢, (t 4 )2 4 (1 + 1) 712

Therefore we may set ¢, = 0, ¢, = 1, and ¢, = 0, and obtain
the similarity reduction

u(x,t) =t 'w(z) — 1t 73 (x —3¢,2?)?,

(3.26)
z=xt V24,23
where w(z) satisfies
w' +ww” + (W) +izw +jw=32 (3.27)

Note that the scaling reduction (2.8) arises as the special
case of (3.26) with ¢, = 0. If ¢, #0, this is a new similarity
reduction, namely, to the fourth Painlevé equation, since if
in (3.27) we make the transformation w(z) = g(z) + 2°/4,
then g(z) satisfies Eq. (2.9) and therefore Eq. (3.27) is also
equivalent to the fourth Painlevé equation (2.10)—see, also,
Appendix A.

Case (b). A==0: Equation (3.24) can be solved in terms
of Jacobian elliptic functions (cf. Ref. 32). Furthermore we
may set

Ayg=k? A= (k2+1)/3k? (3.28)

where k is a constant to be chosen. For this choice of con-
stants, the transformation

0%ty =1/[7*(t) — 4] (3.29)
reduces (3.24) to the normal form
d”l)2 2 2,2
1) =(1- 1—% s 3.30
( 1) = (=71 - k) (3.30)
provided that
k?2=4(1+i3) (3.31)

(which we may assume without loss of generality). The so-
lution of (3.30) is the Jacobian elliptic function sn(¢ -+ ¢4;k),
and so

0(r) = (sn?(t + tyk) — (K2 + 1)/3k3)~Y2 (3.32)

Equation (3.14) becomes
2 2

d’oc _ k“+1 0%,

dr? 3k?
which has the solution

o) =[C([(2—k>/3k*s

—k T2E(t + ty;k)) + D 16(e),
(3.33)

where E(t + t,;k) is the elliptic integral of the second kind
given by
t 41,

E(t+ t;k) =J [1 — k2sn’(s;k)]ds

0

and C and D are arbitrary constants—we set D = 0,
Therefore we have the following similarity reduction:
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u(x,t) = (sn’(t + ty;k) — A) 'w(z)

— [ Csn®(t+t53k) —A)—{x+ C([(2—k?)/3k?]t — k 2E(t + t;k))}

X [sn(2 + t:k)\(1 = sn? (£ + 1K1 — k7 sn?(f + 1K)/ (0% (2 + k) — A) ]2,

with
z=[x+C([(2— k2)/3k?)t — k 2E(t + 1,k))]

X (sn(t + tyk) — A)7'2, (3.34b)
and
2 -
PSR NP Y S & U U S
2 2 k2 2 3
(3.34¢)

where w(z) satisfies
w4+ ww” + (w)? 4+ Azw' + 24w = 24%7°. (3.34d)

This is another new similarity reduction, again to the fourth
Painlevé equation (2.10).

As for the other new similarity reductions given above
[(3.18) and (3.22)], we can write down the infinitesimals
associated with the transformation groups defined by (3.26)
and (3.34). Again they are not special cases of those ob-
tained by the classical Lie group method.

In all three cases we have obtained new similarity reduc-
tions of the Boussinesq equation more general than those
previously obtained (though, interestingly, the resulting or-
dinary differential equations are the same). As mentioned
above, these similarity reductions are associated with Lie
point transformations (since they depend only on the inde-
pendent and dependent variables and not upon the deriva-
tives of the dependent variable). It remains an open question
as to whether all these new similarity reductions and their
associated transformations can be obtained using any of the
other generalizations of the classical Lie method, such as the
nonclassical method of Bluman and Cole!® (cf. Ref. 23), and
the method developed by Bluman et al.*> However, even if
theoretically they can be obtained by either of these methods
it seems that our method is somewhat simpler to implement;
in fact, it appears to be simpler than calculating the classical
Lie point symmetries manually.

It can be shown that for the similarity reductions of the
Boussinesq equation that cannot be obtained using the clas-
sical Lie group method, the associated group transformation
does not map the Boussinesq equation into itself, whereas
the similarity reductions obtained by the classical Lie group
method do. For example, consider the similarity reduction

u(xt) =t’w(z) — (x + Ar>)*/1?, z=xt+ 3%
(3.22)

The one-parameter (¥) group associated with this similarity
reduction is given by

J

(3.34a)

r
x-y Ix LAy — 015, (3.35a)
-1, (3.35b)

u—yu+y(1—y"°
XX/t 4 4 Axt3 4 L A28 (1 = 2579}
(3.35¢)

This group maps solutions of the Boussinesq equation (1.2)
into solutions of

U, + uu,, + ui + Upixx = (7/6 - l)t_z(D’
where
D= (X +1Axt5 —22% O, +4(x + At7)u, +2u

(3.36a)

+ 3 A%, —tu, + 6x7/t7 + 2Axt3 — 12 A %8,
(3.36b)

If u is the similarity reduction (3.22), then it is easily seen
that =0, i.e., the group (3.35) maps the Boussinesq equa-
tion (1.2) into the “perturbed Boussinesq equation”
(3.36a), but (3.36b) is identically zero. Therefore the per-
turbed equation is identical to the Boussinesq equation when
u is given by (3.22).

In order to understand why the perturbation & must
vanish identically, consider the infinitesimals

X=—(&x+A4t%, T=1,
(3.23)
U=2u+2(x+ At3)(3x — 24t3%)/t2,

for the similarity reduction (3.22). The similarity reduction
necessarily satisfies the invariant surface condition
Xxt,u)u, + T(x,tu)u, = U(x,tu),
ie.,
= (x + At3u, — tu,

4 2u46x3/t? 4+ 2Axt3 — 44U =0.  (3.37)
It is easily shown that
D= (x -3, + 10, + 1. (3.38)

V. JUSTIFICATION OF THE SPECIAL FORM (1.4)

We show here that it is sufficient to seek a similarity
reduction of the Boussinesq equation (1.2) in the special
form

u(x,t) = a(x,t) + B(x,nHwlz(x,1)), (4.1)
rather than the more general form
u(x,t) = U(x,t,w(z(x,1))). 4.2)

Substituting (4.2) into (1.2) yields

[U, +2U,w'z + U, (w)2+ U, (w'z, +wz,)] + U[U,, +2U,wz, + U, (w2 + U, (w"z, +w'z,,) ]

+ U2 +2U0, U, wz, + UL (w)?22 + U,,,,
+6U,,,, (w2 + 4U

XXWiw XWww W
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(W32 + Uy (W22 + 6U,,, (W2, +w"22) + 12U, [Ww"z) + (w)’2,2,, ]
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+ 6U,,, [(WYW' s + ()22, | + 4U,, (W"Z) + 30"z, 2, + W'z, )
+ U, [{4w'w” + 3(w")?}z} + 18w'w"Z}z,, + (W')*(42,2,,, + 322.) ]
+ U, [w""2} + 6w"Zz,, +w" (42, 2,,, +322,) + W2, ] =0. (4.3)

For this to be an ordinary differential equation in w(z), the ratios of different derivatives of w(z) must be functions of w and z.
Using the coefficient of w” (i.e., U, z}) as the normalizing coefficient, the coefficients of w'w” and (w”)? require that

U,z2'T(w,z) = U, 2%, (4.4)
where I'(w,z) is a function to be determined. Hence

Nwz)=U,,/U,,
which after two integrations yields

U(x,tw) = O(x, )T (w,z) + P(x,1), (4.5)

with @(x,?) and ®(x,t) arbitrary functions (cf. Remarks 2 and 3 in Sec. IIT). Therefore it is sufficient to seek similarity
reductions of the Boussinesq equation (1.2) in the form (4.1).

Therefore, if we seck a similarity reduction of the Boussinesq equation in the general form (4.2), we are naturally led to
the special form (4.1). Although, for many partial differential equations such as the Boussinesq equation, it is sufficient to
seek similarity reductions in the special form (4.2), for some others it may be necessary to transform the dependent variable

before using (4.1); however, the assumption (4.2) leads naturally to the required transformation.
For example, consider the Harry-Dym equation (cf. Ref. 33).

U+ 2", =0,

(4.6)

which can be solved by inverse scattering® (see, also, Ref. 12) and is related to the Korteweg—de Vries and modified
Korteweg—de Vries equations through hodograph transformations.®® Let us seek a similarity reduction in the form (4.2).

Substitution yields
U, + U,wz, —3U~"2(U, + U,wz,)*

+3U 5(U, + U,w'z,) [ U,, +2U,,wz, + U,, (w)2: + U, (w'Z + w'z,,)]

— Uy,

XXX

+3U

Using the coefficient of w” (i.e., U ~*/2U,z’ ) as the normal-
izing coefficient, the coefficient of w'w” requires that

U0, ziT(wz) =3U ~°2U%2E — U,z ,
that is,

Fwz)=-3U0,/U+U,,/U,, (4.8)
where I'(w,z) is a function to be determined. Integrating
twice yields

U~ (x0) = 00T (w,z2) + D(x,0), (4.9)
with ©® (x,?) and P (x,¢) arbitrary functions (cf. Remark 2 in
Sec. III). Hence it is sufficient to seek similarity reductions
of the Harry—Dym equation (4.6) in the form

2 (x,0) = a(x,t) + B(x,Hw(z(x,1)).

Alternatively we could first make the transformation
v=u""? and then seek similarity reductions in the form
(4.1). Obvious as this transformation is, our method leads to
it systematically.

V. DISCUSSION

In this paper we have developed a direct method for
determining similarity reductions of a given partial differen-
tial equation. However, there are a number of open questions
our method poses. First, what is the relationship (if any)
between our method and other generalizations of the classi-
cal Lie method, such as those of Bluman and Cole'® (cf. Ref.
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xxwwlzx + 3waw (wl)zzi + waw
+ 30, {w'w'z; + (W22} + U, W'z + 3wz, 2, + wz,,)] =0.

(w')’z) +30,, (w22 + wz,)

4.7)

|
23), Olver and Rosenau,'® and Bluman et a/.?>? In their
generalization of the method of Bluman and Cole,'® Olver
and Rosenau'® showed that in order to determine a group-
invariant solution to a given partial differential equation, one
could try any group of infinitesimal transformations whatso-
ever. Generally, for any specific group and any specific equa-
tion, there will be no solutions of the equation invariant un-
der the group, and so the question becomes how does one
determine a priori which groups will give meaningful simi-
larity reductions? One possibility is that by seeking a reduc-
tion of a certain form (as done in this paper), one is naturally
led to the appropriate group (i.e., the requirement that the
similarity reduction reduce the partial differential equation
to an ordinary differential equation is equivalent to the side
conditions in the terminology of Olver and Rosenau’®).

Second, what kind of “symmetries” of the Boussinesq
equation are those we have obtained that are not found using
the classcial Lie method? (They are “weak symmetries” in
the terminology of Olver and Rosenau.!®) As shown in Sec.
III, the associated group of infinitesimal transformations
does not map solutions of the Boussinesq equation into other
solutions of the Boussinesq equation, but rather into solu-
tions of other equations.

The idea of making the ansatz that a similarity reduc-
tion of a given partial differential equation have a particular
form has been suggested previously in the literature. For
example, (i), Gilding®® seeks solutions of the porous media
equation
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ul = (um)xx ’ m> 1’

in the form
u(x,t) =p(t) f(2), z=p®O[x+A@D)];

and (ii), Fushchlich, in a series of papers with various co-
authors,?” has obtained exact solutions of several nonlinear
relativistic and nonlinear wave equations (including the
nonlinear Dirac, Klein—-Gordon, Maxwell, and Schrédinger
equations) in three spatial and one temporal dimension, us-
ing their symmetry properties and seeking solutions in the
form

U (XX 1,X2,X3) = A(XgyX 15X2,%3) W(2,25,25)

+ B(XO’xlixz,xfi) ’
where

z = (2, (XX 1,X2:X3) Z5(XgsX1,X2,%3),
23 (xo,xuxz,xa ) )

are the new independent variables, w(z,,2,,z;) the new de-
pendent variable, and A4 (xy,X,X,,X5) and B(xg,x,%,,Xx3) are
determined.

We have applied the method to several other integrable
equations including Burgers’ equation

u, +uu, +u,, =0, (5.1)

which can be mapped into the linear heat equation through
the Cole-Hopf transformation®; the Korteweg-de Vries
equation

u, +uu, +u,, =0, (5.2)

which can be solved by inverse scattering®; and the modified
Korteweg-de Vries equation

(5.3)

which also can be solved by inverse scattering.>® However,
for these three equations, the similarity reductions obtained
are precisely the same as those obtained using the classical
Lie method of infinitesimal transformations (for further de-
tails see Appendices B, C, and D, respectively, which also
provide further examples of the application of our method).

There is much current interest in the mathematically
and physically significant determination of similarity reduc-
tions of given partial differential equations. (In addition to
the references mentioned above, the interested reader might
also consult Refs. 4043, and the references therein.) Our
method is a practical and direct one for finding similarity
reductions; it has generated similarity reductions that, to the
best of our knowledge, are previously unknown. It seems
probable that the method can be generalized to higher-order
equations with more independent and dependent variables.

2
u, +uu, +u,, =0,
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APPENDIX A: REDUCTION TO PAINLEVE EQUATIONS

In this appendix it is shown that of all the equations of
the form

w'" +uww” + (W) + f(Dw +g(z) =h(z), (Al)

with f(2), g(z), and h(z) analytic, the most general one
having the Painlevé property, that is, having no solutions
with movable singularities except poles, is given by

w»u + ww” + (w’)2 + (A2+B)w' + 2Aw= 2(Ax +B)2)
(A2)

where 4 and B are arbitary constants. To show this we follow
Ablowitz e al.®® in seeking a solution of Eq. (A2) in the
Laurent series form

]

w(z) =y wi(z—2z)"*,
j=0
with z; an arbitrary constant, w,#0 and w;, j>0, constants
to be determined. Leading-order analysis shows that

(A3)

wy= —12, p= -2 (A4)

Substituting into (A1) and equating coefficients of powers
yields for j>>1 the recursion relation

(J+DG=-HG-50—-60w
i—1
+ LGS v,
2 =1

j—3

= — z Sili—k=Sw;, ,_,
K=0

j—4
~ Y Wi s+ h_g, (A5a)
k=0

where

f@ =3 filz—2z)" ete. (A5b)
k=0

(defining w; = 0 for j <0, etc.). This determines w; for j>>1

except for j = 4,5,6, which are the so-called resonances. For

each resonance there is a compatibility condition that must

be identically satisfied for Eq. (A1) to have a solution in the

form (A3). From Eq. (A5) we obtain

w, =0, w,=0, wy,=/,. (A6)
The compatibility conditions for j = 4 and j = 5 are

8 =2/, & =2,
respectively. Since z,, is arbitrary, necessarily

df dg _d’f
=24 L _2J A7

8D =20 @ T & (A7)
These hold simultaneously if and only if

df

£l-o,

dz?
ie.,

f(z)=Az+B, g(z)=24, (A8a)

with 4 and B arbitrary constants. The compatibility condi-
tionforj=6is
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ho = 2f% .
Thus
h(z) =2(4z + B)*. (A8b)

Unless f (z), g(z), and A(z) are as given in Eqs. (A8), the
compatibility conditions are violated and so Eq. (A1) has
the Painlevé property only if it has the special form (A2).

In order to complete the proof that Eq. (A2) has the
Painlevé property, we show that no solution of it has a mov-
able essential singularity by reducing it to known such equa-
tions.

Case (a). A=0, B=0: Integrating Eq. (A2) twice yields

2

‘Z; +%w2=c,z+cﬁ.
Ifc, = 0, w(z) is a Weierstrass elliptic function (cf. Ref. 32);
otherwise (A9) is the first Painlevé equation (cf. Ref. 26).
In either case, all solutions possess the Painlevé property (in
fact, are meromorphic); hence no solution of Eq. (A9) hasa
movable essential singularity.

Case (b). A=0, B0: Integrating Eq. (A2) once yields

d3w dw

(A9)

o +wE+Bw:2Bzz+c2. (A10)
Then make the transformation

w(z) = B¥*W(Z) + Bz + ¢,/2B,

Z=—~(B"’z241c,B7°"7), (All)
which produces

:113ZT+ W%—@W—%—Z‘Z—Z):O. (A12)

Whitham (see Refs. 27 and 30) noted that solutions of this
equation are related to solutions of the second Painlevé equa-
tion

dv

dz?
with a an arbitrary constant. Actually, as shown by Fokas
and Ablowitz,>® there is a one-to-one correspondence
between solutions of (A12) and (A13) given by

=2V*+ZV+a, (A13)

W(Z)= —6(V'(Z) +V*(Z)), (Al4a)
V(Z)=[W"(Z)+6a)/[2W(Z) — 6Z],  (Al4b)

where ": = d /dZ. [ Equation (Al4a) is just the scaling, or
self-similar, reduction of the Miura transformation** relat-
ing solutions of the modified Korteweg—de Vries equation
(5.3) to solutions of the Korteweg—de Vries equation
(5.2).] All solutions of the second Painlevé equation possess
the Painlevé property (in fact, are meromorphic); hence no
solution of Eq. (A10) has a movable essential singularity.
Case (c). A=~0: The transformation

44\ 3 )1/4 B
w—-|— w, zZ-|— zZ——,
( 3 ) (4A A
takes (A2) to the form
w/lll+wn+(wl)2+%zwl+%w=%z2. (Als)

Hirota and Satsuma*® show that there is a “Miura-type”
transformation relating solutions of the modified Boussinesq
equation
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9u — 9195 — 195 9xx + Goxnx =0, (A16)
to solutions of the Boussinesq equation (1.2) (see, also,
Refs. 29 and 46). The Backlund transformation

Uy (x’t) = —4q, +\/§qxx _%qi ’ (A17a)

050 =\3¢u + Gune —9:9: — 492 + 6,  (AlTb)
where d is a constant, is easily seen to take a solution ¢ of the
modified Boussinesq equation (A16) to a solution v of the
potential Boussinesq equation

U!t +vaxx +vxxxx =0’ (A18)

furthermore u = v, is a solution of the Boussinesq equation
(1.2). The modified Boussinesq equation (A16) has the si-
milarity solution (cf. Ref. 29)

g(xt)= —ylnt+ p(2), z=xt "2, (A19)
where p(z) satisfies
7/+£pl+i ”—+—('}/+—1'Z’)p"

s P Ty’ 2 ?

1 7 ” wu

with : = d /dz; and if we now make the transformation

p(z)= =31Q(Z) —z, Z=13"%2/2, (A20)
then Q(Z) satisfies the fourth Painlevé equation
d?*Q 1 (dQ)2 3, »
ay_ L (f¥) L2 4z
dz® 20\dz) " 2 Q" +420
+2(Zz—a)Q+%, (A21)

with @ = 8%/(9y3) and f an arbitrary constant (see, also,
Ref. 46). The Boussinesq equation (1.2) and the potential
Boussinesq equation (A18) possess the similarity reduc-
tions

u(x,t) =t~ 'w(z) —x*/4t*, z=xt""2, (A22a)

v(x,t) =t~ "V2r(z), z=xt""2, (A22b)
where w(z) satisfies Eq. (A15) and r(z) satisfies

rrr —3(r+2r') =0. (A23)

Therefore, Egs. (A17)-(A22) show that if Q(Z) is a solu-
tion of the fourth Painlevé equation, then

. _3_ﬁ<§g 2 )
w(z): 5 dZ+Q (Z2) +22Q(2) +3Z
+%a~\/§, (A24a)
Z:-=3"4z/2, (A24b)

is a solution of Eq. (A15).

What all this shows is that from any solution of the
fourth Painlevé equation we can obtain a solution of (A15).
To obtain the converse we substitute the similarity reduc-
tions {(A19) and (A22) into the Bicklund transformation
(A17) and easily see that if 7(z) is a solution of (A23), then
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r—zr) +\3r" -2 — 2J§z)

Q(Z) - 3—3/4(
Fr+2+2y—3

Z=3"%/2, (A25)

satisfies the fourth Painlevé equation (A21); furthermore
solutions of Egs. (A15) and (A23) are related by

dr 7
W(Z)—E-f-z—.

Equations (A24)—(A26) provide a one-to-one relationship
between solutions of Eq. (A15) and solutions. of the fourth
Painlevé equation. All solutions of the fourth Painlevé equa-
tion possess the Painlevé property, i.e., have no movable es-
sential singularities (in fact, are meromorphic). Therefore
no solution of Eq. (A15) has a movable essential singularity.

We remark that there is also a direct method to show
that no solution of Eq. (A2) has a movable essential singu-
larity. Making the transformation

w(z) =v'(z) — (Adz+ B)¥/A, (A26")

we obtain a fifth-order equation easily integrated twice to
yield

(A26)

V" + %(v’)2 — iz—jtﬁ [(Az+B) —Av]l =cz+c,.
(A27)
Multiplying by v” and integrating again yields
}(0")2 4 L(v')? — (1/24) [ (4z + B)' — Av)?
= (c,/A)[(4z+ B)V — Av] + cv" 4 ¢5. (A28)

This is equivalent (through rescaling and translation of the
variables) to an equation given by Chazy,*’
O +40V + (@ - +ay +8=0, (A29)

with a and B constants. According to Chazy, this is “an
algebraic transformation of the fourth Painlevé equation”
[Eq. (A29) is sometimes referred to as Chazy IV, cf. Refs.
29 and 48]. Furthermore, as shown by Chazy,*” for any solu-
tion of (A29), exp{ S y(s)ds} is analytic except at the points
0, « . Hence we conclude that no solution of Eq. (A26), and
hence also of Eq. (A2), has a movable essential singularity.

APPENDIX B: BURGERS’ EQUATION

In this appendix we outline how to determine the simi-
larity reductions of Burgers’ equation

u, +uu, +u, =0, (B1)

using the method developed in this paper. As with the Bous-
sinesq equation (1.2), it suffices to seek similarity reductions
in the special form

u(x,t) = a(x,t) + B(x,t)wlz(x,t)). (B2)
Substituting (B2) and (Bl) and collecting coefficients
yields
BZiw" + (2B.z, + Pz, + Bz, + Pz )w'

+ (B + B + aBs + . Blw

+B%Zuww + BB +a,, +a, +aa, =0. (B3)

We use the coefficient of w” as the normalizing coeflicient.
For this to be an ordinary differential equation, from the
coefficient of ww' we get
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BzT(2) =B’z ,

where I'(2) is to be determined. Using the freedom in Re-
mark 3(i) in Sec. I1], we take

B=z.

The coefficient of w? gives
BZT(2) = BB,
where I'(z) is to be determined. Using (B4), integrating
twice, and using the freedoms in Remark 2 and 3(iii), we

have
z=x0(t) +o(t), B=06(0), (B5)

where 6(¢) and o(t) are to be determined. Equation (B3)
simplifies to

(B4)

83 (w" +wuw') + 0{(xﬁ+d—a) + aﬁ]w’
dt dt
dé

+[-;17+ax9]w+axx+a,+aax=0.

This is an ordinary differential equation for w(z) provided
that

(B6)

1( do da)

a= ——(x22 + %7, B7

o\ ar T ar (B7)
2 2

od—g—z(ﬁ) — 4205, (BS)
dt? dt
2

0%-2%%:95(A2a+23), (B9)

with 4 and B arbitrary constants. Multiplying (B8) by
260 % d@ /dt and integrating gives
2
(i’i) —476° 4+ C?9*,
dt
with C an arbitrary constant.

Therefore the general similarity reduction of Burgers’
equation (B1) is given by

(B10)

1 dé do)
1 = @(t _ —_—t—1,
u(xt) (w(z) a (x dt dt

z=x0(t) + o(),

where 6(z) and o(¢) satisfy (B9) and (B10).
There are four cases to consider.
Case 1. A=0, C=0: Here the solutions are

0(t) =6, o(t)=Bt*+cit+c,.
We set 6, = 1 and obtain the similarity reduction,
u(x,t) =w(z) —2Bt—c,, z=x+Bt>+c,+c,.
(B11)
Case 2. A0, C=0: Weset 4 = — jand B =0. Then
0(r) = (1 —15) "7,
(1) =c3(t— )2 + eyt — 1) ~"/2.

Setting ¢, = 1, ¢, = 0, we obtain

u(x,t) =t "2w(z) +x/2t —lcs. (B12)
Case 3. A=0, C£0: Weset C= — 1. Then
0() = (t—19)"",
o) =B(t—1t) > +es(t—t) 4.
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Setting ¢, = 1, ¢s = 0, and ¢, = 0, we obtain

u(xt)—t"w(z)-}- +2B z=%+%_

ol (B13)
Case 4. A#0, C#O:WesetA 2= _1,B=0,C?=1.Then
0(t) =2+ 1)V o(t) =ct+cg(t>+ 1) 712,
Setting ¢y = 0, we obtain
c7 7= x+c7t
+ 1 t? + 1
(B14)

u(x,t) = (t? +1)‘”2w(z)+

The infinitesimals for Burgers’ equation obtained using
the classical Lie method are

X=ax+pt+yxt+6, (B15a)
T=2at+7t>+«, (B15b)
U= —au+y(x—tu)+p, (B15c)

with a, B, 7, 8, and « arbitrary constants (cf. Ref. 49). It is
easily shown that all the similarity reductions obtained by
our method (B11)-(B14) for Bergers’ equation (B1) can
also be obtained from these infinitesimals (cf. Ref. 49).

APPENDIX C: KORTEWEG~dE VRIES EQUATION

In this appendix we outline how to determine the simi-

larity reductions of the Korteweg—de Vries equation
u,+uu, +u,, =0, (cn

using the method developed in this paper. It suffices to as-
sume the special form

u(x,t) = a(x,t) + Bx,Hwiz(x,1)).
Substituting and collecting coefficients yields
Biw” + (3B,.2% + 3Bz, z.)w"

+ BBaxzs + 3Bezey + Brnr + Bz, + afz )W

+ Buxx + B, + aB, + a.Pw + Bz, ww' + BB W

+ax + @, +aa, =0. (C3)

We use the coeflicient of w" as the normalizing coefficient.
For this to be an ordinary differential equation, from the
coefficient of ww' we get

Bzl (z) =Bz, ,

where ['(z) is to be determined. Using the freedom in Re-
mark 3(i) in Sec. III,

B=z .
The coefficient of w? gives

BT (2) = BB,
where I'(z) is to be determined. Using (C4), integrating
twice, and using the freedoms in Remarks 2 and 3(iii), we
have

z=x0(1) + o(1), B=6%(1), (C5)

where 6(z) and o(r) are to be determined. Equation (C3)
simplifies to

(€C2)

(C4)
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G35 (w" +ww') + 92[(

[29%9—+a o ]w+ozm +a, +aa, =0. (C6)

)l
29) 4 a8
@ T ar) e

The conditions for this to be an ordinary differential equa-
tion give successively, from the coefficients of w’, w, and 1,

1 d8 do
= ——(xZ=2+ ), C7
“ 6 (x dt + dt) (€7
de
=A03, C8
I (C8)
d%o d0 da
6 — =206(42 B), C9
dt? dr dr Ao+ B ()

with B another arbitrary constant.
Therefore the general similarity reduction of the
Kortweg—de Vries equation (C1) is

9 1 do
ot ’ 6( d d )
u(x,t) (t)w(z) : »

z=x0(t) + o(r),

where 0(¢) and o(¢) satisfy (C8) and (C9).
There are two cases to consider.
Case I. A5<0: Weset A = — 1, B=0. Thus

O=(1—1)7"3 o) =c,(t —1)* +ey(t — 1) "3,
We set £, = 0, ¢, = 0 and obtain the similarity reduction

Y X 2 x4yt
u(.x,t)—t w(z)+§;—'—3—cl, Z—W—'.
(C10)
Case 2. A=0. Weset @ = 1, and then
o(t) =Bt?> +cst +c,.
Now set ¢, = 0 and obtain the similarity reduction
u(x,t) =w(z) —2Bt —c¢;, z=x+ Bt* 4 ¢t (C10")

The infinitesimals for the Korteweg—de Vries equation
obtained using the classical Lie method are

X=ax+pt+y, T=3at+,
(C11)
U= —2au+p,

with a, 3, 7, and § arbitrary constants (cf. Ref. 16, p. 129,
and Refs. 41-43). It is easily shown that both the similarity
reductions (C10) and (C11) for the Korteweg—de Vries
equation (Cl1) can be obtained from these infinitesimals (cf.
Ref. 16, p. 196, and Ref. 43).

APPENDIX D: MODIFIED KORTEWEG-dE VRIES
EQUATION

In this appendix we outline how to determine similarity
reductions of the modified Korteweg—de Vries equation

u, +u'u, +u, =0, (D1)

using the method developed in this paper. It suffices to as-
sume

u(x,t) = a(x,t) + B(x,n)w(z(x,1)).
Substituting and collecting coefficients yields

(D2)
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Bziw" + (3B, + 3Bz.2, )W" + (38,2, + 36,2,
+ Bus + B2, + &B2IW + (Borx + B, + 7B,
+ 2aa, Bw + B3z ww' + BB.wP + 2aB%z, ww'
+ 2afB, + a.BHHw* + a,., +a, +aa, =0.
(D3)
We use the coefficient of w” as the normalizing coefficient.

For this to be an ordinary differential equation for w(z),
from the coefficient of w?w’ we get

Bzl (z) =B°z,

where I'(z) is to be determined. Using the freedom in Re-
mark 3(i) of Sec. III,

B=z .
The coefficient of w? gives
Bz T (z) = BB, ,
where I'(z) is to be determined. Using (D4), integrating

twice, and using the freedoms in Remarks 2 and 3(iii), we
have

z=x0(t) + o(t),

(D4)

B=06(), (D5)
where 8(¢) and o(#) are to be determined. The coefficient of
ww' gives

BT (z) =22z, ,

where I'(2) is to be determined. Using (D4) and the free-
dom in Remark 3(i), we have

a=0. (D6)
Equation (D3) simplies to
dé  do deo
04 " ’ 9( ekl _) /] sy =0.
(" +ww') + xdt+dt w+dtw
(D7)

This is an ordinary differential equation for w(z) provided
that

do

—~ =A8*, D38
7 (D8a)
do 3

- =030+ B), (D8b)

where A4 and B are arbitrary constants.
Therefore the general similarity reduction of the modi-
fied Kortweg—de Vries equation is

u(x,t) =60w(z), z=x60(t)+o(t),

where 6(2) and o(¢) satisfy Egs. (D8).
There are two cases to consider.
Case 1. A~£0: Weset 4 = — }, B=0. Hence

O(t) =(t—t,) V3 o) =c,(t—1t,)" 3. (D9)

Setting £, = 0, ¢, = 0, we obtain the similarity reduction

u(x,t) =t Pw(z), z=xt"'3. (D10)
Case 2. A=0: Solving (D8),
6(t)=¢c, o(t)=Bt+c,.

Setting ¢, = 1, ¢; = 0, we obtain the similarity reduction
u(x,t) =w(z), z=x-+ Bt. (D11)

The infinitesimals for the modified Korteweg—de Vries
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equation obtained using the classical Lie method are
X=ax+pB T=3at+y, U= —2au, (D12)

with a, B, and y arbitrary constants (cf. Ref. 42). It is easily
shown that both the similarity reductions (D10) and (D11)
for the modified Korteweg—de Vries equation (D1) can be
obtained from these infinitesimals (cf. 42).
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Integrability and orbits in quartic polynomial potentials
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The effect of enlarging the class of admissible movable singularities in Painlevé analysis to
include all rational algebraic branch points is examined for a class of quartic polynomial
potentials. Eight homogeneous quartic potentials are found in addition to the seven integrable
cases given by weak Painlevé analysis. They are examined using various numerical techniques
and Ziglin’s theorem. Only one of them remains a candidate for integrability, which indicates
that, in general, most rational algebraic branch points are incompatible with integrability.
Movable logarithmic singularities also appear to be inconsistent with integrability. However,
the remaining potentials are either regular or nearly regular for the energies examined, and are
therefore still of interest for numerical purposes. The corresponding surfaces of section are
found to be particularly simple in structure and belong to a small number of topologically
distinct classes. Their stable and unstable periodic orbit structures are examined to provide
information about their regularity and for use in Ziglin’s theorem. There appears to be a
correlation between the resonances of the stable periodic orbits and the order of the

corresponding movable singularities.

I. INTRODUCTION

Integrable systems are the exception and not the rule.
Most nonlinear systems possess chaotic regions of various
sizes in their phase spaces, indicating the absence of a full
complement of global isolating integrals of the motion. The
problem is how to locate these integrable systems.

Ablowitz et al.! suggested that if a partial differential
equation was soluble by inverse scattering transform meth-
ods, then every ordinary differential equation arising as a
similarity solution is of Painlevé type. They then presented
an algorithm that allows the user to determine whether an
ordinary differential equation possesses the Painlevé proper-
ty, that is, its only movable singularities are poles. Chang et
al” and Segur® applied such an algorithm, which we call
Painlevé analysis, to the Hénon—Heiles and Lorenz systems.
They found that all the resulting systems were integrable.
This lead to the idea, which we will refer to as the Painlevé
conjecture, that a system possessing the Painlevé property
will be integrable. This conjecture has been used successfully
by a number of authors, including Bountis et al.,* to predict
integrable cases of a wide range of systems. A generalization
of the original conjecture by Ramani et al.’ and Grammati-
cos et al.,* who allowed limited types of movable algebraic
singularities as well as poles, was able to predict a number of
additional integrable cases.

The essence of the Painlevé conjecture is that if the solu-
tions of the equations of motion have a particular movable
singularity structure, then there exist a full complement of
isolating integrals of the motion and the system is integrable.
The continued success of various versions of the conjecture
suggests that some form of it is correct. The question is what
types of movable singularities should be admitted? The origi-
nal variation used by Chang et al.? allowed only movable
poles, while Ramani ef al.’ allowed some movable branch
points. Conversely, Yoshida’ showed that movable complex
and irrational algebraic branch points were not consistent
with integrability. It is the remaining class of movable ra-
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tional algebraic branch points, not covered by weak Painlevé
analysis, that are of interest here.

In this paper we examine a collection of quartic polyno-
mial potentials whose only movable singularities are rational
algebraic branch points, using Ziglin’s theorem® and explicit
calculation of additional integrals of the motion. Their inte-
grability or lack thereof can also be explored by various nu-
merical techniques, such as the method of surface of section
and an examination of their periodic orbit structures. Of par-
ticular interest are the invariant curves of unstable periodic
orbits that indicate regular behavior for the system. It will be
found that all the regular quartic potentials examined have
common properties and are naturally ordered by the reson-
ances exhibited by their stable periodic orbits.

Il. PAINLEVE ANALYSIS OF THE VERHULST
POTENTIALS

The quartic polynomial potentials of interest here were
first studied by Verhulst.® He examined the existence and
stability of bifurcations of orbit families, using averaging
procedures and modified Birkoff transformations. The deri-
vation of this discrete-symmetric quartic potential as a trun-
cated Taylor series appears in Verhulst.” The Verhulst po-
tentials are of the form

Vix,z) = % (03x* + w32?) — (—A3—' x>+ Azxzz)

B, «, B, , B, 4)
— =X+ =2 X 22, 1

( 4 2 4 )
where the coefficients w?, w2, 4,, A,, B,, B,, and B; are all
real. We will restrict ourselves to potentials with B,, B,, and
B,<0. The equations of motion are

X+ wix = Ax*+ 4,22 + Bx® + Bxz?, (2a)
7+ wiz=24,xz + B,x’z + B,2* . (2v)
© 1989 American Institute of Physics 2214



The homogeneous quartic potential
V(x,2) = A, x* + 2x°2° + A,2%, 3)

is obtained from the full Verhulst potential (1) by setting all
the lower-order terms to zero. We have defined A, = B,/B,
and A, = B,/B..

A number of authors®™ have successfully applied stan-
dard Painlevé analysis to various systems, including the
Hénon-Heiles and Lorenz systems, Toda lattices with var-
ious boundary conditions and homogeneous quartic poten-
tials and found a range of integrable cases. They all required
that the only movable singularities exhibited by the equa-
tions of motion be poles.

Ramani et al.” found an integrable quintic potential

V=x"+xp*+ $x*, 4)
with an independent second integral

I=p(ypx — xp) + % + xB* +15°.

Singularity analysis revealed a leading-order behavior of
(t — t,) ~%/>. This showed that integrable systems with more
general singularity structures than poles do exist. This lead
Ramani ef al.’ to propose a generalization, termed weak
Painlevé analysis, allowing a very restricted type of rational
algebraic branch point in addition to the previously allowed
poles. The type of singularity allowed is closely related to the
degree of the polynomial potential being examined. Gram-
maticos et al.% clarified this by saying that a polynomial po-
tential had the weak Painlevé property if it had expansions in
terms of

(t — tO) t/r ,
where
e [p, for p odd,
"~ |p/2, forpeven,

where the polynomial potential has degree p + 2. So for the
quintic potential (4), with p = 3, they looked for expansions
in terms of (z—1,)” '3 as well as those in terms of
(z — t,) . For any polynomial potential there are always
two types of singularity expansion to be examined. The first
are poles and the second are a very specific type of rational
algebraic branch point whose order is related to the degree of
the potential. It is, however, not obvious how to define this
extra allowed exponent for nonpolynomial potentials.

Yoshida’ showed that the existence of irrational and
complex algebraic branch points is inconsistent with a sys-
tem being integrable. This leaves systems whose movable
singularity structures belong to the vast class of all rational
algebraic branch points. The single extra expansion allowed
by weak Painlevé analysis is but a single member of this
infinite class of possible expansions. Solutions with these sin-
gularity types have not been examined before and it is one of
the purposes of this paper to determine which, if any, of these
rational algebraic branch points, in addition to the two al-
lowed by weak Painlevé analysis, are consistent with integra-
bility for the class of quartic potentials above.

The standard Painlevé analysis algorithm presented by
Ablowitz e al." remains unchanged for all the variations and
consists of the three following parts.
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(a) Finding the dominant behavior of the solution near
any movable singularity. This is accomplished by substitut-
ing the expressions

x=a(t—1t,)?, z=5b(t—1,)?

into Egs. (2) and finding all values of p and ¢ for which the
leading-order terms balance.

(b) Finding the resonances: These indicate which terms
in the Laurent series expansions of the solutions have arbi-
trary coefficients. The expressions

x=alAt? +alAt?*’, z=>bAt*+BALTT",

where At = t — ¢, are substituted into Egs. (2) and the cor-
responding values of 7 are calculated for each pair of pand ¢
values.

(c) Determining the constants of integration involves
calculating all the coefficients in the Laurent series expan-
sions occurring up to the final resonance. This indicates the
existence or otherwise of logarithmic branch points. In the
original application of the conjecture, Chang et al.? suggest-
ed that the existence of logarithmic branch points was incon-
sistent with integrability.

In standard Painlevé analysis only poles were allowed.
All the leading-order powers p and g and resonances » were
required to be integers. In weak Painlevé analysis they are
allowed to be integer or integer multiples of §. Now we wish
to allow the movable singularities to be any type of rational
algebraic branch point. The leading-order powers p and ¢
and the resonances r then take all rational values.

For Eqgs. (2) there are five cases of balancing. The ex-
pressions for p, g, and the corresponding resonances and ex-
istence criterion are given in Table I for each of these cases.
All the leading-order powers and resonances for all five cases
are rational if the expressions

V- WT+8/4, 1+W1+8/4;, 31+W25+16y
(5)

are all rational numbers of the form m,/n, m,/n, and m,/n,
respectively, where m,, m,, m;, and n are all integers and
y=(2—A4,—243)/(AA; —1). These three conditions
arise from g from case 2b, p from case 3a, and the third
resonance 7; from case 1, respectively. We will define the
order of each potential to be the integral denominator n. The
Laurent expansion of the solution is then written in terms of
(t — t,)'/" and possesses a finitely branched movable singu-
larity of order n. In weak Painlevé analysis only n =2 is
allowed.

To determine the values of 4, and A, that satisfy the
rationality conditions (5), we choose a value of , beginning
with n = 1, and systematically use all appropriate values of
m,, m,, and m; and attempt to solve for A, and A,. In most
cases there is no solution. The first 14 sets of coefficients 4,
and A5, with the lowest values of n satisfying these condi-
tions, are given in Tables II and II1. Those in Table II1 corre-
spond to homogeneous quartic potentials of the form

V,(x,2) = A, (n)x* + 2x*2% + A5(n)2*, (6)
which we call V,...,¥,,. Of these, only ¥, can be found using

weak Painlevé analysis. None of the potentials in Tables I or
IIT possess any movable irrational or complex algebraic
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TABLE I The leading-order powers p and ¢ and the resonances are given for each of the five possible cases of the leading-order terms balancing. Case 2b and
3b exist only under restricted circumstances. The last column of this table gives the number of arbitrary parameters in the resulting series solutions.

Number of

Existence parameters

Case p q r, r, I3 r, conditions in solution

1 -1 -1 -1 3425+ 16y 4 4or3

2a -1 1+ W1+ 8/4, —1 0 4 3
2b -1 I — W1+ 8/4, —1 0 V1 +8/4, 4 1/, <1 4
3a 1+ 1+ 8/4, —1 -1 0 4 3
3b 1— W1+ 8/4, —1 -1 0 V1 +8/4, 4 1/4; <1 4

branch points. There are more potentials with higher order
(n> 19) rational algebraic singularities, which will not be
examined here.

For each of the potentials in Table II it is necessary to
determine whether or not it possesses any logarithmic singu-
larities by calculating the constants of integration. For con-
venience we set 3 = 1 and w? = w” by scaling the potential.
The restrictions in Table II all arise from the requirement
that there be no movable logarithmic singularities. Any po-
tential with these A, and A, values, which does not satisfy the
corresponding restrictions possesses logarithmic singulari-
ties. The corresponding homogeneous versions of these po-
tentials had previously been found by Bountis ez a/.* and
Ramani et al.® using standard and weak Painlevé analysis,
respectively. Integrals of the motion for the full potentials in
Table II will be given in the next section. Integrals were only
found for those subclasses whose solutions contained no
logarithmic singularities. This will be discussed in more de-
tail later. Numerical surface of section calculations for these
potentials are described in Sec. I'V. Again, any potential pos-
sessing logarithmic singularities was found to have signifi-
cant chaotic regions and was therefore nonintegrable.

Performing the logarithmic analysis on the ten homoge-
neous potentials, given in Table IIl, we find that ¥ and V;
both possess movable logarithmic singularities. The surfaces
of section for both potentials, discussed in Sec. IV, contain
large chaotic regions and are nonintegrable. The existence of
logarithmic singularities appears to be incompatible with in-
tegrability for these types of potentials. This may not be uni-
versally true for all systems. There certainly exist integrable
one-dimensional systems with movable logarithmic singu-

TABLE II. Seven families of potentials obtained by using weak Painlevé

larities. The only movable singularities possessed by the re-
maining eight potentials in Table III are rational algebraic
branch points of order n > 2.

lll. INTEGRALS OF THE MOTION

In Sec. IT we found a series of potentials whose only
movable singularities were rational algebraic branch points
or poles. Ultimately, the only way to prove that a potential is
integrable is to find all the required integrals of the motion.
For two-dimensional Hamiltonian systems it is necessary to
find a second integral independent of the Hamiltonian. In
this section we give second integrals, which are quadratic in
the velocities, for the families of potentials in Table II. To
find integrals of the motion by direct methods one assumes a
particular form for the integral and then determines condi-
tions on all the coeflicients of the velocity terms by requiring
the Poisson bracket {H,G} to vanish. This gives a collection
of PDE’s that must be solved for the coefficients. Hietar-
inta'® discusses the subject of finding such additional inte-
grals of the motion by direct methods and summaries all the
previous results in an extensive review article.

The potential U, is integrable since it possesses a second
integral of the form

TABLE III. Pairs of coefficients 4, and A, for which the corresponding
homogeneous quartic potential V,, (x,z) = A4,x* + 2x?°2* 4 A,2* satisfies the
first two steps of the generalization of Painlevé analysis. The value of g is the
power of the first term in the Laurent series expansion of the solution in each
case. The resonances of the stable nonaxial periodic orbits are also given.
Note that g, is the integrability coefficient for the inclined straight line peri-
odic orbits. This is used in the application of Ziglin’s theorem.

’ ‘ Potential q A Ay Resonance s
analysis. The first three potentials have movable poles. The others have
. L P
Laurent series expansions in (¢ — £,)'/2 v, —1 g + 1.1 4
o 4 n P : v, —1 3 LN 2:1 28
Potentia . 3 estrictions esonance v, - ¥ Y 41 or 5:1 13
U, 1 1 A, =0, 4,=0 1:1 Va —b 114 1 31 78
U, 1 1 A,=34, B,= —243} 1:1 Vs -3 174 A 41 171
U, ! ] =1, A4,=4, 1:1 A -5 182 2 4:1 167.32
U § 1 4,=84, o&*=}+43}/B, 1:1 v, — 1 183 > 4:1 83.08
U, 8 1 @ =+ 4,/B,(A, — 64,) 2:1 Vi -5 183 n 8:1 40
U, ! § wP=4+ A,/B,(84, — 54,) 1:1 v, -4 244 n 4:1 325
U, i 8 @P =4+ A4,/B,(84, — 34,) 2:1 Vio —4 328 & 5:1 561
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G = B,(xz — zx)* + 2(«* — 1)(* + 0*Z
B2+ 2)/2).

This integral has previously been given by Hietarinta."'
Bountis et al.* suggested that potentials of this form only
possessed the Painlevé property for w” = 1, for which the
potential becomes trivially separable in polar coordinates
with the angular momentum as the second integral. How-
ever, this class of potentials does possess the standard Painle-
vé property for all values of »’.

The potential U, possesses a previously unknown sec-
ond integral of the form

G =443 (zx — x2)* + 44,2(z% — x2)
— A, [A, (X + ) — x]
+ (40% — D[ + x> — A,x(2x* + 2°)
+ 433+ 2],

and is therefore integrable. The potentials U, and U, are the
only potentials with 4, =4, =1 that possess no movable
logarithmic singularities. They are also the only potentials
with 4, = A, = | that possess quadratic second integrals.
This potential cannot be obtained from U, by any linear
transformation.

The potential U, is separable under the canonical trans-
formation to new variables x + zand x — z, given in Aizawa
and Saitd.!? A second integral of the motion independent of
the Hamiltonian is then ,

G=ixz+xz—A,(xX°z2+2°/3) — (B,/3)xz(x* + %) .

This potential is therefore integrable. Bountis et g/.* found a
restricted version of this potential with 4, = 4, =0, using
the standard Painlevé analysis algorithm. The full potential
can be obtained from the restricted Bountis et al. version by a
translation in the x direction. Again, the only potentials with
Ay = A3 =, for which an additional integral was found, are
those that possess no movable logarithmic singularities.

The potential Us is integrable. The required second inte-
gral is

. (6A2—A1)[.2 2
G= — -_—
zZ(xz —zx) + 2B, X+ x
—3A1x3—132x4]
3 3

1 A
—— (44, — AX*? + L2 7
2 2 4

+ [—%2— 2x*+ 25 + (a)z — %)]xzz .

This potential can be simplified by a suitable translation in
the x direction. It can be rewritten as a linear combination of
the integrable homogeneous combinatorial potentials x,
4x% + 22, 2x% + x2%, and 16x* + 12x22% + z*, which are giv-
en in Hietarinta.! Such a global coordinate transformation
does not affect the integrability of the system.

New quadratic second integrals were found for two sub-
classes of the U, family of potentials. The first is given by

w’=4, A,=4,=0, A, =} A,=4%,

2217 J. Math. Phys., Vol. 30, No. 10, October 1989

with integral

G = x(zx — xz) + x’z[(B,/6) (x* + 22*) — 1] .
The second is given by
=1, 24,=A4, 3B,= —A4A3, A=) A;=4%,
with the corresponding integral

G = B,x(zx — x2) — 24,%z — (B,x + 24,)

X [xz——/;—_lz(sz +22%2) — %xz(x2 +22) .

The above collection of potentials with quadratic sec-
ond integrals is complete. Any other integrable Verhulst po-
tential must have an integral that is quartic or higher order in
the velocities. After appropriate translations all the above
potentials and integrals belong to the four general classes of
real potentials with quadratic second integrals given by Dor-
izzi et al."® They are presented here to verify that these po-
tentials are in fact integrable.

The second integrals for the homogeneous potentials U,
and Uy are quartic in the velocities and are given by Ramani
et al.® Therefore we do not expect the second integrals for the
full U, and U, potentials to be quadratic in the velocities.
The homogeneous Us and U, potentials, which are reflec-
tions of each other, have quadratic second integrals. How-
ever, for the full U, potential we only find two special cases
possessing quadratic second integrals of the motion. This
suggests that a general second integral is at least quartic in
the velocities with two quadratic subcases for which the
higher-order terms vanish. Four of the classes of potentials
in Table II are integrable and some subset of each of the
remaining three potentials are also integrable. The potentials
U,, Us, and U, cannot be decomposed into linear combina-
tions of known integrable homogeneous potentials, as was
the case for Us.

It should be noted that the same conditions arose from
the requirement that the solutions possess no movable loga-
rithmic singularities, as were found necessary for the exis-
tence of second integrals. No integrable potential had loga-
rithmic singularities and every potential without
logarithmic singularities had a second integral.

IV. SURFACES OF SECTION

The Verhulst potentials have four-dimensional phase
spaces. Energy is conserved, so all orbits are constrained to
lie on three-dimensional energy submanifolds. In order to
study these systems, we lower the dimension of the problem
to two by taking the intersection of the energy surface with
the plane z = 0, simultaneously requiring z>0, to give a
well-defined surface of section parametrized by x and x.'*'5
Each time an orbit intersects the z = 0 plane with 2>0, a
point is placed in the surface of section. So instead of dealing
with a four-dimensional phase space governed by a set of
differential equations we have a two-dimensional surface of
section with the Poincaré map determining the location of
successive iterates. A periodic orbit appears in the surface of
section as a finite collection of points. A quasiperiodic orbit,
for which there is a locally conserved quantity, is represented
in the surface of section by a smooth closed invariant curve
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surrounding a fixed point. Chaotic orbits, for which only the
energy is conserved, densely fill two-dimensional regions of
the surface of section. We note here that the surface of sec-
tion is always symmetric with respect to reflection in the x
axis. We shall say that a potential is regular for the energy E
if there are no chaotic regions in the corresponding surface of
section.

The Hénon-Heiles system is obtained by setting
B, =B, =B, =0 in the general Verhulst potential (1).
Hénon and Heiles'* found that the existence of the second
integral was dependent upon the energy. At low energies,
such as E = 4, the surface of section was regular. However,
at higher energies, £ = }, the invariant curves disintegrated
producing large-scale chaos. For the quartic Yerhulst poten-
tial there does not appear to be any such corresponding phe-
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FIG. 1. (a) Surface of section for the U, potential with o> = 1and 4, = 1,
B, = — 1for the energy E = 1000. (b) Surface of section for the perturba-
tion of the U, potential with o’ =4,=4,=1, B,=B,= —}, and

B, = — ) for the energy E = 1000. (c) Surface of section for the perturba-
tion of the U, potential with o’=4,=4,=1, B = —, and
B,=B,= -1

nomenon. Even up to energies of the order of 10° or 10* the
invariant curves do not break up. This apparent dependence
of the second integral on the energy may be a consequence of
the Hénon—Heiles potential not being bounded for all ener-
gies. All surfaces of section and all orbits in this paper will be
calculated for E = 1000.

Surfaces of section were calculated for the potentials U,
U,, U, and U, to provide information about their integrabi-
lity. The importance of the restrictions, given in Table I1, to
the integrability of each potential, was then investigated for
each case by systematically breaking them, one at a time, and
then in combinations, and examining the effects on the sur-
face of section. Every perturbation to one of these potentials,
which violated the conditions in Table II, possesses movable
logarithmic singularities. The surface of section for every
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one of these demonstrated nonintegrable behavior.

Figure 1(a) shows the surface of section for a typical U,
potential. This structure is completely regular with no chao-
tic regions and no chains of islands. Figures 1(b) and 1(c)
show surfaces of section for two different perturbations to
the previous integrable potential and demonstrate the sub-
stantial effects that arise when breaking the restrictions giv-
en in Table II and introducing logarithmic singularities.

For the U, potentials, the condition 4, = 84, was found
to be necessary to the integrability of the system, just as the
condition 4, = 4, was for U;. Any perturbation to the cubic
terms always produced surfaces of section with chains of
islands. Perturbations in 4, and 4, produced surfaces of sec-
tion with substantial chaotic regions, regardless of whether
the condition 4, = 84, was satisfied. Violating the condition
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50 T

FIG. 2. (a) Surface of section for the U; potential with »® = §, 4, =1,

A,=land B, = —8,B,= — 3,and B, = — 1. (b) Surface of section for
the U, potential with > =4, 4, =4, =0and B,= — |, B,= — 1, and
B;= —3& (c) Surface of section for the U, potential with o’ =4,
A =4,=0and B/ = — |, B,= —1l,and B, = —§

on o gave surfaces of section with no noticeable chaotic
regions, but with some chains of islands, indicating noninte-
grability. All the surfaces of section belonging to the pertur-
bations of the U, potentials always exhibited nonintegrable
behavior.

Perturbations to the Uy and U, potentials produced re-
sults similar to those obtained for U, and U, potentials. Fig-
ures 2(a), 2(b), and 2(c) are typical examples of the sur-
faces of section for the U,, U, and U, potentials,
respectively. Any potential not satisfying the restrictions in
Table II has logarithmic singularities and always possessed
features inconsistent with integrability. All the potentials ex-
amined, which satisfied the restrictions, did not have loga-
rithmic singularities and looked numerically integrable.
This supports the suggestion that the full U,, U, and U,
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potentials are integrable. Their surfaces of section are all
topologically very simple, unlike the surfaces of section pro-
duced by nonintegrable potentials, such as those shown in
Figs. 1(b) and 1(c), whose solutions possess movable loga-
rithmic singularities.

The potentials ¥, and ¥, both have substantial chaotic
regions. Their surfaces of section are given in Figs. 3(a) and
3(b), respectively. They both possess movable logarithmic
singularities in their solutions. Note that V| has the largest
chaotic region and it has its logarithmic singularity in the
fourth term of its Laurent series expansion; ¥ has the next
largest and still significant chaotic region. Its logarithmic
singularity is at sixth order. The size of the chaotic region
appears to depend on the point at which the logarithmic
singularities enter the Laurent series.

The other eight homogeneous potentials in Table III do
not possess any movable logarithmic singularities. Any
chaotic regions in their surfaces of section are all extremely
small and surround hyperbolic points. Large-scale chaos
was only found in conjunction with logarithmic singulari-
ties.

V. PERIODIC ORBIT STRUCTURE

It is useful to study the periodic orbits possessed by a
potential. The application of Ziglin’s theorem requires

FIG. 3. (a) Surface of section for the homogeneous potential V,. The large
scale chaos is due to the existence of a logarithmic singularity at fourth
order. (b) Surface of section for the homogeneous potential ¥;. It has a
logarithmic singularity at sixth order.
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knowledge of the stability and resonances of the periodic
orbits. The existence of rational invariant curves, consisting
of an infinite number of unstable cycles and the absence of
stable cycles, which generate island chains, provide impor-
tant information about the regularity of the potential. Final-
ly the stable periodic orbits form a framework for the entire
dynamical structure of the phase space. They generate all the
quasiperiodic orbits in state space or invariant curves in the
surface of section.

Periodic orbits can be easily located numerically by de-
termining the fixed points of the appropriate multiple of the
Poincaré map P: S-S, where S is the surface of section. For
xS, if P (x) = x then x is a fixed point of P or an n-
cycle. The fixed point determination is carried out by a stan-
dard shooting method algorithm. The surface of section can
be searched systematically for fixed points of a particular
order n by performing the shooting method at each point on
a grid of appropriate dimensions. The stability of a periodic
orbit is determined by linear stability analysis. An orbit is
stable if the two eigenvalues of the corresponding Jacobian
matrix are complex conjugates of each other and of modulus
one. If the eigenvalues are real, and one has an absolute value
exceeding unity, then the orbit is unstable.'®

For the purposes of classification, periodic orbits may be
compared with Lissajous figures. These are obtained by or-
thogonal superposition of the harmonic oscillators,

x=asin(w;t +¢,), z=bsin(wt+ ¢,). 7

The resonance of an orbit is given by the ratio w,/w, repre-
sented in the form m:n, where m and n are coprime integers.
No significance will be attached to the order of the numbers
m and » in the ratio. Here 1:1 resonance pericdic orbits are
the most common. The 1:1 resonance periodic orbits are of
two types; /inear—these straight line orbits can be either
axial or inclined to the axes; e/liptic—with major and minor
axes perpendicular, but not necessarily coinciding with the x
and z axes. Higher-order m:n resonance periodic orbits will
be classified as m:n linear or elliptic periodic orbits by com-
parison with the 1:1 resonance periodic orbits. For example,
Fig. 4(a) shows a 3:1 resonance linear orbit. This orbit has
the property, as does the 1:1 resonance linear orbit, that the
orbit touches the zero velocity curve (ZVC) at both ends.
The particle proceeds along the orbit to an end point, stops,
and then exactly retraces its path. There is no net angular
momentum in any part in the orbit. In Fig. 4(b), we have a
5:1 resonance elliptic orbit, which again shares the proper-
ties of the 1:1 resonance analog, namely, that in each loop of
the orbit there is a definite sense of rotation and a net angular
momentum. These periodic orbits do not meet the ZVC any-
where. Linear orbits correspond to a phase difference
¢, — $, =0, and elliptic orbits to a phase difference of
¢ — ¢y =m/2.

Consider any torus in the phase space that has a rational
winding number. Any orbit on the torus is a closed curve and
therefore periodic. There are an infinite number of these pe-
riodic orbits, all with the same period, densely covering the
torus. All these periodic orbits are unstable. Taking the in-
tersection of the torus with the plane z =0 gives a corre-
sponding smooth invariant curve in the surface of section.
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FIG. 4. (a) A 3:1 resonance linear periodic orbit. The stable nonaxial peri-
odic orbits in the potential ¥, are of this type. (b) A 5:1 resonance elliptic
periodic orbit. The stable nonaxial periodic orbits in the potential ¥, are of
this type.

Such an invariant curve will be described as rational. Each of
the periodic orbits on the torus produces an n-cycle in the
surface of section, for some integer n. Therefore any rational
invariant curve can be regarded as an infinite collection of
unstable n-cycles. If a potential is integrable then there are
an infinite number of rational invariant curves, since the
winding number varies continuously from one invariant
curve to the next. If an integrable potential is subjected to a
nonintegrable perturbation, then some of these rational in-
variant curves disintegrate. When such an invariant curve of
n-cycles disintegrates there remain only 2» points in the sur-
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face of section. These points form two n-cycles, one stable
and one unstable. The points of the two cycles alternate, such
that between any two points of the stable n-cycle is a point of
the unstable n-cycle and similarly between any two points of
the unstable n-cycle is a point of the stable n-cycle. The
points belonging to the stable n-cycle are elliptic points and
those belonging to the unstable n-cycle are hyperbolic
points. The points on the stable n-cycle generate an island
chain in the surface of section. For more details on elliptic
and hyperbolic cycles see Hénon.'”

If there exists a stable n-cycle, for a given potential, then
there is a corresponding unstable cycle, whose points sepa-
rate those of the stable one. This indicates that a rational
invariant curve has disintegrated and that the potential is
nonintegrable. If a systematic search reveals the existence of
an invariant curve for each rational value of the winding
number around each fixed point, then there are no stable
cycles and the potential is regular at that energy. Therefore
regularity can, in theory, be checked by calculating all the n-
cycles in the surface of section and determining whether or
not they form smooth invariant curves. Since it is not feasible
to calculate all n-cycles for all values of 1, checking whether
cycles lie on invariant curves can be used as a guide to regu-
larity when the surface of section does not have sufficient
resolution to find the smaller island chains. Conversely, if
there exists a single stable cycle then the potential is not
integrable. The existence and location of periodic orbits can
provide important information about the global integrability
of the corresponding potentials.

All the potentials given in Table II, aside from Us and
U,, have 1:1 resonance periodic orbits. The remaining two
have 2:1 resonance periodic orbits. The periodic orbits for
the potentials given in Table III will now be explored. We
shall determine the number and type of periodic orbits pres-
ent in each potential and examine their stability. In each case
there exist x- and z-axis orbits, defined as z=2=0 and
x = x = 0, respectively. These are always 1:1 resonance lin-
ear orbits whose stability depends on the potential.

The surface of section, shown in Fig. 5(a), for the poten-
tial

Vi(x,z) = 114x* + 2x%2% + 2%, (8)

is symmetric with respect to x and X, so it suffices to system-
atically search only the first quadrant for periodic orbits.
There are only three stable periodic orbits. The z-axis orbit is
stable and generates the outer family of invariant curves.
There are a pair of stable fixed points at ( + 1.873,0) in the
surface of section, which are produced by 3:1 resonance el-
liptic orbits. The z-axis orbit, defined by x = x = 0, is unsta-
ble and coincides with the hyperbolic point on the separa-
trices. The separatrices divide the invariant curves into three
families, one set around each of the three stable periodic
orbits. There is a second pair of unstable fixed points at
(0, + 39.723) that corresponds to 4:1 resonance elliptic or-
bits.

Earlier we discussed the existence of rational invariant
curves surrounding the periodic orbits in integrable poten-
tials. When such a potential is perturbed these curves are
destroyed leaving a pair of periodic orbits, one stable and the
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FIG. 5. (a) Surface of section for the homogeneous potential V. It is com-
pletely regular. This potential remains a candidate for integrability. (b)
Surface of section for the homogeneous potential V. It is regular at
E = 1000. (c) Surface of section for the homogeneous potential V.

other unstable. In the present case we have the required un-
stable orbits but there are no corresponding stable 4:1 reso-
nance orbits anywhere in the phase space. The unstable 4:1
resonance elliptic orbits are not produced by the disintegra-
tion of a rational invariant curve. Furthermore, systematic
searching revealed that there were no stable two or three-
cycles anywhere in the surface of section. In fact, there were
no two-cycles present at all. This potential appears to be
completely regular at £ = 1000.

Since ¥, is a good candidate for integrability we exam-
ined its surface of section for various other energies. No orbit
bifurcations, chaotic orbits, or island chains were in evidence
for the range of energies £ =0.1, 1, 10, 100, 1000, and
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10 000. In all cases the surfaces of section were topologically
identical. Again this is consistent with integrability. A sys-
tematic search for an integral of the motion that is sixth
order in the velocities failed to reveal one. Integrals of lower
order do not exist for this potential.'® If this potential is inte-
grable then the integral will be at least seventh or probably
eighth order in the velocities.
The potential

V,(x,2) = 182x* + 2x?2% + ;3.7 (9)

has surface of section in Fig. 5(b), and is topologically simi-
lar to the one obtained for the previous potential ¥,. The
principle differences are that the separatrix is now much
more open, and the periodic orbits are different. Here the
stable periodic orbits are the x-axis orbit and a pair of 4:1
resonance linear or W-shaped orbits at ( 4 1.146,0). Again
the z-axis orbit is unstable and is the hyperbolic point on the
separatrix. There are a pair of unstable 5:1 resonance linear
periodic orbits at (0, 4 30.944). There are no corresponding
stable 5:1 resonance orbits. This potential does not appear to
possess any island chains. In fact, there are only two unstable
two-cycles at (0, + 12.822). No stable two- or three-cycles
were found anywhere in the surface of section. This potential
appears to be regular at E = 1000.

The potential ¥, with surface of section in Fig. 5(c), is
nonintegrable since there is a small chaotic region centered
on the origin. Its surface of section is topologically very simi-
lar to the surfaces of section for the potentials ¥, and V75,
shown in Figs. 5(a) and 5(b). Its stable periodic orbits are
the x-axis orbit and a pair of 4:1 resonance linear orbits, as
was the case for the potential V. The unstable periodic or-
bits are the z-axis orbit and a pair of 5:1 resonance linear
orbits at (0, 4+ 25.149) in the surface of section.

The homogeneous potential ¥ has surface of section
shown in Fig. 6(a). There are four stable periodic orbits. The
first pair are the x- and z-axis orbits. The second pair are 8:1
resonance elliptic orbits at (0, + 18.077). This potential is
almost regular. There are no visible chaotic regions but is-
land chains do exist. The homogeneous potential ¥, is, like
Vg, almost regular. Its surface of section is shown in Fig.
6(b). The potential has four stable periodic orbits; the x- and
z-axis orbits and a pair of 2:1 resonance linear orbits on the x
axis. There are two unstable 3:1 resonance linear orbits at
(0, 4+ 35.950). Additionally there are a number of small sta-
ble cycles around the central fixed points, which generate
chains of islands precluding integrability. Consider the cor-
responding Verhulst potential with quadratic terms present.
For w} /w} >4 this potential has surfaces of section that are
topologically very similar to those in Fig. 5(a), with the two
nonaxial fixed points corresponding to a pair of 2:1 reso-
nance linear stable periodic orbits. As w3 /w?} — | from above,
the two nonaxial fixed points approach each other until pre-
cisely at the potential with w? = 3w3 there is an orbit bifur-
cation point at the origin where the two 2:1 resonance peri-
odic orbits merge and disappear. Additionally, the central
z-axis orbit becomes stable producing surfaces of section
such as that for the homogeneous version of this potential
shown in Fig. 6(b). It should be noted that for all values of
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FIG. 6. (a) Surface of section for the homogeneous potential V. (b) Sur-
face of section for the homogeneous potential V.

o? and w} examined the potential is almost regular and may
in fact be integrable for certain values of w2 /w?.

The potentials Vs, Vg, and V,, are characterized by hav-
ing surfaces of section, which are all topologically very simi-
lar; all the features of the surface of section for one of these
potentials are reproduced by the others, even to the extent of
having the same island chains around the stable z-axis orbit.
Figures 7(a), 7(b), and 7(c) show the surfaces of section for
the potentials V5, ¥, and V,,, respectively. They all possess
small chaotic bands centered on the separatrices and are al-
most regular. The homogeneous potential ¥ has four stable
periodic orbits; the x- and z-axis orbits and a pair of 4:1
resonance axial or W orbits at ( 4 2.478,0) in the surface of
section. There are two unstable 4:1 resonance elliptic orbits
at (0, + 17.388) corresponding to the hyperbolic points on
the separatrix separating the four sets of quasiperiodic or-
bits. The potential ¥ has precisely the same arrangement of
stable 4:1 resonance axial periodic orbits. It is remarkable
that two completely different potentials should have phase
spaces with all their features, especially periodic orbits and
rings of unstable fixed points, identical. The potential V,
has a pair of stable 5:1 resonance elliptic orbits instead of the
4:1 resonance linear orbits found in V5 and ¥,

The resonances of the stable periodic orbits belonging to
these potentials are given in Table II1. There appearstobe a
reasonable correlation between the leading power ¢ of the
singularities and the resonance of the stable nonaxial period-
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FIG. 7. (a) Surface of section for the homogeneous potential V5. (b) Sur-
face of section for the homogeneous potential V5. (c) Surface of section for
the homogeneous potential V.

ic orbits in the corresponding potentials. Here V, and ¥V,
should be neglected in this comparison because of their loga-
rithmic singularities.

VL. ZIGLIN’S THEOREM

There are a couple of different statements of Ziglin’s
theorem.® The relevant one, for two dimensions, quoted
from Yoshida'® is as follows: Assume that there exists an
additional complex analytic integral ®(p,q) = const, which
is holomorphic in a neighborhood of the solution. If there
exists a nonresonant matrix g, in the monodromy group G of
the normal variation equations, then either (i) g, commutes
with any other matrix g, in G or (ii) the eigenvalues of g, are
iand — . This rather abstract theorem can be used to relate
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integrability to the existence of exponentially unstable peri-
odic orbits.

Yoshida'”'® determined conditions under which a ho-
mogeneous potential V satisfies this theorem for the special
case where the periodic orbits are exponentially unstable
straight line or 1:1 resonance linear periodic orbits. Such an
orbit can be parametrized as

x=c,®(1), z=c,P(1),
where ® (1) is the solution of the differential equation
d*®
(I)Zm -1 — O ,
dr? +

and the constants ¢, and ¢, are the solutions of
av

av
— () =¢;, — (c1,62) =¢;.
ax %2 1 az 1s%2 2
Yoshida'” defined an integrability coefficient, which for this
type of potential is

/1' = VzV(CI:C2) - (m - 1) ’

where V?V is the Laplacian of ¥ and m is the degree of the
homogeneous potential 7. He showed that if 4 is in the re-
gion S then the system is nonintegrable and there is no addi-
tional integral of the motion. For our quartic potentials
m = 4 and the region is

S={1<0,1<A1<3,6<A<10,15<1 <2128 <A <36,45<A <55,
66 <A <7891 <A<105120<A < 136,153 <A< 171,190 <A <210,
231 <A <«253,276 <A < 300,325 <A < 351,378 < A < 406,435 < A < 465,496 < A < 528,561 <A <595,...} .

There are three types of straight line orbits in our systems,
for each of which we calculate a different integrability coeffi-
cient (1) ¢, =0 for the z-axis orbit, which has u, = 1/4;;
(2) ¢, = O for the x-axis orbit, which has i, = 1/4,; and (3)
¢,#0,¢,7#0 for the inclined linear orbits, such as found in
the potential U,, which have u;=(1-—2(1,+41,)
+ 34,45/ 4, — 1.

The values of i, and u, are easily found for each poten-
tial. The u, values are given in Table III. Here 4, lies in the
region S only for the potentials V; and V. Note that u, does
not lie in § for any of the ten potentials and i, only lies in §
for the potential V. We had already determined that ¥, and
V, were nonintegrable. However, we have now eliminated
V,, which looked numerically integrable. We expect that for
some energies the z-axis orbit will generate a chaotic orbit
giving a surface of section topologically similar to that of the
potential V. The potential V7 has a chaotic orbit centered on
the origin in the surface of section [Fig. 3(b)], which is
generated by the z-axis orbit. This is consistent with the cor-
responding value of i, lying in the region S. This potential
also has a movable logarithmic singularity at sixth order in
its solution.

All the nonaxial periodic orbits in all the potentials in
Table III have resonances of type 2:1 or greater. That is,
none of these periodic orbits are straight line solutions. Con-
sequently the third of the cases used in this application of
Ziglin’s theorem is not relevant for the potentials in Table
III. The x- and z-axis orbits are the only straight line solu-
tions whose results should be checked. Therefore we disre-
gard the result for V. Periodic orbit bifurcations can occur
as the energy is varied. This may affect the stability of the x-
and z-axis orbits, but will not produce inclined straight line
orbits. All new orbit families will also be higher resonance
types. Therefore it is important to determine the resonances
of all the periodic orbits belonging to a potential before ap-
plying Yoshida’s formulation of Ziglin’s theorem to ensure
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that the results are meaningful. Ziglin’s theorem should be
applied in conjunction with an examination of the system’s
orbital structure. It is theoretically possible to numerically
apply Ziglin’s theorem to nonstraight line orbits. This is very
difficult and will not be dealt with here.

It is surprising that only two of the homogeneous poten-
tials in Table I1I are shown to be nonintegrable by this appli-
cation of Ziglin’s theorem. Seven of the remaining eight po-
tentials are either integrable or close to integrable, satisfy
Yoshida’s formulation, and have only movable rational alge-
braic branch points in their solutions. It is also interesting to
note that many of the potentials have one or more of their
coefficients u,, 1,, and u, lying precisely on the boundary of
the forbidden region S.

VIl. CONCLUSION

Weak Painlevé analysis of the quartic polynomial Ver-
hulst potential allowed us to identify seven integrable cases.
Second integrals were given for four of these families and for
subclasses of the remaining three. The corresponding sur-
faces of section are all particularly simple in structure and
possessed no island chains or chaotic regions. Surfaces of
section belonging to perturbations of these integrable poten-
tials always exhibited nonregular behavior. All the nonaxial
stable periodic orbits were 1:1 or 2:1 resonance.

The expansion of the class of admissible singularities in
Painlevé analysis to include all rational algebraic branch
points gave eight homogeneous potentials with negligible
nonregular regions. Examination of the respective surfaces
of section revealed that all these potentials, except for ¥, and
V,, possessed very small chaotic regions. Ziglin’s theorem
was used to show that V., is not integrable. Numerical
searches reveal that there are no lower-order stable cycles or
island chains anywhere in the surface of section of V. Sur-
faces of section were then calculated for this potential over a
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range of energies 0.1-10*. They were all topologically identi-
cal and showed no orbit bifurcations, chaotic regions, or is-
land chains. This potential still remains a candidate for inte-
grability.

We conclude that, in general, most movable algebraic
branch points are inconsistent with integrability. However,
there are some exceptions. These include those used in weak
Painlevé analysis, having expansions for the quartic poten-
tials in terms of Az /2, and possibly the potential ¥, with an
expansion in terms of Az '/'3, which may be integrable. Con-
versely, if one is interested only in potentials that are regular
or nearly regular, so that they look numerically integrable,
then allowing any type of movable rational algebraic branch
points provides a significant number of such potentials.

Eight of the ten homogeneous potentials examined here
are either regular or very close to regular for the energy ex-
amined. Only two have easily observable chaotic regions.
They both possess movable logarithmic singularities at
fourth and sixth order, respectively. Numerical calculations
for a large number of nonhomogeneous as well as these two
homogeneous quartic polynomial potentials suggest that for
these types of systems movable logarithmic singularities are
inconsistent with integrability. In fact, large-scale chaotic
regions appear to be associated with the existence of movable
logarithmic singularities and the point at which they occur
in the series expansions of the solutions. Conversely, six of
the remaining potentials possess very small chaotic orbits
centered on hyperbolic points. These appear to be associated
with movable rational algebraic branch points. Perhaps this
is reasonable since logarithmic singularities are infinitely
branched and the rational algebraic branch points examined
have only a small finite number of branches.

The regular and nearly regular homogeneous potentials
have surfaces of section, which can be divided into a small
number of topologically distinct classes represented princi-
pally by those shown in Figs. S(a) and 7(a). This suggests
that their topology is very restricted and always very simple
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for these two-dimensional potentials. Many complex regular
surfaces of section can be invented, but none of these struc-
tures arise from any of the potentials examined here.

As the order 7 of the singularities increases the corre-
sponding 4, value of the potential increases and the 4, value
decreases. This produces potentials that are increasingly
elongated in the z direction. The stable periodic orbits exhib-
it higher and higher resonances producing multilobed quasi-
periodic orbits. The existence of high-order resonance peri-
odic orbits means that Yoshida’s formulation of Ziglin’s
theorem cannot be used in isolation but should be used in
conjunction with an examination of the periodic orbit struc-
ture. Only one of the eight potentials possessing only mova-
ble rational algebraic branch points was eliminated by Zig-
lin’s theorem. Most of the integrability coefficients of other
potentials occurred on the boundary of the forbidden region.
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The relation between complex line bundles and certain group cocycles is explored in general to
obtain explicit formulae for the transition functions and curvature of the determinant line
bundle DET of a family of Dirac operators coupled to Yang—Mills fields. A covariant
derivative on sections of DET is constructed which realizes the curvature and “minimally
couples” to the integrated anomaly which thus appears as a “functional magnetic field” on
gauge orbit space. The transcription of group cohomological (cocycles) into geometrical (line
bundles) information is refined in such a way that the relevant cohomology groups can be
computed in many cases, giving insight into the classification of lifts of principal group actions.

I. INTRODUCTION

Geometrical and topological methods have played a
prominent role in recent developments in theoretical phys-
ics, and physicists have acquired familiarity with the stan-
dard notions of differential geometry and algebraic topol-
ogy.

However, recently objects (called generalized associat-
ed bundles hereafter) have appeared in the physics litera-
ture,'® about whose general structure little seems to be
known. The purpose of this paper is to fill this gap and thus
to perhaps pave the ground for further applications.

The basic idea is to replace representations of a Lie
group G on a vector space V (thus defining ordinary asso-
ciated vector bundles of a principal G-bundle P) by one-
cocycles of G with values in suitable G-modules. The bundles
obtained in this way could, of course, be abstractly regarded
as arising from a special kind of G-bundles.”’ The methods
and results of Secs. II-1V will, however, show that regarding
them as associated in some way to a principal “parent” bun-
dle has a number of succinct computational and conception-
al advantages. The case we shall be interested in is the one of
complex line bundles. The one-dimensional representations
of G(Hom(G,GL(1,C))) are contained in the larger set of
cocycles Z(G,C*(P)) with values in the G-module
Map(P,C*) = : C*(P). More precisely, the cocycle condi-
tion

f(p.g\8:) =f(p:g)f(pg1,82),
satisfied by elements fof Z (G,C* (P)), reduces to

f(8.82) = f(8:)/(g,)

on those fwhich are independent of P. We shall show how to
associate a line bundle L, on the base manifold M of P with
every such cocycle f. The line bundles constructed in this
way are thus true generalizations of ordinary associated line
bundles. We explicitly construct the local data (sections,
transition functions) which determines these bundles, and
compute their first (real) Chern class (Secs. II and II).
Then we show how the usual prescription for constructing
covariant derivatives in ordinary associated bundles can be
modified to accommodate the bundles considered here (Sec.
Iv).

It turns out that the “ordinary” connection is modified
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by a connection one-form proportional to the infinitesimal
variation of f (i.e., a Lie-algebra cocycle) with transgresses
to the first Chern class of L.

All this is, of course, quite reminiscent of anomalies in
theories of chiral fermions interacting with non-Abelian
gauge fields,® and indeed we shall show in Sec. VI that the
determinant line bundle of a family of Dirac operators is of
the form L, for P= .o/ (the space of vector potentials),
G = 9 ( the gauge group) and f = the Wess—Zumino term.®

Our computation of the curvature then permits one to
check® explicitly, that the curvature of the determinant line
bundle and the integrated anomaly are related by transgres-
sion.

On the more mathematical side we use the relation
between line bundles and cocycles to encode group cohomo-
logical into geometrical information to compute
H'(G,C*(P)) in a number of cases.

In particular, in Sec. V we shall prove the following
theorem.

Theorem 1: If H>(P,Z) =0,

HYG,C*(P)) = H*(M,Z).

This result was also derived in the particular case
P = o/ mentioned in Ref. 5 and says that in this case all line
bundles on M arise as L, for some cocycle f. Furthermore,
the relation between H '(G,C*(P)) and the problem of classi-
fying G-lifts to principal bundles'® allows us to prove the
next theorem.

Theorem 2: Let P(M,G) be a principal G-bundle over a
connected manifold M. Let . be a line bundle on P admit-
ting a lift of the principal G-action on P. Then this lift is
unique if either P is trivial or H*(M,Z) = 0.

Finally, the Appendix contains a technical lemma on
partitions of unity which allows for a simplification of the
calculations in Sec. VI.

Il. COCYCLES AND LINE BUNDLES

Let P = P(M,G,II) be a principal G-bundle over a (par-
acompact, connected) manifold M, with projection II:
P—M,G a connected Lie group. Since P carries a natural
(right) G-action, this is inherited by functions on P. In par-
ticular, therefore the Abelian group C*(P) of complex val-
ued nowhere vanishing functions on Pis a G-module, and we
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can define the cohomology of G with values in C*(P) in the
standard manner.'! Zero-cochains are basically just ele-
ments f of C*(P) and the coboundary operator 8 acts on f
by

5f(p.g): = flpg)fip) ™. (2.1)
Thus fEC*(P) is a cocycle iff it is G-invariant. On one-co-
chains f(p.g), 6 acts as

5f(p.g1.82) = f(p.8:)f(pg18.)f(p.g:8:) " (2.2)

In a similar way the action of § is extended to higher

cocycles, but this is all we will need here. The space of k-~

cocycles (k-coboundaries) will be denoted by Z ¥(G,C*(P))
(B*(G,C*(P))) and the cohomology groups H (G,C*(P))
are defined as usual by H* = Z*/B* We shall frequently
abbreviate H Y(G,C*(P)) by H.

Given an element £ of Z* we can use it to define an
equivalence relation on P X C,

(p,c) ~(pg, f(p.g)c), geG. 2.3)

This relation is indeed transitive, since f'is a cocycle. The
space of equivalence classes [ (p,c) | —the quotient (P XC)/
~—has the structure of a complex line bundle over M, de-
noted by L. The local trivializability—which may perhaps
not be obvious—will be explicitly proved in the next section.

As mentioned in the Introduction, bundles of this kind
have recently appeared in the physics literature (mainly in
relation with anomalies).'"® Their geometrical structure,
however, was not further investigated.

If the one-cocycle fis independent of P, the cocycle con-
dition 8/ =1 implies that

8.8 = f(g)f(g,)

and thus that fe Hom(G,C*). Since C* = GL(1,C) the bun-
dle L, is in this case an ordinary associated complex line
bundle to P via the representation f.

We shall now show that the assignment cocycles — line
bundles descends to an assignment between cohomology
classes and equivalence classes of line bundles in the sense
that cohomologous cocycles lead to equivalent line bundles.
This fact is implied by the following proposition.

Proposition I: L, is trivial iff fis trivial.

Before turning to its proof, let us note the following. In
the particular case P = o7, this was also shown in Ref. 4.
Furthermore, we shall make use of this proposition later in
Sec. V, where we compute H Y(G,C*(P)), since it allows us to
transform group-cohomological into (more tractable) geo-
metrical information.

Proof of Proposition I: If fis trivial, f{p,g) = F(pg)/
F(p) for some Fe(C*(P)). Then we can define a global no-
where vanishing section ¢ of L, (equivalently: a global sec-
tion of the associated C*-bundle) by

Y(m): = [(p,F(p))],
where I1(p) = m. This is indeed independent of the choice
of pell "' (m), since

Conversely, if L, is trivial, there exists a global nonvanishing
section y: M — L, which is always of the form
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P(m) = [(p, Sy ()]

for some f,: P— C*. Since 1 is well-defined we conclude that

S(p.g) = (£, (pg)/f4(P))

and hence that fis trivial. ]

Already implicit in the proof above was the fact that
sections ¢ of L, are generally in one-one correspondence
with functions f, : P— C satifying the equivariance condition

1. (pg) =fp.g)f,(p) (2.4)
via
v(m) = [(p.f, ()], (2.5)

where the rhs is independent of p as a consequence of (2.4).

iIl. THE LOCAL GEOMETRY OF L,

We shall now construct the local geometrical data that
determine L, (transition functions, local sections) from
those of P and use them to derive an explicit formula for the
curvature F, of L, and hence for a representative of the first
Chern class ¢,(L,) (in real cohomology). Let {U,} be a
locally finite, good'? covering of M by open sets U, and let
s,: U, —»II"'(U,)CP be local trivializing sections of P,
8ap: U,NUz; -G the corresponding transition functions.
These define local sections #, of L, by

Y, (m): = [(s, (m),1)] (3.1)
and can be used to construct local trivializations, thus prov-
ing the local trivializability of L, claimed in the previous
chapter.

Defining g,:I1"*(U,) -~ G by

5, (m)g,(p) =p, pell~'(m),

we can express the ¢ in the form (2.5)—i.e., via local equi-
variant functions—as

Yo (m) = [(p, /2 (P))] (3.2)
with

Ja(P):=fl52(m) g, (P)). (3.3)
Indeed we have

Ja(p8) =flp.8)fa (), (34)
where we have used

8.(pg) =8.(p)g (3.5)

and the cocycle condition on f.
The local sections ¥, (3.1) define the corresponding
transition functions ¢, by

Yo (M) = thop (M)thg (M).
Using s, (m) = 55 (m)gg, (m) one computes
Yo (m) = [(s.(m),1)]
= [(s5 (m)gp, (m),1)]
= [(sg (M), f(s.(m).8ap (m)}}]
=f(8a (M) ,8ap (M5 (m).
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Thus the transition functions of L, are
Youp (M) = f(s,(m) g5 (m)). (3.6)

Using f(p.g) ™' =f(pg.g™") and gz, (m)g,(p) =gs(p)
one easily proves

¢aB = 'pﬁ_al

and

¢aB ¢B}' = 1/)(17/!

as behooves a set of transition functions.

This then completes the description of L, in terms of
local data, but in order to determine the first Chern class
¢, (L) from these (which must—in principle—be possible,
since they contain the whole information on the bundle), we
need as an additional input a partition of unity { p,, } subor-
dinate to the locally finite covering { U, }:i.e., a set of smooth
functions { p, } with the properties

supp p, CU,,
0<p, <1,

zpa = 1'

Such coverings and subordinate partitions of unity exist,
since we assumed M to be paracompact. Given this, ¢, (L,)
——or rather a representative two-form (1/2mi)F(L ) where
F (llz,f) is the “curvature” of L,— can be expressed on U,
by

F(Ly), =3 dp, Ndlog ¢, (3.7)
Y

where d is the exterior derivative on M. Note that F(L) has
a globally defined expression on P (where it is also exact),
and to compute [1*F (L;) and hence IT*c,(L,), we first ob-
serve that

Vo = Safys (3.8)
where £, was defined in {3.3) and s, was the local trivializ-
ing section of P on U, . Using the fact that moreover

5.(THP)) = pg. (p) ™,
by the definition of g, we find

M*4,, =fa f,

[Note that the functions I1*9,,, are the transition functions
of the pullback bundle IT*L, on P. Equation (3.9) therefore
shows that this bundle is trivial and we consequently expect
o, (I1*L;) = [*¢,(L,) to be trivial and [T*F(L,) to be glo-
bally exact.]

Indeed we find

M*F(L,), = (d,, S *p, d, log H*zﬁ,,a)
e

(3.9)

= (dpzﬂ*py d, logfy)
(d, is the exterior deri:"ative on P), which is independent of
a, and globally exact,
II*F(L;) =4d,T,
with

(3.10)
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I‘=EH*p,, d, logf,. (3.11)
Y

In Sec. VI—where we shall consider the case P = o/ —we
shall show in our discussion of the determinant line bundle,
that the restriction of T to a fiber in P [the antitransgression
of F(L,)] gives the integrated anomaly ' in accordance with
the general expectation that the curvature of the determi-
nant line bundle and the anomaly should be related in this
way. 1416

In the next section we shall see how I" (3.11) enters the
construction of a covariant derivative on L, (in particular—
in the situation of Sec. VI—this will show how the connec-
tion on the determinant line bundle describes a “minimal
coupling” to the anomaly).

IV. COVARIANT DERIVATIVES ON GENERALIZED
ASSOCIATED LINE BUNDLES

Our aim will now be to define a connection in the gener-
alized associated complex line bundle L,. To see where the
difficulty lies, let us recall how a connection on the principal
bundle P induces a covariant derivative on the space of sec-
tions of an ordinary associated bundie E with standard fiber
F. Given a section ¥ of E and a vector field X on M, a new
section V¢ is defined by the following steps:

Use the principal connection on P tolift X to a horizon-
tal vector field X on P

Associate to ¢ the corresponding equivariant function
fy: P~ Fsuch that $(m) = [(p. £, (P))]; _

Form Xf,, (the derivative of f,, along X). _
_ By the equivariance of f,, and the right-invariance of X,
Xf, is again an equivariant F-valued function on P and thus
defines a new section of E which we call V, ¢/,

(Vx) (m): = [(p.Xf,(P))], pell™'(m).
In our case, however, the equivariant function f, corre-
sponding to a section ¢ of L, will satisfy (3.7),

S (p8) =fp.8)fy (p).
Therefore Xf,p will only be equivariant up to a term propor-
tional to Xf [this term is, of course, zero for ordinary asso-
ciated bundles, where fis an element of Hom(G,C*) and
therefore independent of P]. But lack of equivariance im-
plies that Xf,, does not define a new section of L,. We are
thus led to look for a modification of the above prescription
which preserves the equivariance (cf. also Ref. 2).

Letg = (@, ) beasectionof L., withg, = ¢, ¢, and
let 4, ( =/, ) be the corresponding local equivariant func-
tions. Define new functions D %A, on I1~'(U,) by"’

D¢h,:=Xh, —T,(X)h, (no sum over a), (4.1)
where

r,=d,logf,.
Then it is easy to see that indeed

(D%h,)(pg) =f(pg) (D5h,)(p) (4.2)

(i.e., the lack of equivariance of X4, is precisely compensat-
ed by the lack of equivariance of T',, ). Due to the equivar-
iance of &, and the invariance of X, X, transforms as
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(Xh,) (pg) = (Xh, (2)) f(p.8) + h.(P)Xf(D.g)

= f(p.8) [Xh, (p) + (X 1og f(p.g))h (P)].
(4.3)

On the other hand, d,, log f,, transforms as ([1(p) = m)
d, log f,(p.g) = d, log f(s, (m).8.(Pg))

=d, log( f(s,(m).g,(P)g))

=d, log (f(p.8)) f(sa(m).g.(P))

=d, log (f(p.g)) +d, log f,(p). (4.4)

Putting (4.3) and (4.4) together we find (4.2).
Thus the “local” covariant derivative V% given by

(Vi@,)(m): = [(p,(D%h,)(p))] (4.5)

is well defined. Furthermore, it is straightforward to check
that

VaX¢a = ¢aﬁ v§{¢ﬁ . (46)

Hence Vy@ = (Vi@, ) is a well-defined new section of L,
and the operator V, defined in this way satisfies all the axi-
oms of a covariant derivative. Equations (4.2) and (4.6)
now show that we have arrived at our goal of defining a
covariant derivative on the sections of L.

Regarding the operator D* =d — I',, instead as a co-
variant derivative on the sections of the trivial line bundle
P xCon P, we see that (according to the general prescrip-
tion of extending connection potentials [Ref. 18, p. 68]) the
I, piece together to the connection potential

=73 I*,T,,

where I is precisely the one-form on Pobtained in Sec. I11 by
pulling back ¢,(L;) to P.

Thus the general recipe for finding a covariant deriva-
tive on L, can also be expressed in the following way: Given
the local expression (3.7) for the curvature of L, pull it back
to obtain I' via (3.10), (3.11). This I defines a covariant
derivative on sections of P X C which descends to a covariant
derivative on (P XC)/~ = L,.

Looking at it this way, the fact that (the pullback of) the
curvature of L,—computed by means of Vy—equals dT" is
quite obvious.

V. CALCULATION OF H(G,C*(P))

As a by-product of our previous discussion we are now
able to compute the cohomology group H '(G,C*(P)) intro-
duced in Sec. II in a number of cases. More generally, the
groups H '(G,Map(X,U(1))) (where X is a manifold carry-
ing a G-action) were introduced in Ref. 10 to study the prob-
lem of lifting the G-action on X to automorphisms of torus-
bundles on X. Explicit calculation of this group is, however,
quite difficult in general, since it involves an intricate rela-
tionship between the topologies of G and X. In our case the
additional structure provided by the fact that P = Xisa prin-
cipal G-bundle allows us to compute it explicitly. The rela-
tion between H '(G,C*(P)) and line bundles on M we have
established so far will be refined in such a way that the com-
putation of H }(G,C*(P)) becomes geometrically accessible.
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We shall then also apply these results to the question of clas-
sifying G-lifts.

The first bit of information we need—and which we
have already established in Ref. II—is the fact (Proposition
1) that L, is trivial if f'is trivial. Thus, if we can for some
other (topological, geometrical) reason show that L, has to
be trivial, we <can conclude the triviality of
H: = H'(G,C*(P)).

One such situation occurs if P is trivial because of the
following proposition.

Proposition 2: If Pis trivial, L, is trivial.

Proof: Let s be a global trivializing section of P,s: M — P.
Then ¥(m): = [(s(m),1)] is a nowhere vanishing section
of L. Thus L, is trivial.

According to the above remarks we thus have the fol-
lowing.

Corollary 1. If Pis trivial, H '(G,C*(P)) is trivial.

Since line bundles on M are classified by H2(M,Z) we
can also deduce the next proposition.

Proposition 3: If H*(M,Z) = 0, H '(G,C*(P)) is trivial.

Notice how H ““feels” the triviality of Pand the cohomo-
logy of M via the G-module C*(P).

Another situation which is still tractable but in a some-
what less straightforward manner, finally giving rise to a
nontrivial H, occurs if # 2(P,Z) = 0. Indeed we shall show
below that then H = H*(M,Z). Before proceeding to the
proof let us make the following remarks.

(i) In particular, this result implies that in the case
H?(P,Z) = 0 every complex line bundle on M is of the form
L, for some cocycle f.

(it) In the case P = o/ (the space of connections on a
principle bundle P’), G = ¥ (the group of pointed vertical
automorphisms of P’) this result has been established in a
very nice way in Ref. 5, where it was used to relate the group-
cohomological and topological aspects of anomalies. This
relation has been sharpened and made explicit in Ref. 6 (cf.
also Sec. VI).

(iii) The result H '(G,C*(P)) = H*(M,Z) is consistent
with the results for H derived above. Indeed this is trivial for
Proposition 3. As for Corollary 1 note that H*(P,Z) =0
together with the triviality of P imply—by the Kiinneth for-
mula applied to P = M X G—that H*(M,Z) = 0.

Theorem 1: If H%(P,Z)) =0, then

H'(G,C*(P))= HX(M,Z).

Proof: We have already seen that for any L, the pullback
to P—II*L,—is trivial (Sec. IIT). However, H*(P,Z) =0
implies that all line bundles on P—and in particular the pull-
backs of all line bundles on M—are trivial. This makes it
plausible that we can recover a// line bundles on M by “quo-
tienting” P XC.,

We shall now show how to construct an element of
Z '(G,C*(P)) from any line bundle L on M, and then prove
the bijectivity (in cohomology) of this construction.

Thus let L be any line bundle on M with projection I1, .
Note that IT*L is trivial, and via the choice of a global non-
vanishing section : P— I1*L we have [1*L ~P X C.

Since IT*L: = {(p,DeP X L:TI(p) =11, (1)} ¢is of the
form
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Y(p) =(p. Sy (D)) (%)
for some fiber-preserving bundle map f,: P—L. Since
/4 (pg) and £, (p) sit in the same fiber of L, there is a smooth
function a, : P—C* such that

fo(p) =a,(p)f, (pg)

(the reason for putting &, on the rhs of the above equation

will become apparent below). Consistency of this relation

requires that a(p,g): = a, (p) is a group one-cocycle with

values in C*(P); i.e., an element of Z }(G,C* (P)), since
a(p,gh) = a(p.g)a(pg.h).

In this way every line bundle on M determines a cocycle in

Z '(G,C*(P)) via a choice of trivialization. If a different tri-

vializing section ¢’ is chosen, then ¢ is related to 3’ by

¥ = @y’ for some @peC* ( P). Defining the new cocycle a’ by
Sy (p) = (p.8)fy (P8),

one finds

a'(p.g) = a(p.g)e(pg)/o(p)).
Thus ¢’ and a are cohomologous,

a' = adyp
[cf. (2.1)] and every line bundle on M defines a cohomology
class in H {G,C*(P)).

We shall show next that the cohomology class defined in
this way is zero iff L is trivial, i.e.,, represents zero in
H*(MZ).

Assume first that a is trivial, i.e., that for a given triviali-
zation ¢ of II*L we have

S (p) = (F(pg)/F(p))f, (pg)
for some FeC*(P). Then

Lo (PYF(p) = [, (pg) F(pg)
=:o(m)
is obviously independent of pell~'(m) and thus yields a
global section 0: M — L, which is nowhere vanishing. Thus L
is trivial.

Conversely, if L is trivial, let o: M — L be a global trivia-
lizing section. Then any trivializing section ¢ of [T*L is of the
form (*) with

Sy (p) =o(m)F(p),

for some FeC*(P). Computing f, (pg) we find
fo(p) = a(pg)f, (pg) = a(p.g)o(m)F(pg)
and therefore
a(p.g) = (F(p)/F(pg)) = 6F ~'(p.g).

Thus if L is trivial, « is trivial.

The same method as above can be used to prove that
equivalent line bundles on M give rise to the same cohomo-
logy class in H. Thus the mapping A: L -« gives rise to an
injective group homomorphism,

h,: H*(M,Z) - H '(G,C*(P)).

We shall now show finally that A, is surjective. This will
be done by showing that &, [L,] = [f], where L, is the

generalized associated line bundle constructed from the co-
cycle fasin Sec. II.
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Thebundle map f,: P— L, corresponding to a trivializa-
tion of IT*L, is of the form

£ ) =[(p.F(@)]

for somef,,,eC"‘ P).
Therefore, £, (pg) and £, (p) are related by

Sy () = [y ()] = [(08S10.8)1, ()]
(by definition of the equivalence relation on P X C)
= [(28)(, (D) /s (22)) f2.8)F, (P2))]
=fp.0)f ;' (p.8)f, (pg).
Thus &, [L,] = [f]. This shows that
h*:HZ(M,Z)~H1(G,C*(P)) 0O

is an isomorphism.

One final bit of information on H we can infer directly
from Ref. 10. Namely, it is that H = H '(G,Z) if G is con-
nected and H'(P,Z) = 0.

Again we can show (at least when M is simply connect-
ed) that this is compatible with the results we have derived
above on the structure of H. In particular if
H?*(M,Z) = 0= H'(P,Z), the cohomology long exact se-
quence of the principal fibration G—P—M implies
H'(G,Z) = 0 and therefore Proposition 3 in this case. On
the other hand, if Pis trivial and H (P,Z) = O, this implies
H'(G,Z) =0 (Kiinneth formula) and hence Corollary 1.
Finally, if H'(PZ)=0=H?*PZ), we have
HY(GZ)=H*M,Z) (via transgression) and therefore we
recover the result of Theorem 1 under the further assump-
tion H' (PZ) =0.

Collecting our results in Table I, we see that the only
case in which we have not been able to determine H explicit-
ly is the one with P nontrivial and H '(P,Z), H*(P,Z) and
H?*(M,Z) all nonvanishing.

From Ref. 10 we know that H ' (G,Map(X,U(1))) classi-
fies equivalence classes of lifts of the G-action on X to a
U(1)-bundle on X (provided one lift exists). Similarly
H '(G,C* (X)) classifies lifts to C*-bundles (and hence to line
bundles) on X; thus in particular H '(G,C* ( P)) classifies lifts
of the principal G-action on P to automorphisms of C*-bun-
dles on P. In the light of this fact and the above results, we
have shown the following.

Theorem 2: Let P(M,G) be a principal G-bundle over a
connected manifold M. Let .£ be a line bundle on P admit-
ting a lift of the principal G-action on P. Then this lift is
unique if either P is trivial or H*(M,Z) = 0.

While this result could have undoubtedly been derived
by other means as well, it illustrates nicely how group-coho-
mological can be transcribed into geometrical information.

TABLE 1. Results of the computation of H'(G,C*( P)).

P(M,G) H\GC*(P))
P trivial 0
HYPZ)=0 H'(GZ)
H*PZ)=0 H*(MZ)
H*MZ) =0 0
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VI. ANOMALIES, WESS-ZUMINO TERMS, AND THE
DETERMINANT LINE BUNDLE

We now finally come to the main application of the tech-
niques developed so far, namely to the construction and in-
vestigation of the determinant line bundle'*' of a family of
Dirac operators coupled to non-Abelian gauge fields. Al-
though these bundles have been around for some time, the
results of the previous sections will allow us to be on more
intimate terms with them.

Specializing Secs. II-IV to the case (mentioned several
times already) P= ./, G= Y, M=% (the gauge orbit
space) we shall now be able to see the following®:

(a) L— where fis the cocycle determined by the
Wess—Zumino term®!3>—is the determinant line bundle (cf.
also Refs. 1,2) of the family of Dirac operators parametrized
by de.o/.

{b) The curvature of L, (anti-) transgresses to the inte-
grated anomaly obtained via the descent-equations'? or per-
turbative calculations.?® This establishes explicitly the
equivalence between the topological (determinant line bun-
dles, index theorem) and algebraic (BRS-cohomology) ap-
proaches to anomalies. This had already been done to some
extent in Refs. 4 and 5, but our formalism allows us to be
quite explicit about this.

(c) The connection on L, constructed in Sec. IV pro-
vides the nice interpretation of the anomaly as a kind of
“functional magnetic field” on the gauge orbit space, whose
“field strength” is the curvature of the determinant line bun-
dle. It would be interesting to see how this fact is related to
the Fock-space picture, where the anomaly also shows up as
aU(1) field*' (Berry’s phase®?).

Finally, since the connection on L, is in some sense nat-
ural, it ought to coincide with Quillen’s connection® (or
rather its generalization®*), but I have been unable to show
this.

Since all the computations have already been done in
previous sections, we can be quite brief about these matters
here.

Non-Abelian anomalies show up at one loop as lack of
gauge invariance of the effective action,

W(A-g)# W(A),
where

W) = [ ayapesp | - [ 30,0]
S, =0+1A01 +vs5),
A-g=g 'dg+g 'dg.

However, the modulus of W can be shown to be gauge invar-
iant. Thus

W(A®) = expl2miv(A4.8) 1 W(A), (6.1)

where @ is known as the Wess—Zumino term and exp 27w is
a group cocycle in the sense of (2.2). Formally W(A) is the
determinant of the Dirac operator d,,, and comparing (6.1)
with (2.4) and (2.5) shows that W actually defines a section
of the line bundle

(A XCY/ ~ = :Lf,
with
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(A,c) ~ (A-glexp 2miw(A4,g2))c).

Note that L, is the determinant line bundle, which is thus
trivial iff the Wess—Zumino term defines a trivial one-cocy-
cle.

Completing the transgression of F (3.7) by restricting T’
(3.11) to the fiber via the fiber injection i,:¥9 - &7, g—~4-g
and interpreting the result as a one-form on ¥ gives

3@ =3 p,([41)d, log fis,([41).8,(4)g),

J(A,g) = exp 2miw(A4,g), (6.2)

where [4] is the orbit {4'g, ge ¥} and d., is the exterior
derivativeon %.

To compare this with the integrated anomaly
[f w;,(4,X), where XeLie ¥ ], we use the fact'? that it can
be obtained as the infinitesimal variation of the Wess—Zu-
mino term (i.e., as a Lie-algebra cocycle).

To simplify the calculation, we choose a covering {U, }
in such a way that for a given [4], p,([4]) =6, . Al-
though it may seem obvious that this is always possible, a
proof of this is contained in the Appendix, since I was not
aware of a reference in the literature and the proof'is slightly
technical. Then we find (using the equivariance of f and
reinserting the factor 27/ we had omitted)

J‘wé,, (4,X) =Ed;(o(A,exp tX)|,_o

[by (6.2)]

|

L 2 1og fl,exp )],
21ri
1

d
:%EIOgﬂSﬁ’ (Aexp X)), _o

QL

t

— 1 ok

2 A1 D) (6.3)
(where e is the identity-element of & ). Thus we have expli-
citly verified that the curvature of the determinant line bun-
dle L, antitransgresses to the integrated anomaly.

Pulling back the connection (Sec. IV) to &/ X C, whose
connection potential is I', one obtains a & -equivariant flat
and necessarily trivial connection there, which however re-
stricts to a flat connection with nontrivial holonomy on the
gauge orbits iff the anomaly is nontrivial [ because of (6.3) ],
iff the cocycle is nontrivial (since H'(Y)~H?*(/
&) ~H)iff L, is nontrivial (Proposition 1).

APPENDIX: A LEMMA ON PARTITIONS OF UNITY

The purpose of this Appendix is to prove the following
lemma, which we used in Sec. VI to simplify the calculation
of the antitransgression.

Lemma: Let M be a paracompact smooth Hausdorff
manifold and let xeM be a point of M. Then there exists a
covering of M by open sets { W, } .., and a partition to unity
{po} subordinate to {W,} such that p,(x) =0 Vael,
a#agandp, (x) =1.

Proof: Let {U,},,.; be any locally finite covering of M
(this exists, since M is paracompact). Assume without loss
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of generality that xeM is covered by just two open sets U, U,
(by local finiteness of {U, } the procedure outlined below
will just have to be repeated a finite number of times in the
general case).

The strategy will be not to modify directly a partition of
unity subordinate to { U, }, but rather to modify the covering
itself in such a way that X will then be only covered by one
open set W. A partition of unity subordinate to this new
covering (which exists) will then have the desired property,
since

Zpa(y)=1, VyeM, suppp,CU,.

The crucial property we shall need of paracompact
spaces is that they are normal, i.e., every two closed disjoint
sets A, B can be separated by open disjoint sets O, and Oy,
formally

YA,BCMclosed, ANB=40,
30,,0, opensuchthat: ACO,, BCO,
0,N0; =40.

Choose V,, CU,NU, such that xe¥, and V, is open, and
denote by V, the closure of V,. Assume now that W is an
open set with the property ¥, C WC U,N U, (the existence
of such a W will be shown below, using the normality of ).
Let ¥ $be the complement of ¥, in M; then ¥ € is open. Then
one can convince oneself (by drawing pictures or by formal
reasoning) that the union of the following three open sets

W, Wp=V.NU, Wp=¥VNu,
is equal to the union of U, and U,, and that x is only con-

tained in W. A partition of unity subordinate to the new
locally finite covering

{Uay ae[y a?”- 192: I'V, Wl) Wz}
will then do the job.

Now we shall show that such a W can always be found.
Since 4 =V, and B = (U,NU,)€ are disjoint closed sets,
we can—due to normality of M—find open sets O, Oy with

v.co,,

(U,NU,)CO0,, ()

OA mOB = 0.
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Since (U,NU,)€C Oy, we have
o5CUNU, (%)

and since O, and Oy are disjoint, O, is contained in the
complement of Op,

0,C06. (k%)
Putting (*), (*+}, and (*%*) together, we find that

V. Co,CUNU,
Thus O, = : W is a possible choice. ]
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The factorization theorems of Uhlenbeck and Wood are used to derive various finite action
solutions to the classical equations of motion of the Euclidean U(N) chiral model in two
dimensions. They are obtained by adding a general basic uniton to solutions of the
Grassmannian models. A brief comment is made on the properties of these solutions.

{. INTRODUCTION

In this paper we derive and study various finite action
classical solutions of the U () chiral models in two Euclid-
ean dimensions. These models have become increasingly
popular in recent years as they possess nontrivial topological
properties, which in turn are responsible for the existence of
nontrivial solutions, and they appear to be two-dimensional
analogs of physically relevant Yang-Mills theories. More-
over, they provide examples of harmonic maps and as such
are also interesting from the mathematical point of view.

The models we are going to discuss are also called *““prin-
cipal chiral models,” and are defined in terms of the Lagran-
gian density

L=1Tr3,0%,0,
where Q'Q=00%=1.
The equations of motion (or strictly speaking the Euler—

Lagrange equations, as we work in the Euclidean space) are
given by

9,(279,0) =0, (1.2)
and to specify the problem completely we also have to state
the boundary conditions satisfied by Q. The conditions we

want to impose are those that come from the requirement of
quantization in terms of part integrals—thus we require that

(L.1)

S=J-d2xL< 0.

The condition of the finiteness of the action effectively com-
pactifies the two-dimensional Euclidean space, thus allow-
ing us to take over the results derived in the case when the
basic space is given by S . Moreover, this compactification
introduces topology and is directly responsible for the dis-
crete values of the action.

It has been known for some time that all solutions of
Grassmannian models are also solutions of the chiral model
[as the Grassmannian subspace is totally geodesic in
U(N)1"; at the same time not much has been known about
other solutions. Recently, however, Uhlenbeck proved a
very interesting factorization theorem.> Namely, she
showed that all classical solutions of the chiral model are of
the form

® Chercheur IISN, Belgium.
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k

i=1

(1.3)

where k is some number (called by her the uniton number),
K is a constant matrix, and R; are projectors that satisfy
some first-order differential equations. The theorem pro-
vides a convenient method of generating new solutions from
old ones, the procedure that she called the addition of a uni-
ton. Given a solution @, of the model, she defines a uniton
factor for this solution by 1 — 2R, where R is a projector
satisfying

R4_(1—-R)=0,

(1-R)[_R+A_R]=0, (1.4)
where
4, =100, Qo (1.5)

and d, denotes the derivative with respect to x + iy, respec-
tively. We summarize her results by the following theorem.

Uhlenbeck’s theorem: If Q, is a solution of the equations
of motion of the U(XN) chiral model—(1.2)and 1 — 2R isa
uniton for this solution, then Q = Q,(1 — 2R) is another
solution of this equation. Moreover, all solutions of the
U(N) model can be constructed by adding less than N uni-
tons to a constant solution.

If Q, = K, the equations reduce to d_RR =0, i.e,, the
equations for the instantons of the Grassmannian models.
For Q,# K we have more general solutions, which include
noninstanton solutions of Grassmannian models and also
non-Grassmannian solutions. It is important to note that the
uniton number is, strictly speaking, not well defined. By this
we mean that when we add a uniton to, say, a two-uniton
solution, the resulting configuration may turn out to be
equivalent to a one-uniton solution. For this reason, Uhlen-
beck also defined the minimal uniton number as the minimal
number of unitons that are needed to construct a given solu-
tion.

The main aspect of the Uhlenbeck construction is that it
reduces the problem to having to solve a first-order nonlin-
ear differential equation coupled with a nonlinear algebraic
equation. This last equation admits two obvious solutions,
namely, RA_ =0orA_(1 — R) = 0. Following Wood,> we
will call their solutions, respectively, basic and antibasic uni-
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tons. Moreover, in his paper> Wood also managed to show
that any uniton R can be decomposed into a product of basic
unitons. Thus his theorem can be stated as follows.

Wood’s theorem: Any uniton 1 — 2R corresponding to
a given solution Q, can be factorized as

(1—2R) = (1—2R,)(1 —2R,) (1 —2R,)

for some k<N, where 1 — 2R, is a basic uniton for @, and
1 — 2R, are basic unitons for the solutions @,
=@Qo(1 —2R) (1 —-2R;_;).

Therefore, we see that there are three types of unitons:
the basic, the antibasic, and the remaining ones, which we
shall call mixed. Moreover, each of the projectors appearing
in these unitons can be of any rank.

Let us observe that when we try to add a basic or an
antibasic uniton to a given solution, the Uhlenbeck equa-
tions (1.4) simplify. If we use and H to describe, respective-
ly, the image of 4_ and 4, and denote by P(/) and P(H)
the corresponding projectors on these spaces, we can state
the following proposition.

Proposition 1.1: For 1 — 2R, a basic uniton correspond-
ing to the solution Q,, the Uhlenbeck equations (1.4) are
equivalent to

RA_ =0,

(1—R—P))J_R=0. (1.6)

Similarily, for the antibasic unitons R =1—§ and the
Uhlenbeck equations (1.4) reduce to

A_S=0,
(1 — S — P(H))3,S =0.

Proof: The first equation in ( 1.6) is just the definition of
a basic uniton. Using this definition and multiplying the sec-
ond Uhlenbeck equation by P(I) from the left we find

A_R= —P(DJ_R. (1.8)

Substituting this result into the second Uhlenbeck equation
we obtain the second equation (1.6). To prove the complete
equivalence between Egs. (1.6) and the Uhlenbeck equa-
tions (1.4) we have to show that if Eqs. (1.6) are satisfied, so
are the Uhlenbeck equations. To prove this we consider the
equation satisfied by 4, (Ref. 2)

d A, +[4_,4,1=0, A_= —(4 ) (1.9)

and multiply it from the right by R. A simple algebraic ma-
nipulation then shows that if this equation is satisfied so is
(1.8). Substituting this expression into the second equation
(1.6) shows that the second Uhlenbeck equation is satisfied,
thus completing the proof. The equivalence between the
Uhlenbeck equations (1.4) and (1.7) can be proved in a very
similar way. As an immediate consequence of Eq. (1.6) we
see that {1 — P(I)) and P(H) are automatically projectors
corresponding to, respectively, basic and antibasic unitons
and that we can construct more general solutions of both
types by considering projectors of smaller rank.

As we have seen, in order to add a uniton to a given
solution @,, we have to compute the gauge field 4_ corre-
sponding to this solution. As a matter of fact, as Q, can be
factorized, as in (1.3), it is quite easy to show that 4_ is
given by*

(1.7)
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k
A_=Y3d_R,
i=1
In the sequel, we will use the following notation. For ¥,
which is a matrix, we will denote by P(¥) the projector on
the space it spans. When ¥V is of maximal rank, this projector
is given by

P(V)=V(V'n-tvt,

(1.10)

(L.11)

Ii. ONE-UNITON SOLUTIONS

As we have shown in Sec. I, the one-uniton solutions are
of the form

Q0=K(1-2R), (2.1)
where R, satisfies
(1-R\)I_R,=0. (2.2)

These solutions are the so-called instanton solutions of
Grassmannian models that have been known for some time.>
The most general solutions for R, of this class are given by

R, =P(F), (2.3)

where F is a holomorphic matrix (i.e., whose entries are
functions of only x + iy) of maximal rank.

Itis important to note that a given one-uniton solution is
not characterized by only one holomorphic matrix F. In fact,
one can always take holomorphic linear combinations of the
columns of F, i.e., replace F by F’' = FA, where A is any
invertible holomorphic square matrix of appropriate size,
without altering the solution. From now on we will say that a
projector R is holomorphic or antiholomorphic if it satisfies
d_RR =0o0rd RR =0, respectively. As a consequence of
the previous construction, holomorphic bases will play an
important role in the sequel. For this reason, we will say that
a set of rectangular matrices (of maximal rank)

Vi,V Vi (2.4)

is an orthogonal (anti)holomorphic basis sequence if all the
V., are orthogonal to each other,

k
Viv,=0, i#i SPV) =1,
i=1

andif P, = 2/ _ | P(¥,) is (anti)holomorphic, and so it satis-
fies

(2.5)

(1-P))3,P,=0. (2.6)

Moreover, we will say that this is an orthogonal (anti)holo-
morphic basis sequence of DZ type® if the V;, satisfy

via,v,=0 2.7)

for all i, j, such that |i —j|>2. As a consequence of these
properties, we can choose to normalize each V; in such a way
that

i—1

Vi= (1 - P(I/j))ﬂ, (2.8)
j=1

where F; is some (anti)holomorphic matrix. This comes

from the fact that all holomorphic projectors are of the type

P(F), where F is a holomorphic matrix.” Writing

P, = P(W;) for some holomorphic W, we have by induc-
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tion that V; = (1 — P
have

Via_v, =0, (2.9)

valid for all i. As this normalization will play an important
role in what follows, we will call it the natural (anti)holo-
morphic normalization. When R is a holomorphic projector,
then 1 — R is an antiholomorphic one, so that when read
from the right to the left, the orthogonal holomorphic se-
quence becomes an antiholomorphic one. Moreover, when V
is normalized in the natural holomorphic way, then
V(¥VT¥) ~! has the natural antiholomorphic normalization.
To add a uniton to the one-uniton solution, we will need the
following proposition.

Proposition 2.1: When F is a holomorphic matrix of
maximal rank and R = P(F) corresponds to a one-uniton
solution, then

({1 — P(D)F,LH,GR) (2.10)

is an orthogonal holomorphic basis sequence of DZ type,
where G, is the orthogonal complement of the vectors
(F.H).

Proof: In general, the matrix (F,d_ F) is not of maximal
rank, but after some possible reordering of its columns we
can always split F= (FF,) into two parts, such that
(1 — P(F))d_ F, is of maximal rank. As a consequence we
can write

3,F,=FA+FB+3,F C (2.11)

for some holomorphic matrices 4, B, and C. So rather than
taking F to construct R we can use F= (F,,G,) where G,
=F, — F\C, and so (1 — P(F))d, G, = 0. Now, using the
fact that P(F) = P(F) and

A_=3_P(F) = F(FtF)~'((1 — PN F,0",
(2.12)

wesee that G14_ = (3,.G.)'(1 — P(F)) = -0 and that the
rank of 4_ is equal to the rank of {1 — P(F))a Fi.Asa
consequence, we see that [ is spanned by (1 — P(G, ))F, and
we can write the sequence above as
(G, (1 — P(G))F,, (1 —P(F))c? F,Gy). This sequence is
obviously an orthogonal holomorphic basis sequence. More-
over, as (1 — P(F ))0, G, =0 it is easy to check that this
basis is of DZ type.

.1 ) W,. With this normalization, we

111. ADDING A BASIC UNITON

Wood’s factorization theorem tells us that to construct
all solutions of the U(/N) model, all we have to do is to add
successive basic unitons to the one-uniton solution. This ap-
pears to be a very difficult task. In our previous paper,® we
reported the construction of all solutions of the U(3) and
U(4) models. In the U(4) case we found that the construc-
tion of the general three-uniton configurations was rather
difficult to perform. Nevertheless it is easy to observe that all
solutions correspond to configurations that can be obtained
by addition of one uniton to some Grassmannian solution.
So rather than trying to construct two, three, and further
general uniton solutions, we will restrict our construction to
the addition of a general basic uniton to the already known
general Grassmann solutions.>-
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The construction of these Grassmannian solutions is
quite simple. We start by constructing an orthogonal holo-
morphic basis sequence of DZ type,

(Y,Y,,7,,..Y,....Y,,,,, . ), 3.1
where the sets ¥, and Y,,, ; may be empty. Defining R,

=Z]_, P(Y,), where P(Y) is a projector (onto ¥) and so
satisfies P2 = P, we know>* that

2r
Q=H(1—2R,.)=(1—2R), (3.2)
i=1
where
R = ZP(Ym (3.3)

i=1
is a Grassmannian solution of the U{/N) model (we shall
prove this by induction as a by-product of the construction
of more general solutions). Observe that when =1 and Y,
is empty, we recover the instanton solutions described be-
fore.

We are now ready to add a basic uniton to these solu-
tions, and as a by-product, prove once again (by induction)
that (3.2) is a solution of the U(N) model. To proceed we
observe that before we can solve Eq. (1.6), we must compute
the 4_ matrix for the solution (3.2). We find

2r
=3 d_R.

i=1
Next we perform the “splitting,” explained at the end of Sec.
IT and write, after an appropriate gauge transformation, Y,

= (G;,1;), thus obtaining an orthogonal holomorphic basis
sequence

(3.4)

(Gp1y,,Gy,1,,,Gp ),y (3.5)
which satisfies

G!d_G, =0, G{d,G =0, for i#j, (3.6)
and

G!d_I,=0, I13,.G,=0, for i#j. 37N

To add a basic uniton to the solution (3.2) we have to
solve Egs. (1.6), the first of which can be solved by choosing
a projector R to be orthogonal to all I,. To solve the second
equation (1.6) we observe that we can rewrite it as
T d_R = 0 for some choice of T. Hence we split each non-
empty set G; into three parts,

G = (V. U,W,), (3.8)

such that the U,’s span the intersection of the two spaces
onto which R and T project and the V,’s (and, respectively,
the W’s) span the orthogonal complement of that intersec-
tion in the space on which R (and, respectively, T) project.
Thus we write, in full generality,

~ 2r+1
R= S P(V)+P(Vy), (3.9)
i=1
. 2r 2r+1
T=1-R PUI) = 3 P(W) +P(Wy),
i=1 i=1
(3.10)
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where
2r+1

V= 2 U.a;,
i=1

(3.11)

2r+1
Wy= Y UUIU) b,

i=1
and the g, and b, are some matrices that we can assume to be
of maximal rank. In fact, had they not been of maximal rank,
we would have found that one of the vectors spanned by the
corresponding U; would have to lie in V; or W;. We see that
the second equation (1.6) reduces to

WI(?_V}=O (3.12)
for all /, j equal to 1,2,...,27 + 1 and M. Next we define

i—1
P(V,) = 3 P(Y;)+P(V),

j=1

P(U,) =PV,) + P(U), (3.13)
P(W,) =PU) + P(W)),

and observe that by construction
(1-P(W#))O_P(V;) =0, (3.14)

(1 =P(W))o_(P(V;) + P(U;))=0.
However, we observe that (3.6) and (3.7) imply that

K19, K =0, i#j, (3.15)
where K and X stand for any ¥, W, or U. This means that
(3.12) implies

Uld_V,=W!a_V,=W!d_U,=0 (3.16)
and we see that P(V;), P(U,), and P(W,) are holomor-
phic, and that
VoUWl Vo s Wo o, Vo 15U W 1) (307)

is an orthogonal holomorphic basis sequence. Thus we are
left with having to solve

Wi, a_v, =0. (3.18)

To proceed further we perform a gauge transformation,
which brings the U, to satisfy the condition of the natural
holomorphic normalization, i.e., U} d_U, = 0and compute

Wid_Vy =2 bl(UIU)"'U_(Uga),

W (3.19)
Sbld_a,=Ybld_a,.
i i

Since the g, have maximal rank, the above given expression
vanishes if the a,’s are holomorphic.

If we now consider the particular example when all the
sets U, are empty, we find that our new solution takes the
form

Q= (1—-1Ry)(1-2R)

=(1 - 2(iP(Y’2.~) +P( Vl))),

i=1

(3.20)

where \}/’2,. = (Wy,15:,V5: 1 ). This solution is a Grassman-
nian solution computed from the orthogonal holomorphic
basis sequence (OBS) Y, = (W,I,V, +1), Where W,
= Iy =V, .1, =0. Moreover, this new basis is easily
shown to be of DZ type. Thus we see that the effect of our
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construction corresponds to the addition of one Y, in the
sequence (3.1). We can now wonder whether all orthogonal
holomorphic basis sequences (3.1) can be obtained by our
construction. The answer to this question is positive as one
can add successively all of the following basic unitons:

2r—1

=] (1-2Rp, (3.21)
i=0
where
2r—i
R,=S P(Y). (3.22)

i=1
Let us notice that when the set Y, is empty, the last uniton in
this sequence has to be dropped.

To construct all these solutions we need, it is easy to see
that thus we have shown that our construction gives us all
the Grassmannian solutions previously constructed by Din
et al’ and by Sasaki.’ To construct all these solutions we
need to consider all holomorphic matrices F from which we
must construct all possible orthogonal holomorphic basis
sequences. Every step in such a construction adds a Y, to the
basis sequence, even though the space spanned by this se-
quence remains unchanged. The expressions (3.21) and
(3.22) thus show how to construct all known Grassmannian
solutions. We see that we have proved the following proposi-
tion.

Proposition 3.1: The most general basic uniton corre-
sponding to the Grassmannian solution (3.2) is given by
(3.9), where (3.17) is an orthogonal holomorphic basis se-
quence and ¥V, is given by (3.11), with all ¢, being holomor-
phic.

On the other hand, when the sets U, are not empty the
new solution Q= (1 — 2R,)(1 — 2R) is non-Grassman-
nian as the projector P(¥), ), in general, does not commute
with the projectors P(U,).

IV. AN EXPLICIT EXAMPLE

When we try to construct solutions of the Grassman-
nian models, it is convenient to use holomorphic bases.’
Some of them have particularly useful properties that make
them easy to use. Let us choose a holomorphic matrix F of
maximal rank. Then we can define

P . F=d F—F(F'F)7'F'3,F 4.1)
and use induction to define further vectors P*,_F,
P F=P_(P* 'F). (4.2)

This construction of our basis is equivalent to the Gram-
Schmidt orthonormalization procedure of the sequence of
analytic vectors F, 8 F, 3>, F,..., thusshowing thatall P} F,
which correspond to different & ’s, are orthogonal to each
other. Moreover, in addition they satisfy the following prop-
erties, which are essential in our construction®:

d_P* F= — P 'Fa; ' ay,

4.3)
. (P* Fa; ')y =P *'"Fa; ',
where
a, =P* F'PX F. 44)

As aconsequence of the second equation, we see that the
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P'_ F have the natural holomorphic normalization and that
(F,P,F.P? F,.,P¥ F) (4.5)

is an orthogonal holomorphic basis sequence. Defining pro-
jectors onto each of these vectors,

Py = P(F),...P, = P(P*_F), (4.6)
we find that the sum of any of these projectors forms a solu-
tion of the type (3.2), in which the sum of consecutive pro-
jectors corresponds to a single projector P(Y,;) of our pre-

vious construction. To make this clearer, let us consider, for
example,

R=P,+P,+ P+ P, (4.7)
This solution corresponds to the choice Y, = (F,P_F),
Y,=P* F, Y,=(P? FP* FP° FPS F), Y,
=(P' F,P’ FP°_ F),and Y; = (PYF,. . ,P¥ F). Us-
ing the relations (4.3) it is now easy to show that I, = P_ F,
L,=P? F, I,=P° F, and I,= P°_F. An example of a
basic uniton that we can add to this solution is given by

R=P,+ P+ P(V,,), (4.8)
where
VM=FG+U3b+P7+FC, (4.9)

and where a, b, and ¢ are holomorphic matrices of maximal
rank and Uj is given by U;=(1—P,— P, — P, — P3)
X (3% F,d° F).ltis interesting to note that when we take
the limit in which two of the three coefficients a, b, and ¢ tend
to zero, our solution goes over to a Grassmannian solution of
the type (3.2). Thus we see that the non-Grassmannian
U(N) solutions we have computed have the surprising prop-
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erty that they interpolate between different Grassmannian
solutions.
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The conformally invariant differential geometry of null curves in conformally flat space-times
is given, using the six-vector formalism, which has generalizations to higher dimensions. This
is then paralleled by a twistor description, with a twofold merit: first, sometimes the
description is easier in twistor terms and sometimes in six-vector terms, which leads to a
mutual enlightenment of both; and, second, the case of null curves in timelike pseudospheres
or 2 + 1 Minkowski space could only be treated twistorially, making use of an invariant
differential found by Fubini and Cech [ Geometria Proiettiva Differenziale (Zanichelli,
Bologna, 1926), Vol. 1; Introduction a la Géométrie Projective Differentielle des Surfaces
(Gauthier—Villars, Paris, 1931)]. The result is the expected one: apart from the stated
exceptional cases there is a conformally invariant parameter and two conformally invariant
curvatures that, when specified in terms of this parameter, serve to characterize the curve up to

conformal transformations.

1. INTRODUCTION

The local, Poincaré-invariant differential geometry of
null curves in flat Minkowski space-time has been given by
Bonnor!; we shall summarize it below by giving a two-com-
ponent spinor version of it. According to it, nonstraight null
curves are characterized by a Poincaré-invariant parameter
and two *“‘curvatures,” which, when specified in terms of that
parameter, fix the curve up to Poincaré transformations.
Now the concept of a null curve is a conformally invariant
one, so that it is natural to ask for a similar but conformally
invariant treatment. The purpose of the present paper is to
provide such a treatment. All necessary ingredients are in
the literature; it is only necessary to put them together.

The result is that, “in general,” a null curve “locally”
has a conformally invariant parameter and two ‘“curva-
tures,” which fix the curve up to conformal transformations
when specified as functions of that parameter. Here “local”
means that the parameter intervals to be considered must
not include certain exceptional points, while “in general”
means that curves consisting of exceptional points only must
receive a separate treatment.

The exceptional types of curves comprise (1) straight
null curves (“null lines™), (2) conformal cubic null helices,
and (3) curves on timelike hyperspheres. (In complexified
space or for signature + + — —, one would have to add
curves in totally isotropic two-planes; but we shall essentiai-
ly stick to the real domain and signature + — — —.) For
the first two cases there are no invariants and no invariant
parameter, because the conformal group acts transitively on
the sets (1) and (2), while the subgroup keeping any indi-
vidual curve of these sets fixed acts multiply transitively lo-
cally. For curves of type (3) but other than (2), there is an
invariant parameter and just one invariant to conformally
characterize the curve.

These were the methods we employed: In part we were
able to generalize and adapt the “n + 2 vector formalism” of
conformally Euclidean geometry” to the “null case” of pseu-
do-Euclidean geometry. On the other hand, the twistor cor-
respondence’ was also used and was of essential help to us in
dealing with the exceptional cases; it enabled us to use results

2238 J. Math. Phys. 30 (10), October 1989

0022-2488/89/102238-08$02.50

from textbooks (e.g., Ref. 4) on projective differential geom-
etry. (In order to be brief, we have avoided more detailed
geometric interpretations, although some motivations then
remain unclear—the interested reader is referred to these
textbooks.) The only adaption that had to be made here was
to take care of the reality structure peculiar to the signature
+ - - —.

The plan of the paper is as follows. In Sec. I we summa-
rize the formalism required and fix the notation; we also
include a spinor version of Bonnor’s theory. In Sec. III, the
theory of null curves is developed using the six-vector for-
malism. In Sec. 1V, the twistor correspondence for null
curves is described. In Sec. V, a few concluding remarks
concerning the relation between the formalism of Sec. IT A
and the manifestly conformally invariant formalism of the
later sections are made. Not all calculations are given in de-
tail, because they involve only elementary linear algebra and
differential calculus in one variable.

Il. SUMMARY OF FORMALISM

A. Bonnor’s theory!

Consider, in flat Minkowski space M, (signature
+ — — —scalar product of four-vectors x, y, ... denoted
by x-y; x* : = x-x) a null curve x(1) parametrized by A.
Then x’ : = dx/dA by definition satisfies x> = 0, and we will
assume x’ to be future directed. It follows that x'-x” = 0, so
x"” has to be spacelike or proportional to x’. Excluding the
latter case, which has the direction of x’ fixed, corresponding
to a straight null line, we have, therefore, x”? <0. Now
changing the parameter as A = 2(2) monotonically, one
finds

() - (&) (&)
aziz) “\aa?) \ax)’

ie., { — }x"?(4))"/* dA is an invariant differential, whose in-
tegral can be used as a new, “natural” parameter, intrinsical-
ly defined by the curve. We assume that A has already been
chosen to be this parameter (whose “physical” interpreta-
tion was given by Synge'); we therefore have x"* = — 2.
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The pair x', x” spans a null flag,’ and, identifying the Min-
kowski vector space with the set of Hermitian elements of
S ® S, where S is complex-two-dimensional spin space and S
is the complex-conjugate space, we can choose a spinor
£(A)e S such that x'(4) = &£(1) @ £(4) and such that the
flag plane is given by x’ Ax". (See, e.g., Ref. 6 for the use of
exterior algebra in describing the geometry of subspaces of a
vector space.) Only a sign in £ remains undetermined. Dif-
ferentiating, weobtainx” = £’ ® £ + £ ® £ Wemaythenuse
£ together with £’ as a basis for S (otherwise ' < §= x”
« x', which was excluded before) and, in fact, as a spin frame
in the sense that £(£,§') == 1, where € is the spin “metric”:
this is consistent with x”? = — 2. Differentiating again, we
find £(£,£") =0, so there is a complex-valued function [/
such that £ " = I£. This corresponds to Frenet’s formulas,
and Re I and Im I, considered as functions of the natural
parameter A, will fix the curve up to Poincaré transforma-
tions. They are the invariant curvatures of the curve and
determine the infinitesimal null rotation that (£,£’) under-
goes when one proceeds from a point on the curve to its
infinitesimal neighbor. The significance of the invariant con-
dition Im I = Ois easy to state: defining m : = £® &', we find
(m —m)' = (I—Dx and i(m — i) -x' = 0; thus the con-
dition Im I =0 implies that /(m — /m) is a constant real
vector and x(A) belongs to the fixed timelike hyperplane
i(m — m)-x = const. The subcase I = 0 will also be of inter-
est later. Here we have £(1) = &, + £ {4 and therefore

X(A) = X0+ x54 + (x{/2)A%+ (x§'/6) A3,

which we shall refer to as the cubic null helix. It is the trajec-
tory of the Killing field

r””r "

($x6" (x — X0))x" — (xg* (X — xo) yxg" + X
passing through x;, and A is the canonical group parameter
along the flow of this field which consists of simultaneous
infinitesimal null rotations and null translations. We shall
see later that this curve admits a larger group of conformal
transformations.

B. Six-vector formalism

This formalism is used to describe conformally compac-
tified Minkowski space. One considers a real six-dimension-
al vector space V¢ (which we propose to call “‘sixtor space’)
together with a nonsingular symmetric bilinear form XY of
signature + — — — 4+ — onit, or rather the correspond-
ing five-dimensional projective space P(V,) =: Ps whose
points are the one-dimensional subspaces RX of V, together
with the quadric Q, given by X? : = X-X = 0. Singling out
two points on Q, as representing infinity and the origin,
Minkowski space can be imbedded into Q, (conformally
compactified Minkowski space) according to

x->RX = R(x,(1 — x?)/2, (1 + x*)/2),
the scalar square being

X2 :i=x2 4+ ((1 =x*)727 — ((1 + x*)/2)~
From this, an interpretation of the points in P5 not on Q, can
also be given: for He V,, consider all XeV, satisfying

H-X = 0; those points of this hyperplane that belong to the
imbedded Minkowski space form a (pseudo) hypersphere
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there if H2#0. A conformally invariant concept of central
importance in the sequel are the null /ines (light rays) in M,.
Their description in the V, formalism is given by two-dimen-
sional subspaces of V that are totally isotropic, i.e., all its
vectors X have X 2 = 0; projectively this means that null lines
are given by lines of P, that are entirely contained in Q,.
(There are no higher-dimensional totally isotropic sub-
spaces in the real V.) For more geometrical details see Ref.
3.

We shall also employ a normalized determinant func-
tion E on V,, i.e., one whose value is + 1 on any orthonor-
mal basis. It can be used in the standard manner to define the
Hodge * operator in the exterior algebra AV, over V.

C. Twistor formalism

While the six-vector formalism can be immediately gen-
eralized to arbitrary dimensions and signatures, the twistor
formalism is specifically tied to conformally flat four-spaces,
the various signatures being related to rather different ob-
jects in twistor space. In addition to Ref. 3, we will rely here
on Ref. 7. The basic ingredient is a complex four-dimension-
al vector space T (twistor space) together with a determi-
nant function & eA*T (where T is the dual space of T). Now ¢
and its dual eeA*T (called  in Ref. 7) serve to define the
dualization maps A?T—A*~?T, AT A*~?T in the usual
manner; they will be indicated by . (resp. *). The slight
differences among various conventions involved in these
definitions will be rather unimportant here since we are in-
terested in most quantities only up to a nonvanishing factor.
Namely, what matters here is the complex projective space
P(T) and its relation to conformal geometry. The basic step
is to form AT, a complex six-dimensional vector space
which already comes with a nondegenerate symmetric bilin-
ear form given by FG: = (.F|G ), where F, G € A’T and
(*|-) means the scalar product between the dual spaces A°T
and A’T. The Pliicker condition F?: = F-F = Oisknown to
be necessary and sufficient for the bivector F to be simple (or
decomposable), i.e., of the form ¢, A t,, where t,, 7, € T are
not unique—rather, the subspace (t,, #,) spanned by them
determines and is determined by the set of scalar multiples of
F. Geometrically, the point CFeP( A *T) then represents the
straight line in P(T) joining Ct, and Ct,. If G is simple as
well, F-G = 0 means that the corresponding lines meet at a
point. The idea is now to identify the real vector space V,
from Sec. I1 B with a suitable “real part” of A>T such that the
restriction of G to it yields a real-valued, nondegenerate
form of the signature required. We now sketch the procedure
for all signatures.

As one way to proceed, one could think of actually tak-
ing T as a real vector space and  as real-valued; then A’T is
real. However, F—F-F = :F? turns out to have signature

+ + 4+ — — —.Sotheidea to identify “reality” already
on the level of T itself fails for the other signatures.

A slight modification of this approach comes to mind
next. The same thing as taking T to be real is to single out a
real part of a complex T by taking its elements that are invar-
iant under an “anti-involution of the first kind,” i.e., an anti-
linear map % : T T satisfying %2 = idy. Then the exterior
square € A € is an antiinvolution of the first kind on AT
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that can be used to define a real part there. The modification
now consists of taking instead of % an anti-involution 7 of
the second kind: 7%= —idy (a “quaternionic structure”
on T—see Ref 8). Then again .7~ A .7 is an anti-involution
of the first kind on A’T, whose invariant elements form a real
six-dimensional vector space. By choosing & suitably in rela-
tion to .7, F-G is real on these real elements; however, this
time the signature of F—F? turns out to be
+(+ + + + + —), as would be appropriate for the
conformal geometry of Euclidean four-space. (This is why
quaternions occur in the solution of the Euclidean instanton
problem.’

The remaining signatures are obtained by considering
an antilinear map A: T— T; coupling its exterior square with
the dualization * again leads to an antilinear map
A’T - A?T. This will be involutive (i.e., have square = mul-
tiple of identity) if # is Hermitian, i.e., if the corresponding
sesquilinear form (#,|¢,) : = (Ah(¢,)|¢,) is Hermitian; and it
is of the first (second) kind only if (-|*) contains an even
(odd) number of minuses in its signature. Now already for
reasons of compactness of the invariance groups involved,
the definite Hermitian case corresponds to signature
4+ (+ + + + + -+ ) on the corresponding real part of
A’T; but this signature does not occur in the six-vector for-
malism, where there is at least one minus sign.

The remaining possibility, a Hermitian form of signa-
ture + + — —,isatthe basis of the twistor formalism for
real conformaily flat space-time. As described in detail in
Ref. 7, the anti-involution squares to identity iff the Hermi-
tian form and the determinant function on T are suitably
normalized relative to each other. Elements invariant under
the anti-involution are called “self-adjoint” in Ref. 7, but we
will call the corresponding points in projective space *“real
points.” [Strictly speaking, if we now identify V of Sec. II B
with this real part of AT, then the real projective space
P(V,) = {Ruv|ve V¢} can be injected into the complex pro-
jective space P(A’T) by assigning Rv—Cv.

We have already noted that points CFeP(AT) with

= O correspond to lines in P(T). We now add that to rea!
points RFe Q, there correspond lines of P(T) that are com-
pletely contained in the “twistor null surface” PN given by
(t|t) = 0; i.e., if Fis simple and real, then F = ¢, A\ t, where
(t,14) = (4,18,) = (#,|t,) =0 and hence (¢|7) =0forall ¢
from the subspace (#,,%,) ¢, which is then said to be totally
isotropic. This follows by contracting the reality condition
RN2F = For h(t,) A h(t,) =.(t,At,) with ¢, and 1,
which are linearly independent. Conversely, if ¢, and ¢, span
a totally isotropic two-space of T, then a suitable complex
multiple of ¢, Az, will satisfy the reality condition.’

This concludes our preparations.

IIl. NULL CURVES IN THE SIX-VECTOR FORMALISM
A. The conformal arc

A null curve in M, has, be definition, null lines as its
tangents. In the P5 picture, we have a curve on Q, whose
tangents, in the P4 sense, are contained in Q,. Thusif X(A4) is
a parametric description of the curve, the tangent is spanned
byX(A)andX’(1)andwemusthave X2 =X-X'=X"2 =0;
in the real domain we must have X “? <0, however, if we
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exclude null straight lines from the class of curves to be con-
sidered.
It would now be tempting to fix the parameter just as in
Sec. I1 A, but one has to remember that, in the six-formal-
ism, there is the additional freedom of a A-dependent scale
factor X(A)—-f(A)X(A) that could spoil the parameter
choice Rather, we fix the scale by considering the quantity X
—1X") = '2X, which is independent of the original
scale andhas X "2 = — 2, and look for another possibility to
fix the parameter mvariantly. We assume that the scale has
been chosen relative to the parameter 4 in the manner just
described, but we omit the hat on X. If we go over to another
parameter A, we must rescale X (1 (/I)) as

¥y = xuc 2
) (())(dﬁ)

in order that

dX\?
() = -2

we say that X has parameter weight — 2. From this it fol- -
lows that XA X', XAX'AX",... have definite weights
[namely, —24(—-1)= -3, =2 4+(—1) 40
= ...]; in particular, the Wronskian E(X, X" X", X",
X ¢ X V ) has weight 3, so that

\E(X,...X ") | dA = do

is an invariant differential, while sign E (X,..., XV) is invar-
iant under parameter changes where dA /d/l >0. (We are
restricting here to the connected component of the confor-
mal group.)

There are now two cases: (1) If do#0, we can use its
integral ¢ as a new, conformally invariant parameter, de-
fined up to an additive constant. It is called the conformal arc
and can be used on open segments of the curve without zeros
ofdo. (2) Ifdo = 0, X, X',..., XV are linearly dependent,
and we have to turn to the products mentioned above whose
vanishing or nonvanishing has invariant meaning. Now gen-
erally (XAX'A--AXP =0but XA ---AXP- D %0
on some open segment) <>(XAX'A---AXP-D) «
XA - AX®~"Yie.,the (p — 1)-planespanned by RY,...,
RX~1 in Ps does not change with A and contains the
segment. Then p = 1 means degeneration of the curve to a
point, p = 2 corresponds to a null line, which we have al-
ready excluded; p = 3 does not allow anything new in the
real case: this two-plane in Ps intersects Q, at a quadric
curve that degenerates into a null line (from X2 = X > = Qit
follows that X X'=X""X"=X-X"=0, so for any
Y=aX,+bX,+cX§weget Y= —2c so that c=0
for YeQ,). A similar thing happens for p = 4: the three-
plane in P intersects Q, at a quadric two-surface that is
(since X “?s£0 but X: X" = 0 in addition to the vanishing
scalar products above) a two-dimensional null cone; there
are obviously no null curves on it other than its generating
null lines. Thus we see that in the real case of signature
+(+ — — — 4+ —) only p=35 remains, where the
curve is contained in a hyperplane of P; its intersection with
Q, represents a (pseudo) hypersphere in M, as we have al-
ready mentioned. [One has only to note that its normal

H. Urbantke 2240



H =+x(XAX'A---AX"V)has H? = the Gram determi-
nant of X,..., X'V = (X "?)>£0 (see Table I).]

Now a hypersphere in M, containing real nonstraight
null curves is conformally the same thing as a timelike hy-
perplane or Minkowskian three-space M,. What the V for-
malism is to M,, a V5 formalism is to M, (the projective
version of V5 C V, is the hyperplane in P, just mentioned).
Hence we can generalize the considerations above to M,,,
usingaVy =V, , formalism, and then specializeton =
3, N = 5. The trouble, however, is that, in V,,
EXX',..X"~Y hasweight3 + 4 + .. + N — 3 =
(N/2)Y{(N — 5), so that the construction of the invariant
parameter ¢ does not work in thecase N = 5 (n = 3) only!
Thus the analysis of null curves in M,, [n> 4, signature
+ (4 — -+~ —)] can be carried out in complete analogy
ton = 4, and we still need to know how to continue with n
= 3.

It is at this point where the twistor formalism can carry
us further. Of course, it would have been possible to take the
result from there, translate it back into the V¢ formalism,
and present it as a direct insight; but that would not be fair.
So we admit the lack of direct insight and present the twistor
approach in Sec. IV. It will provide us with an invariant
parameter even in the n = 3 case, except for the conformal
cubic null helices that are, by definition, all conformally
equivalent to the one described in Sec. II A. One can there-
fore proceed essentially as with the parameter o.

B. The conformal curvatures

Assume we can use ¢. Then X,...,. XV are linearly inde-
pendent and can be used as a basis in V. Hence we may
expand X*7 in terms of them. The expansion coefficients,
expressible in terms of scalar products, are conformal invar-
iants, if o is used as a parameter. By differentiation, we get
similar expansions for X7, p > 6. To find a list of indepen-
dent invariants, we first complete a table of scalar products
XP - x9 putting X" =: 2K, (X" )*=:2J, (X")? =L
Differentiating these equations of definition and also the re-
lations X2 =X"?=0,X"?= — 2, we find the results in Ta-
ble I. As the fundamental invariants we can take K, J; all
others are expressible in terms of them. For L this is so be-
cause we not only have X “ = — 2 by our choice of scaling
but also E(X,...,XV) =1 by choosing A = + o as a param-
eter. This entails 1 = [E(X,....X")]* = det (TableI), but
we have

Ldet (Table) = — 2L — 9K "* + 4K
X (K" —K?*-2)),

and thus we find L in terms of K and J and their derivatives.

TABLE I The scalar products X® - X9

a/p 0 1 2 3 4 5
0 0 0 0 0 -2 0
1 0 0 0o 2 0 2K
2 ] 0 -2 0 ~2K —3K'
3 0 2 0 2K K K-
4 -2 0 —2K K’ U J'
5 0 2K —3K' K"—20 J L
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(Also in the case do = 0 [where det (Table I) = 0], L is
expressible in terms of K and J, but the choice of fundamen-
tal invariants runs differently, as we shall see in Sec. IV )

On differentiating the last column of Table I, we obtain
the scalar products X» - X! and from them the coeficients
in the expansion of XY'in terms of X,...XV. [Actually,
from E(X,...XV) = 1 or 0, it follows that E(X,..., X'V,
XY') = 0so that the expansion coefficient in front of XV
vanishes.] If K(o) and J(o) are given functions of o, the
expansion of X V! gives a system of differential equations for
X that can be solved and determines the curve uniquely up to
conformal transformations.

From this it follows, for example, that a do # O curve
that admits a one-parameter group of conformal transfor-
mations has K = const, J = const, and conversely.

For geometrical purposes it would be more appropriate
to use other bases than the ones given by X, X ',...,. X", but we
do not go into this here.

IV. NULL CURVES IN THE TWISTOR FORMALISM
A. Generalities

A curve in M, or Q, corresponds, in the twistor picture,
to a family of straight lines in PN C P(T) parametrized by
one real parameter A. If the curve is null, (infinitesimally)
consecutive points have null separation; hence consecutive
lines of the family intersect. These points Ct(4) [where
t(A)eT] of intersection will, in general, form a curve in
P(T). By this term we mean a one real parameter set in
P(T), formerly sometimes called a “thread”,'° in contradic-
tion to a (locally) holomorphic curve which is a one-com-
plex parameter = two-real parameter submanifold of
P(T). Of course, if there exists a real analytic parametriza-
tion of the thread, we can imagine a local complex thicken-
ing by analytic continuation to complex values of the param-
eter. We shall apply the latter point of view in one case only,
however: to the straight lines of P(T) that appear, in particu-
lar, as tangents of our “threads.” As a result of the lack of a
concept of real points in P(T), the only meaningful concept
of aline tangent to the curve {C#(1) } in P(T) is the complex
line joining Ct(4) and C dt(1)/dA, formally described by
CiAt'.

It is intuitively clear that the tangents of the curve ob-
tained in P(T) are just the lines of the family we started with,
and since they are to be contained in PN, our curve must also
be contained in PN;i.e., wemust have (¢ [¢) =0, (|t') =0,
(t')t") =0.

More formally, if we start from a curve Ct(4) in P(T),
we can form its tangents CX, X : = t A t’, which form a curve
on Q4 C P(A’T), where Qj is the complexification of the Q,
introduced earlier. We then have X'=tAt", so
X?>=X-X'= X?*=0, showing that CX(A) is a null curve.
This description of null curves has been known for some
time. The author has encountered it on a very different occa-
sion,"' and it was studied more directly by Shaw.'? If, in
addition, (t{t) = (¢]t’) = (¢'|¢’) = 0, thenull curve willbe
real in our sense. Conversely, starting from a null curve
CX(A),fromX*=X-X'= X" =0Qweconclude that X, X'
are representable as X =tAu, X' = tAv, where ¢ corre-
sponds to the point of intersection of the lines corresponding
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to X and X' and which do intersect. Thus 0 =tA X’
=tANQ@'Au+tAu')=1tAt' Au.Iftandt’ arelinearly in-
dependent in the parameter interval considered, {Ct( )}
will be a curve, and since now ue(z,t’), we have X« tAt’
(u«tis excluded by X #0), showing that CX (1) are the
tangents of that curve. The remaining case ', where
Ct(A) is one single point and the lines CX(4) form a cone
through it, can be excluded if we are to describe a real null
curve other than a straight line on Q,. This is because then
CteP N, where f can be assumed constant, X(A) «ct Au(4),
(t|u) = (ulu) = O, but the lines on PN through a fixed
point Ct, contained in the plane (¢ |u) = O, correspond to
the points of a real null line on Q, only (see Ref. 3). (If we
were to consider M, with signature + + — — or com-
plexified M,, these cones would be relevant and would corre-
spond to curves in totally null two-planes of M, or Q,.)

Similarly, we may exclude planar curves in P(T): since
their tangents would have to belong to PN, the whole plane
containing the curve would have to belong to PN, which is
impossible on dimensional grounds. (Again, for signature

+ + — — or complexified M,, planar curves would be
relevant, representing curves in totally null two-planes of the
second type in M, or Q,.)

The net result of the preceding discussion now is that,
from the twistor point of view, the geometry of real, non-
straight null curves has been translated to the geometry of
twisted (i.e., nonplanar) curves in PNC P(T). Here we are
in the lucky position of being able to copy the theory to a
large extent from existing work on projective differential ge-
ometry*; we only have to add the restriction that the curve
and its tangents belong to PN. The essence of this theory,
perhaps not in its most elegant form (which would be useful
to read off more geometrical details), is as follows.

B. Invariant parameters and differential invariants

Let {Ct(1)}CP(T) be a twisted curve. The condition
for this is, in analogy to what has been said in Sec. III A, that
t/\t’At”/\t"’#Oor

e(,t' st " t")= (Nt Nt" At™)#0.
[ Note, however, that here we are working in the algebra AT
whereas there the relevant algebra was AV,. Some confusion
might arise now because here we consider V, as a subset of
A’TC AT, and we have tried to avoid confusion between
A(A?T) and AT by using the symbols A and A for multi-
plication in the former and the latter, respectively. Thus, for
F Ge A’T, we have FAG = — GAFwhile FAG =
GAF!] Thisenablesustouset, ', t’,t" as a basis in T, and
also to fix the freedom of complex scale factors,
t(A) - f(A)t(A), by requiring

e(er't"t") = — 1.
(The minus sign is introduced to cope with the reality condi-
tion and signature employed.) This can be achieved by tak-
ing

HA) 1= (= (8.0t ™))" 42(1)
instead of (A4); the result is independent of the original scal-
ing, and we will omit the hat from now on, understanding
that this step has been done. (Geometrically, this gives no

2242 J. Math. Phys,, Vol. 30, No. 10, October 1989

restriction if we consider the connected component of the
conformal and projective group only.) Similarly to Sec.
IIT A, we must take care of this normalization when a
change in parametrization is made: we must rescale ¢ (/i(}:))
as

n n dA\ 372
HA) :=HA(A (—r)
(4) A1) 2

in order that
8(1,...d% /dA%) = —1;

i.e., # has parameter weight — 3. From this it follows that
tAt’ and tAt'At” have definite weights [namely,

i+ (—PD= -2, (=PD+(=H+i= —3], corre-
spondmg to the fact that they have geometrical meaning:
Ct A\ t’ describes the tangent, while C:t A ¢’ At ” describes the
osculating plane at Ct. However, tAt'At” At" will have
weight O due to our normalization, its dual cannot be used to
find an invariant parameter as in Sec. III A.

We now proceed asin Sec. I1I B: weexpand ¢'V in terms
of the basis ¢, ¢', ¢t’, t " as

tY =at+ Bt oyt + 6"
Differentiating2(z,...,t ") = — 1,itfollowsthate(zt';t "' )
= 0Osothatd = 0. Slmllarly, the reparametrized t(/l) will
give an expansion of d *¢ /dA * with coefficients & &, P, and A
whose relation to a, 3, and ¥ can be calculated in a straight-
forward manner. After some computation one obtains

N dA )2 2
= ) = 57(]A),
¥ V(dz (4]4)
» dA )3 diA d?A d
= —_— 2 —‘r'—A———Sﬂ"f,
b B(d/l M B el
) - 20(2) 2
dA di d/12
(d/l d3A (dzxi)z)
4 dA dl3 dA?
_3d 9,
2 /1 4
where
. 3 3 2 72
f(/”/l):zd/l/dli _i(d/l/d/l )2
dA /dA 2 dA /dA

is the well-known Schwarzian derivative.
It is convenient to rewrite the results for S and & in the
following manner:

s =(6-F) %)

- d/l (B di J\ai /)’

.1 ~__a’7/) 3 d, 9

¢ 2d( a) arTw!

(a__l_ d ( _E_V_)_id__V

2 dA di ) 10 di’

di

10N )

This gives us two quantities of definite parameter weights (3
and 4). More accurately, if we consider a curve in the sense
we are using it (a “thread”), then it follows that Im y
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=Im y(dA /dA)?, so that Im y is a further quantity of defi-
nite weight ( = 2). This further weighted quantity is absent
if we consider real P(T) or local holomorphic curves in com-
plex P(T), since then in the first case y is real and in the
second /{(/Al) is complex-valued. However, it will turn out
that for curves with all tangents on PN, Im ¥y = 0 again.
Similarly, for general “threads” the two complex, weighted
quantities above actually give four real, weighted quantities
after taking real and imaginary parts; but again, for curves
with all tangents on PN it will turn out that the weight 4
quantity is real and the weight 3 quantity is pure imaginary.

We will now show that the weight 3 quantity corre-
sponds exactly to the one constructed in Sec. III A. One way
of seeing thisistoform X = t A ¢, X' =t At", X" =
tAt" +t" At”,and, using the expansion of 1" repeatedly,

X"=2"At"+BX + ¥X',

XV = 2t" At 29t At" + (B —2a)X
+ B+ V)X + X",

XV =20 ~Bt'At” + (8" — 22 — B)X
+ (2B —da+y — X’

+ (B+ Z’V’)X” +y I"'
Note that all these bivectors have definite parameter weight

and, in particular, X" has weight 0. Insertion into
E(X,..,X") gives

EX,...XV)
=8(y —B)
XE(Nt TNt  tNE" 8 Nt " At",t' Nt").

This already shows that the vanishing of 8 — 7' is equiva-
lent to the vanishing of E(X,...X"), since the six products
tAt',... are linearly independent in AT, [In fact, from the
Hilbert Nulistellensatz one can deduce that E(tAt',...) is a
numerical multiple of [&(t,..., £™)]3, and this is consistent
with the weights of E(X,.)and B — 7.1 Another way is to
consider

H:=i(tAt" —t'At" —ytAt')
satisfying
H' =iB—-v)tAt,
HAX =0 (ie, HX=0),
HANH = 2tAt'Nt" At" (ie,H?= —2).

(The factor i is for later purposes and is irrelevant for the
moment.) The differential equation for H implies that H has
parameter weight 0. Now if 5 — §' = 0, then H is constant;
hence X remains in the fixed hyperplane of P(A”T) given by
H-X = 0. The M, interpretation of this has already been
given. The gain in using the twistor formalism lies in the fact
that it has provided us with the second, weight 4, quantity
(which seems to go back to Fubini and éech). If it does not
vanish while # = 7/, the differential

l@— %7 + gtV dd=dr
will supply another invariant parameter for the curve. We
shall refer to it as the Fubini—Cech parameter. If the curve is
referred toit,dA = dr, both o and are expressible in terms
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of ¥, which remains the only independent invariant of the
curve in this case.

If the Fubini—Cech differential also vanishes, it is con-
venient to fix the parametrization partially by requiring y =
0, which leavgs open fractional linear transformations, for
which (4 |[4) = 0. Relative to this class of (“projective”)
parameters,@ = 8 = ¥ = 0,sothatt" = Oand

HAY =ty +1{A +LtgA% + Lt A3

is what is known as a “twisted cubic.” When X(1) =
t(A)At'(A) is formed and translated back to the M, lan-
guage, one obtains (a complex version, in general, of) a con-
formally transformed cubic null helix. (We will see this in
terms of the invariants of Sec. IT A in Sec. V.) We shall come
back to it after discussing the reality constraints in general.

If, however, B — ¥ #0, wecanuse |8 — 7|'* dA = do
to define an invariant parameter: in the context of curves in
projective space it is called the “projective arc,” and it is
obvious that for curves in PN it will correspond to the con-
formal arc introduced in Sec. III A. What is lacking again is
a discussion of the reality constraints. If the curve is referred
to the projective arc, d1 = do, S becomes expressible in
terms of y, which, therefore, together with a forms the sys-
tem of fundamental invariants of the curve (“projective cur-
vatures’’).

Let us end this subsection by remarking that a similar
development is possible for planar curves (and, dually, for
cones): one obtains, in general, a projective arc and one sin-
gle projective curvature, an exception being formed by con-
ics (no projective arc, no invariants).* As we have seen,
however, consideration of these objects would be necessary
only for signature + + — — in M, or for complexified
M.,. In this paper we generally skip this topic and now turn to
the reality constraints.

C. Reality constraints

For a twisted curve {Ct(4)} in P(T), which together
with its tangents is contained in PN, we have already de-
duced from the reality condition on its tangents X = tA ¢’
that (¢|t) = (¢|t') = (¢’|t') = 0. Since A isreal and X is
real, X’ is real, and from X’ = tAt” it also follows that
(t]t") = (¢"|t") = 0.[Note that the Hermitian property
of (-|) allows us to deduce only (¢'|r) + (¢|t') =
2Re(t|t’'y = Ofrom (z|t) = 0,etc., bydifferentiation!] We
now complete a table (¢ ‘|z ") of (-|-) scalar products for
0<p<4,0<q<3, putting (¢"[t") =:iR, (t"|t") =S5,
(¢"|t"') =:iT (where R, S, and T are real), exploiting all
known (vanishing) scalar products as well as the normaliza-
tioné(¢,t',t",t") = — lwhichimpliesdet (TableII without
last column) = 1 (see Table II). [A sign convention on
(]+) has also been made that is not yet fixed by the relative
normalization between & and (-|-).] To establish the rela-
tion of R, S, and 7 to @, B, and ¥ introduced earlier, we
compare the last column of Table II with the values of

(P y=@Par+ Bt +yt”), forp = 1,2,3.
We obtain
¥ = R =real,

H. Urbantke 2243



TABLE II. The scalar products (#9 |7 ).

a/p 0 1 2 3 4

0 0 0 0 i 0

1 0 0 —i 0 —iR
2 0 i 0 iR _S+ iR
3 —i 0 —iR s 48" +iT

B — v' = iS = pure imaginary,
a—3B—y)Y= —T — R*=real,

verifying our earlier statement that the weight 3 (resp. 4)
quantity is pure imaginary (resp. real). At the same time we
see that we have two real fundamental invariants in the gen-
eral case S #0 and one in the special case S = 0, except for
the conformal cubic null helix, which has no invariant pa-
rameter and no invariants.

The explanation for this latter fact lies in the large invar-
iance group the twisted cubic possesses, and the fact that all
twisted cubics are projectively equivalent. This is conve-
niently described in twistor terms as follows. In the paramet-
ric representation given earlier, where t,, ¢§, t ¢, ¢’ satisfy
the values of the (- |-) scalar products given in Table IT with
R = §' =0 together with &(#,...) = — 1, we go over to a
pair of “homogeneous parameters” s', s° by A-—s*/s',
t(A)— (s")3t(A). Now think of the s* as components of a
vector s in a real two-dimensional vector space S, referred to
a basis {b,,b,}: s = 5" b, . Form the symmetrized tensorial
power V3S°¢ of its complexification 8¢ and choose an isomor-
phism: VS - T (which are both complex four-dimension-
al) mapping the product basis vectors b7,
b Y2V by byVby? and b, * (V indicates symmetric multi-
plication) to ¢, /3, t§/6, t{'/6, respectively. Then our
curve and its complexification arises from composing with j
the “Veronese imbedding” s—s" 3 of S into ¥ *S and S° into
V'38¢, as the image of P(S) and P(S°), respectively. The
scalar product restrictions on f,,... guarantee that P(S) is
mapped into PN. The pullback of the Hermitian form (¢ |¢)
by ( joVeronese) is the cube of an indefinite Hermitian form
on S¢ whose zero set on P(S°) is the “Staudt chain”
P(S) CP(S°)," or, in simpler terms, real A lead to a curve
on PN. Consider now an arbitrary (real) unimodular linear
transformation 4 of S, then jo4" 30j~! will not lead out of
the image of S. Therefore the cubic null helix has a three-
parameter conformal invariance group (locally) isomorphic
to SL(2,R), acting triply transitively; thus explaining the
absence of any conformally invariant parameter. [ We have
already written down a Killing field of M, admitted by the
example of a cubic null helix given in Sec. II A; two other
independent conformal Killing fields admitted by it are giv-
en by

x = X+ §[ (%6 (x = X) kg — (5" (x = %))x5 ]
and
(g Cx = x) g — x5 (% — o))

+ 4] (x — X0)?xg" — 2{x¢”" (x — x0)) (X — %) ].
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One can check that the Lie brackets of these three conformal
Killing fields, suitably scaled, correspond to the Lie algebra
of SL(2,R).] The conformal equivalence of all twisted cu-
bics on PN follows from the fact that all quadruples #,, ¢;,
ty, ty satisfying &(fy,...) = — 1 and the “‘antidiagonal”
form of the (-|-) scalar product table with R = .5 = Ocan be
transformed into each other by the group of complex linear
transformations that preserve & and (-|-), i.e., the twistor
group [ =SU(2,2)].

D. Relation to the invariants of the six-vector formalism

We still have to relate the invariants obtained in this
section to the ones of the V formalism. First note that X(1)
is real in the sense of reality that we have introduced in A2T.
[So far we have used only the consequences
(t])y =(t|t’) = (¢'|t’) =0 of the reality condition
h"?X = .X on X = t At'; however, taking the only nontri-
vial contraction (viz. with ¢ ” A ¢™) of this condition, we ver-
ify that # A ¢ ' itself, and not just a suitable complex multiple of
it, satisfies the condition, due to our normalization
é(t,...,t ") = — 1.] Therefore all derivatives X'#’ are real bi-
vectors as well. From the differential equation it satisfies, we
now also conclude that the bivector H introduced above is
real, HeV,, but not simple. From the definition F-G: =
(.F|G) =.(FAG) of the scalar product in A’T, we can
express the X' - X'? in terms of @, B, and ¥ or R, S, and T,
using the list of the X7’ in terms of the ¢’ given earlier. In
this way we indeed reproduce Table I with the following
identifications:

IK=y=R,
Y=a—f —=a—4B-v)—fy" ~
= ~T—IR*—iR".

Instead of identifying L in terms of @, 3, and y, we identify
the numerical factor

_ SE(t/\t', t/\t",t/\t",,t’/\t”,t,/\t’",t”/\t"’)

between E(X,..,.XV) and (B— 7). If e, e,, e,, and e, are
from T and e;:=e; Ae,, we already remarked that
é(eeye3,e,) and E(e,1,€,3,,4,653,€,4,€34) vanish simulta-
neously, so

E(e p.ne3,) = 5(5(91’92»93194))3,

for some 0+ £€C, and we can determine ¢ from the require-
ments that £ give + 1 upon evaluation on a -orthonormal
basis in V¢ and that the 2 have absolute value 1 when evaluat-
edona (| )-orthonormal basisin T. Let e, e,, e, and e, now
be the unimodular orthonormal basis in T used in Ref. 7 and
171/V2,...,m¢/V2 be the orthonormal basis of V constructed
from it in that paper. Let the orientation of V be given by
715---76 in that order. Then from the expressions of %,,... in
terms of e,,... given in Ref. 7 we deduce

1=E(m/V2,...) =iE(e s....e5) = ie* 1%
hence £ = — i and therefore
EX,..XV)= —8(B—¥)(—(—1)>=8S.

This completes the relationships between the twistor and six-
vector formalism.

H. Urbantke 2244



At the same time we have verified all the results claimed
in the Introduction.

V. CONCLUDING REMARKS

In the preceding sections we have found conformally
invariant parameters and a fundamental system of differen-
tial invariants for null curves in conformally flat space-time.
The technique was to use a formalism that makes conformal
invariance manifest. Now conformal invariance a fortiori
means Poincaré invariance, and in Sec. IT A we have recapi-
tulated a formalism that gives a fundamental system of in-
variants for null curves under the Poincaré group. There-
fore, an alternative approach to the problem of conformal
invariants would be to make an ansatz for the conformal
invariants in terms of Poincaré invariants and to work out
the consequences of additional invariance under infinitesi-
mal scale transformations and “conformal boosts.” We do
not carry this out here but only indicate how the result is
derived in our formalism. We take the invariants from the
manifestly conformally covariant formalism and insert, in-
stead of X(A), the expression {x,(1 —x?)/2,(1 + x*)/2),

the invariant parameter of Sec IT A, so that x"> = — 2; then
automatically
X" =x"24((1 =x)/2)"? — (1 +x*)/2)"*= =2

is normalized properly. The equations x'=£8§,
e(&€") = L,E" = IEof Sec. 11 A allow ustoexpress all prod-
ucts x*” -x‘? in terms of 7 and its derivatives and thus all
conformal invariants in tems of / and is derivatives.

Let us illustrate this first for the weight 3 quantity
E(X,...XV). Adjusting the orientation of M, given by its &-
tensor, properly relative to E, we obtain

EX,.XV) = —2e(x'x" x"x")
= —2e(x'x" x"x"Y,
and, observing that (§®§+ E'RENNVIL(EQRE +£'0E)/
vZ2,and (£ ® &' — &' ® £)/iv2forman orthonormal tetrad for
M,, the determinant finally becomes 8 Im /' Thus we see
that while Im I = 0 has the only Poincaré-invariant signifi-
cance, mentioned in Sec. IT A, that the curve stays in a fixed
timelike hyperplane, Im J = const, has the conformally in-
variant meaning that the curve stays in a fixed timelike
pseudosphere (x —a)?= -7 or a timelike hyperplane
(the value of the constant Im 7, related to the radius r, is not
conformally invariant). (It is, of course, possible to verify
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these statements directly in the formalism of Sec. I A.)
Similarly, we find

4‘}/=4R=2K=X'"2=x'"2=8ReI,
8la—4B—7) — " — )
=27=X"2 =xV2 = _32(Re N* — 8(Im I)?,

which show that the conditions / = Oanda = = y = Oare
equivalent. Here we see without carrying out the twistor
transformation explicitly that the cubic null helix, referred
to the Bonnor parameter, corresponds to a twisted cubic in
PNCP(T), referred to a projective parameter. More gener-
ally, these formulas allow us to go over from Bonnor’s pa-
rameter to the conformal arc or the Fubini-Cech parameter
and, using the transformation formulas ¥ -, @ - @, to find
the conformal invariants in terms of /. We do not write down
the expressions explicitly, however.
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The geometry of twistors for (2 + 1)-dimensional flat space-time is described. Functions on
twistor space generate solutions of various field equations in space-time. As an illustrative
example, it is shown what a sine-Gordon soliton looks like in this twistor description.

I. INTRODUCTION

Twenty-two years ago, a paper entitled “Twistor alge-
bra,” by Penrose, appeared in this journal.' It introduced
twistors in (3 + 1)-dimensional Minkowski space-time.
The analogous structure for (2 + 1)-dimensional flat space-
time is in some ways simpler, but has not received much
attention. It does, however, have many potential applica-
tions, some of which are mentioned below. This paper will
explore some of the features of (2 + 1)-dimensional twistor
theory.

The starting point is a two-dimensional real twistor
space N (the points of which correspond to null planes in
R**"); functions on N correspond to solutions of various
massless field equations on R**'. A more geometrical de-
scription is obtained by complexifying N, to yield a two-
complex-dimensional twistor space T. Roughtly speaking,
points in T correspond to directed timelike lines in R2*1,

Holomorphic vector bundles over T correspond to
Yang-Mills—Higgs fields in R>*! satisfying a set of nonlin-
ear first-order equations (the hyperbolic analog of the Bogo-
molny equations for monopoles in-R*). There are many re-
ductions (i.e., special cases) of these equations which are of
interest; examples include the Einstein vacuum equations
with cylindrical symmetry, and (1 + 1)-dimensional soliton
equations such as Korteweg—de Vries, nonlinear Schro-
dinger, and sine-Gordon. By way of example, the one-soli-
ton solution of the sine-Gordon equation is described from
this point of view. Of course, the equations just mentioned
are already well understood. But the twistor picture may be
useful in providing a unified geometrical description of all of
them.

Il. TWISTORS IN 24+1 DIMENSIONS

Let us begin by recalling one of the approaches to twis-
tors in (3 + 1)-dimensional flat space-time R**!. More de-
tails may be found in Refs. 2—4. One starts with the space N
of null geodesics in R**", which is five-dimensional; in fact,
N is §2X R? as a real manifold. But it has some additional
structure (arising from the conformal structure of space-
time), namely a CR structure.’ This is the structure inherit-
ed by a real hypersurface in complex manifold. So Nj sits
naturally inside a three-dimensional complex manifold 7.
Now T3 is not uniquely determined by N; roughly speaking,
that part of T which lies close to Ns is determined, but one
can analytically continue away from this in many different
ways. The simplest choice is to take 75 to be the complex
projective space P5, and this is the standard flat (projective)
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twistor space. This choice also effectively compactifies N to
N, the space of null geodesics in compactified Minkowski
space-time. The spaces N, and T, = P; are homogeneous,
being acted on transitively by the conformal group in 3 + 1
dimensions, and its complexification, respectively.

A point of N corresponds, of course, to a null geodesic
in space-time. Points of PN can also be pictured in space-
time: they correspond to twisting congruences of null lines
(Robinson congruences); hence the name “twistor.”

Let us turn now to (2 + 1)-dimensional flat space-time
R?*!, and see how the situation differs. In this case, the
space N; of null lines is three dimensional, but it does not
have a natural CR structure. So one’s first guess, that there
should be a two-complex-dimensional twistor space in
which N, sits as a real hypersurface, is wrong. Instead of NV,
the correct space to use is the space N of null planes in R**,
which is two dimensional. In fact, Nis .S ' X R as a manifold:
if (¢,x,y) are the usual space-time coordinates, then a null
plane is given by an equation of the form

t+ycosf + xsin 0 = w, (D

where (0,w)€S ! X R are constant real numbers. This gives a
one-to-one correspondence between null planes in R**' and
points of S X R.

A more invariant description can be arrived at by mak-
ing use of the fact that the identity-connected component of
the (2 + 1)-Lorentz group O(2,1) is double-covered by
SL(2,R); so spinors are two-component real objects 7,
A = 0,1. The space-time coordinates may be rearranged as a
symmetric two-spinor,

xABz[t+y x ] (2)

x t—y
The space-time metric is
ds* =1, dx* dx”
= —dt?+dx*+dy’
= —1dx"® dx ;. (3)
(Spinor indices are lowered with the alternating spinor £ 5,
as usual.)

An SL(2,R)-invariant description of null planes is as

follows. Let 7, be a nonzero real spinor (i.e., 7, and 7, not

both zero) and w a real number. These parameters deter-
mine a null plane by

= x"Pm 7wy, (4)

Clearly (w, 7, ) are homogeneous coordinates for N, in the
sense that (1 *w, A7, ), where A is any nonzero real number,
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determines the same null plane as (w,7,). If we put
7y = ¢os 10 and 7, = sin 16, then (4) reduces to (1).

Solutions of the wave equation in R?*! can be generated
from functions on N: if f = f{®,6) is asmooth functionon N,
then

29
@(L,x,y) =J- Sf(t+ ycos 8 + xsin 6,0)d8 (5)
[+

is a solution of the wave equation Og = 0. This is the Lorent-
zian version of Whittaker’s® famous formula for solutions of
the Laplace equation in R>. The discussion in Ref. 6, which
uses a power-series argument, demonstrates that all real-
analytic solutions of Og = 0 can be obtained (locally) as in
(5). To deal with nonanalytic solutions, one could adopt a
purely ‘““real” approach, and study the integral transform
(5) from the point of view of real analysis. For example,
such an approach is employed in Ref. 7, which deals with the
closely related problem of the self-dual Maxwell equations in
R2+2. Also, (5) is related to the Radon transform® between
functions on N and functions on R? (this R* being thought of
as an initial-data surface, such as ¢t = 0, in R>*'). An alter-
native way involves working with the complex twistor space
T (introduced below), and using cohomology and hyper-
functions, along the lines of Ref. 9. This subject will not be
pursued further here; some remarks on cohomology are
made in the next section.

Whether one stays with the real space N, or works with
its complexification T, is partly a matter of taste. As far as
nonlinear problems are concerned, the complex approach is
more geometrical, and in some cases reduces to algebraic
geometry; from now on, we shall use the complex frame-
work.

The complex twistor space T is a two-dimensional com-
plex manifold, a complexification of the two-dimensional
real manifold N. The most natural complexification is ob-
tained by simply allowing the homogeneous coordinates
(w,74) to become complex. So T is CX (C* — {0}), fac-
tored out by the equivalence relation

(}L 2(0’/177',4 ) -~ (w"’TA )5 (6)

where A runs over the nonzero complex numbers. Now
C? — {0} factored in this way is just the complex projective
line P,. So T is a holomorphic line bundle over P,; from (6)
it follows that T is in fact the holomorphic tangent bundle of
P,.

This space T (sometimes known as “minitwistor”
space) was used'®!! in discussing monopole solutions on
Euclidean three-space R*. In fact, one could begin with a
purely complex description, defining T to be the space of all
complex null planes in C* (with respect to the complexified
Euclidean metric); then different “reality structures” on T
correspond to different signatures for the underlying real
metric. The one used in Ref. 10 is relevant to the signature
+ + +, whereas the one used hereis relevantto — + +,
and consists of the complex conjugation operation

(w’TrOyﬂ'l)’_’(Eﬂ_TOaT-rl)- (7)
Since T is a bundle over P,, there are a natural family of
curves in T, namely the holomorphic sections of the bundle.
These form a three-complex-parameter family (in fact, they
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FIG. 1. The correspondence between R** ' and T.

are parametrized by the space C’ referred to in the previous
paragraph). The real sections, i.e., those preserved under the
conjugation (7), are parametrized by R** . Let us denote by
l,, the real section corresponding to a point p in R**'. See
Fig. 1.

If p and g are two points in R+, then the two curves / ,
and lq in T will intersect either at one point (in which case p
and g are null-separated) or at two points. In the latter case,
the two points of intersection could either be real, i.e., each
preserved by (7) (in which case p and g are spacelike sepa-
rated), or complex, and conjugates of each other (in which
case p and g are timelike separated). All this is easily de-
duced from Eq. (4). So we see that the causal structure of the
space-time R**' is encoded into the geometry of T.

What do the points of T correspond to in space-time?
Again, Eq. (4) provides the answer: if o and 7, are fixed,
then (4) defines an affine subspace of R>™'. Three different
cases must be distinguished. Let us assume that 7, is nonzero
(if not, interchange 7, and #, in what follows), and write
& =my/m, v=w/m> So (4) becomes

v=(t+PE4+2xE + (t— ). (8)

If v and { are both real, then (8) defines a null plane (as we
already knew). If { is real but v is complex, then (8) has no
solution at all. Finally, if both v and ¢ are complex, then the
solution of (8) is a timelike line in R?>*!. The direction vec-
tor of this line is v*2 = 717®, where parentheses denote
symmetrization; in (z,x,y) coordinates, this direction vector
is

A+15P2 —=C=8 1-1¢P. ®)

Clearly (v,£) and (T/,f ) determine the same line. To elimi-

T

P“t future
flmr =0 e
Im3<o WT>0

FIG. 2. The “causal structure” of T.
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nate this redundancy, we may regard the line as being orient-
ed: to the future if Im £ > 0, and to the past if Im { < 0.

To sum up: the minitwistor space T is divided into two
hemispheres Im £> 0 and Im { <0, separated by an equator
Im £ = O (see Fig. 2). A point Zin the region Im £ > O corre-
sponds to a future-directed timelike line L, in R?>*! (each
point on L, corresponds to a real section of T passing
through both Z and Z: see Fig. 1). Similarly, points in
Im £ <0 correspond to past-directed timelike lines in R**".
Most points on Im ¢ = 0 do not correspond to anything in
space-time, but some (namely those with v real) correspond
to real null planes.

IlIl. MASSLESS FIELDS, COHOMOLOGY, AND
COMPACTIFICATION

The integral formula (5) for solutions of g = 0 can be
recast in terms of sheaf cohomology and complex contour
integrals on T. The ideas are the same as for four-dimension-
al space-time>™*'?; the following is a brief description.

Let M be a neighborhood of some section /, in T. Cover
M with the two sets

U={Im&>0}NM, U={Im{<O}NM. (10)

(Strictly speaking, we should take U= {Im {> — e}NM,
where ¢ is some positive number; and Im § < £ in the defini-
tion of U. In other words, U and U are “hemispheric” open
sets whose intersection contains the equator Im g = 0.) Let
f=fw,m,) be a holomorphic function on UN U, homoge-
neous of degree — 2. [We say that f'is homogeneous of de-
gree n, and is a section of the sheaf & (n), if

fAwAr,) = A "w,m,) (1)
for all nonzero complex numbers A.] This /, defined on the
overlap region UNU, represents an element of the sheaf co-
homology group H (M, & + ( — 2)). And it can be evaluated
by a contour integral

@(x*?) = 2f§f(xAB1rAﬂ'B,7rc)ﬁD dm” (12)
to give a solution of Og = 0. The contour in (12) is the
equator Im&=0. If we parametrize this curve by
& = cot 16, then (12) is identical to (5).

All this is easiest to handle rigorously if one deals with
holomorphic fields @ on the complexified space-time C’: see,
for example, Ref. 13. On real space-time, as mentioned pre-
viously, the situation is more complicated, since solutions
may not be real-analytic.

If f'is homogeneous of degree — n — 2, where n is a
positive integer, then (12) should be replaced by

@ap...p(X) = 2§ Ty7g Tpf (X Cmpmrg,m Vs A
(13)

with n factors of 7 in the integrand. So @ ,z..., (which is

totally symmetric) is a field of spin i, and (13) isa solution

formula for the massless free-field equation
aAE¢)AB...D=0- (14)

Here d,; is the spinor version of the partial derivative
d, =3d/3x" (u=0,1,2). For functions homogeneous of de-
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gree greater than — 2, one differentiates with respect to w in
order to reduce the degree. For example, if f has degree O,
then df /dw has degree — 2, and so yields a scalar field. In
fact, this case may be viewed differently: exp(f) is the patch-
ing function for a line bundle over M, and this bundle corre-
sponds to a U(1) gauge field, plus a scalar field, satisfying a
set of coupled equations (see the next section). This scalar
field is (up to a multiplicative constant) the one generated
by df /dw.

As was remarked at the beginning of Sec. II, the stan-
dard twistor space compactifies naturally to a homogeneous
space P;, and cohomology groups on P; provide a descrip-
tion of massless fields on compactified Minkowski space-
time; the whole setup is conformally invariant.®*? This is not
the case for 2 + 1 dimensions and minitwistor space. Never-
theless, one can compactify T, and try to extend the solution
formula for Og = 0 to this compactification. What happens
is as follows.

Recall that T is fibered over P,, with each fiber being a
copy of C. To compactify, we add an extra section /_ : the
resulting compact space T is still fibered over P,, but each
fiber is now itself a copy of P, (see Fig. 3). The space T is a
rational ruled surface that in algebraic geometry is denoted
S..

We want to consider a region M in T which is a neigh-
borhood of a section /, and which also contains /. Let us
take M tobe T — ¥V, where V'is some small closed neighbor-
hood of the set { real, @ = 0} (see Fig. 3). The real sections
in M (i.e., those which avoid V) are partitioned into two sets,
corresponding to points inside the future and the past null
cones of the origin Oin R** ", See Fig. 3, where p is inside the
future null cone. .

Now if f (@, 7, ) is holomorphic on UN U and homoge-
neous of degree — 2 as before, then it yields a field ¢ which is
real analytic inside the null cones, and which furthermore
extends across f = «. By way of example, take f (w,7,)
= @~ '. Then doing the integral (5) or (12) gives

p=Qa/ty(1 —r¥/t?)~"? (15)

(where r 2 = x? 4 y*), the fundamental solution of O = 0.
Notice that (5) is indeed real-analytic inside the future and
past null cones, and across ¢t = « (where t= + « and
t = — oo are identified).

The solution (15) is singular on the null cone of the
origin. But it is easy to modify it slightly, so as to obtain a

b

FIG. 3. Compactified minitwistor space T.
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solution which is smooth on all of R>*! and across ¢t = .
For example,

flomy) = (o+img +im}) ™!
leads to
p=2m(t>—r2—1+2it)"'?

which is smooth and single valued on R2*'. Note that fis
smooth on N (where w and 7, are real); this is why the
resulting field ¢ is smooth [cf. (5)].

So it appears that extending to the compactified min-
itwistor space T corresponds to extending across infinity in
space-time R?* . However, unlike the standard twistor the-
ory, the points at infinity (= + <) do not correspond to
holomorphic curves in the twistor space, at least not in any
obvious geometrical way. This aspect should be investigated
further.

V. VECTOR BUNDLES AND YANG-MILLS-HIGGS
FIELDS

Holomorphic vector bundles over the standard three-
dimensional twistor space correspond to self-dual gauge
fields in four-dimensional space-time (real or complexi-
fied).>*'* The “mini” or reduced version of this is that bun-
dles over T correspond to gauge fields in three-space, satisfy-
ing the Bogomolny equations. The form in which this
correspondence is best known is the positive-definite one,
relating to monopoles on Euclidean three-space.'®'" In this
section, we study the correspondence for gauge fields on
RZ + 1.

The construction works for any gauge group, but for
simplicity let us take the group to be SU(2). So a gauge
potential 4,, is a one-form on R**' taking values in the Lie
algebra su(2), i.e., each of 4,, 4;, and 4, is an anti-Hermi-
tian trace-free 2 X 2 matrix. The gauge field is

F,=38,4,— 3,4, + [4.4,].

In addition to the gauge field, one has an su(2)-valued scalar
field ® (the Higgs field). The Bogomolny equations are

D, ®=le, . F (16)
where €, is the alternating tensor. [ We adopt the sign con-
vention €,;, = — 1, with metric having signature — + +,
cf. (3).]

Equations ( 16) are hyperbolic, and so describe the time-
evolution of the Yang-Mills-Higgs system in R>*'. Note
that (16) implies the covariant wave equation

D, D"® =0, (17
by virtue of the Bianchi identity on £, . In addition, (16)
implies that

D*F,, = e.5, [F2]. (18)
Equations (17) and (18) are the Euler-Lagrange equations
obtained from the Lagrangian

L=}t F, F* —tr(D, D) (D"D), (19)

where tr denotes trace. In other words, the solutions of (16)
are also solutions of the equations of motion obtained from
(19). However, (19) is not exactly the usual Yang-Mills—
Higgs Lagrangian, because in the latter the relative sign be-
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tween the two terms is + rather than — . One consequence
of this change is that the conserved energy functional ob-
tained from (19) is not positive-definite. Indeed, this energy
density vanishes identically for solutions of (16). This mat-
ter will be returned to later, after the following description of
how to construct solutions of (16).

Solutions of (16) on R**! may be generated from holo-
morphic rank-two vector bundles E over T, satisfying

(A) for every real section of o of T, E |, is trivial;
(B) det E =1 and E has a “real structure.” 20)

Condition (A) guarantees that the gauge field that will be
constructed, is smooth (in fact real-analytic) on R2*!, Con-
dition (B) guarantees that the gauge field will be su(2) val-
ued, as opposed to merely gl(2,C) valued; the explanation of
exactly what (B) means will be given below.

Let us use an explicit construction, covering T with two
patches U and U, assuming E is trivial on each of these, and
patching E together by

-

¥ =Fy, (21)
where F is a 2} 2 matrix of holomorphic functions on the

overlap region UN U. It is convenient to transform the coor-
dinate ¢ by a fractional linear transformation

A= (E—D/(E+D), (22)

and to use A instead of § as the coordinate on IP,. The patches
U and U used before [cf. (10) ] become

U={4]|<1},

U= {|A [>1, including A = 0 }.
The conjugation operation &> is replaced by A—4 ~*. The
fiber-coordinate v [cf. (8)] is replaced by

y=iZA + 2t —izA 7}, (24)
where z=x 4+ iy=x"' + ix? and t = x°. So ¥4 and y4 !
serveasfiber-coordinateson T, for |4 |<1and |4 | > 1, respec-

tively. Note that (24) is preserved by complex conjugation,
in the sense that

y(x* ) = y(x* A ).

(23)

We can now define what the conditions (B) in (20) mean: as
conditions on the patching matrix F, they are

det F=1, F'=F, (25)
where F'is defined by
Fl(yA) = F(3,4 )% (26)

(here * denotes complex conjugate transpose).

The procedure for constructing 4,, and @ is standard. 14
If one restricts F(y,4) to a real section by imposing (24),
then it is the patching matrix for a trivial bundle (by condi-
tion A), which means that it can be split:

FUZA + 2t —izd ~'4) = Hx* ) H(x* )Y, (27)

where the matrix H is holomorphic for |4 |<]1, and H for
|4 |>1. Further, condition (B) enables us to impose H"
= H ~'and det H= 1. [Here H'(x*A): = H(x*A ~")*,
cf. (26).] The two operators

§=24,+3iA"'9, &'=3; —1Lid, (28)
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each annihilate the expression (24), and hence annihilate
the left-hand side of (27). Acting on (27) with § therefore
gives

H~'3H=H"'3H, (29)
and each side of (29) must be linearin A ~'. So H ~'3H has
the form

H™'3H=14(A4, —id,) + A (P +i4,), (30)

for some anti-Hermitian trace-free matrices 4, ¢ which
depend only on x* (and nog\ onA).From (29), (30), and the
unitarity condition H' = H ~' we get

H7'8'H=14(4, +i4,) + (P —id,), (31)

and the consistency condition for (30) and (31) is exactly
the Bogomolny equation (16).

So holomorphic vector bundles over T, satisfying (20),
generate solutions of (16). Not all solutions arise in this way,
however: in particular, holomorphic bundles lead to solu-
tions that are real-analytic, whereas Eqgs. (16), being hyper-
bolic, admit nonanalytic solutions. But it is certainly the case
that one may obtain all real-analytic solutions in this way, at
least locally (by considering holomorphic bundles over the
neighborhood of a real line in T). And the splitting proce-
dure above works even if F is not analytic, so one can con-
struct some nonanalytic solutions as well (although in this
case they are not related to holomorphic bundles). This
splitting, also known as the Birkhoff decomposition'® or
Riemann-Hilbert factorization, has wide applicability.

As was remarked previously, the Bogomolny equations
(16), or the Yang-Mills—Higgs equations (17), (18), ap-
pear not to admit a local, positive definite, conserved energy
density. One can rewrite (16) in a form which does admit an
energy functional, but the price one pays for this is the loss of
Lorentz invariance. Roughly speaking, one expresses 4,
and @ in terms of first derivatives of an SU(2)-valued field J,
and the first-order equations (16) then become second-or-
der equations for J. The details are as follows.

Choose a gauge such that 4, = 4 and 4, = — ®.Such
a gauge exists for solutions of (16); in terms of the construc-
tion described above, it corresponds to choosing H such that
H|,_, =1 [cf (30) and (31)]. Then J: R**'-SU(2) is
taken to be a solution of

A, =A4,=7'(J, +J,),

32
A, = —d=1"J,. (32)

The integrability condition for (32) follows from (16), and
in addition (16) implies an equation on J, namely

73, (J 713, J) + V,e*d, (J7'a,J) =0, (33)
where ¥ is the unit vector in the x-direction, i.e.,
V, = (0,1,0). Conversely, given a solution J of (33), we can
use (32) to get a solution of (16); so(16) and (33) are, in
this sense, equivalent forms of the same thing. Equation
(33) is a ““chiral equation with torsion term” which admits a
positive-definite conserved energy functional'®!” (rewritten
in terms of 4,, and ¢, this energy density would be nonlo-
cal). The equation has soliton solutions, both lumplike and
wavelike.'¢!°
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V. REDUCTIONS AND THE SINE-GORDON EQUATION

One may reduce the Bogomolny equation (16) to1 + 1
dimensions, by (roughly speaking) requiring the fields to be
independent of one of the space-time coordinates. In fact,
this can be done in several different ways. In this section, we
shall concentrate on one example which serves to illustrate
the general situation: the soliton solution of the sine-Gordon
equation. But first, it is worthwhile to mention a few other
examples.

In order to reduce from 2 + 1 to 1 + 1 dimensions, one
assumes that the fields are constant along some Killing vec-
tor field in R**!. There are several possibilities, depending
on which Killing vector we choose. One choice is a null vec-
tor, say ¥V'=d, — d,. So in this case, the fields 4, and ® are
assumed to be annihilated by ¥, and depend only on x and
t + y. The reduced equations are then parabolic (with # + y
interpreted as “time”), and essentially reduce to either the
nonlinear Schrodinger or the Korteweg—de Vries equation.?°
In other words, these well-known soliton equations are in
effect special cases of (16).

Another possibility is obtained by using the Killing vec-
tor field ¥ = yd, + td,. Adopting the J description (33), we
require that J be annihilated by V, i.e., that J be a function
only of x and p = (¢ —y*)"/? (restricted to the region
t2 — y*>0). Then (33) reduces to

3, (J7'3,) —p~'3,(pJ ~'3,0) =0. (34)

Also, let us take the gauge group to be SL(2,R) rather than
SU(2); this is achieved by an alteration of the reality condi-
tion (25). So J becomes an SL(2,R)-valued matrix. Finally,
impose the condition that J be symmetric [which is consis-
tent with Eq. (34)]. Then (34) is effectively Einstein’s vacu-
um equation for cylindrically-symmetric space-times (with
x playing the role of time and p as the radial coordinate).?!
Numerous ways have been developed for generating solu-
tions of these reduced Einstein equations, and the solutions
can be interpreted in many different ways (for example, as
cylindrical gravitational waves, as cosmological models, and
as “‘gravitational solitons”). The twistor description pro-
vides a more geometric way of constructing and interpreting
such solutions, and may prove to be useful.?! (The corre-
sponding structure for stationary axisymmetric space-times
has already been studied in some detail.??)

Let us return now to the sine-Gordon (sG) equation.
To obtain this, we must reduce via a constant spacelike Kill-
ing vector, say ¥ = d, . In addition, the number of dependent
variables is reduced by imposing algebraic constraints on the
fields 4, and P, consistent with Eq. (16). The situation may
be summarized as follows.

Let g and @ be functions of ¢,y. Take 4, and P to have
the form

A, = — A, =ligo,,

A, = — (14 cos @)oo, — Li(sin p)o,, (35)
P =1i(1 — cos @)oo, — Li(sin )0y,

where o; are the Pauli matrices. Substitute (35) into the

Bogomolny equations (16); the function g is easily eliminat-
ed, and the only equation that remains is the sG equation
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@)y — Pu =Sin@. (36)

Note from (35) that ¢ and & are related by

—tr 2 =1(1 — cos ). 37

Of course, one already knows how to construct solu-
tions of the sG equation. The twistor picture merely gives an
alternative (and more geometrical) view of the solutions.
Let us see how to construct the one-soliton solution, for ex-
ample.

The splitting procedure of Sec. IV can be carried out
explicitly if the matrix Fis upper triangular.' In this partic-
ular case, take

Foy =y TP, (38)
where the function T is given by

F(rA)=Q "(h '+ 4",

Q=A-—a)(A ™'~ a), (39)

h=-exp[d ~'y/(1 —a*)]

(a being a real number with |a| <1).

This patching matrix F does not satisfy the reality condi-
tion F' = F, but it is equivalent to one which does. Namely,
if we multiply F on the left by

A — IQ _ h — 1]

h 0 ’ (40)
which is holomorphic on i\/, then the resulting matrix does
satisfy the reality condition. (Multiplying on the left by a
matrix which is holomorphic and nonsingular on U, and on
the right by one which is holomorphic and nonsingular on U,
simply amounts to a change of coordinates in the bundle,
and does not affect 4, or @.)

The gauge field generated by (38) can be expressed in
terms of the function

Y(tx,y) = 35 T(iZA + 2t — izA ~1A)dA /(2mid), (41)

which is a solution of the wave equation [cf. (12)]. The
contour in (41) is |4 | = 1. Furthermore, there is a concise
expression for tr 2 in terms of 1, namely

trd>=4(3?— 32 —32)log ¢. (42)

This is true no matter what I is. If we take I to be given by
(39), then (41) yields

Yv=1[2/(1—a%)]e *cosh[ B( y— V1)1, (43)
where
= —2a/(1 2
Vv a/(1 +a), (44)

B=(+a*)/(1—a’)=(1 -V}~

And then using (37) and (42) gives an expression for the sG
field @, namely

cosp=1—2(d2 —3dNlogcosh[ B(y— V1)], (45)

which is the one-soliton solution of (36).
In fact, one can check that (38) does indeed generate
the fields 4,, and ® of (35), where g is the one-soliton solu-
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tion (45). This way of doing things is made slightly awk-
ward by the gauge freedom in 4, and ¢ (corresponding to
the freedom in the matrices H and H which split F). One
may avoid this by using the gauge-invariant matrix J, and
generate the appropriate solutions of (33) by using the “Rie-
mann problem with zeros.” 6181

Mutltisoliton solutions can be understood similarly in
this picture. One needs to use an upper triangular matrix F as
in (38), except that A and A ~' on the diagonal are replaced
by A "and 4 ~", where 7 is a positive integer. In this case,
there is a formula for tr ®* as in (42), with ¢ replaced by the
determinant of an n X n matrix of functions, each generated
by an integral like (41). The analogous formula for multiso-
liton solutions of the sG equation is, of course, well known.
The details of all this have not yet been worked out, but it
might be interesting to do so.
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An algorithm is developed for computing the #th gravitational multipole moment of an
asymptotically flat, empty, stationary axisymmetric space-time. The moments are expressed in
terms of the expansion coefficients of the Ernst potential on the axis of symmetry. The values

of the first ten multipole moments are given.

I. INTRODUCTION

During the past two decades there has been slow but
relentless progress in the theory of relativistic gravitational
multipole moments. These moments are expected to be an
effective means of generating solutions of the gravitational
equations' as well as defining the space of relativistic states®
once an efficient algorithm for computing them is found.
The basic ideas were developed by Geroch.® He considered
multipole moments in curved, static, asymptotically flat and
empty space-times. The nth moment is given by the value at
spatial infinity of a symmetric and traceless tensor
PP, (¥') on the background three-space® of the timelike
Killing trajectories.

Hansen' and Thorne® have generalized the notion of
gravitational multipole moments to asymptotically flat sta-
tionary space-times. Their definitions are equivalent. A
three-space (#,h) with positive-definite metric 4 is called
asymptotically flat if it can be conformally mapped to a
manifold (.# ,k) and

(i) A = M UA, where A is a single point;

(iil Q= Q,i|A =0, DD, =hyla,
where b, = Q%h,.

There are two sets of multipole moments describing
mass and angular momentum, respectively, and they are giv-
en in terms of two potentials. These potentials are construct-
ed from the norm f = K#K, and curl ¢, = €,,,,, K" K7 of
the timelike Killing field K. From the vacuum Einstein equa-
tions R, =0, the curl is locally a gradient: ¢, = ¢,,. It is
convenient to unify these potentials in the complex Ernst
notation

€ =f+iy (D)
The complex gravitational potential

E=1—-&)/(1+%&) (2)
is assigned the conformal weight — },i.e.,

E=Q 2% (3)

The mass and the rotation potentials are then given by
the real and imaginary parts, respectively,
=90 + i, (4)

The corresponding complex multipole tensors are defined’
recursively:
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PO ) =€,
PP(x) =&, 5)
PGy, (D =<€[D, P,

—jn(n— DR, PUS0 T,

where the symbol % denotes the operation of taking the
symmetric and trace-free part. The values of the nth multi-
pole moment are given by the smooth continuation of the
conformal image of the nth multipole tensor to the point
Ae# . [ The conformal image P {?. . ;, (x') is defined by the
tilded version of Eqs. (5).]

A good candidate for the study of multipole moments is
the class of axisymmetric gravitational fields. It has been
shown® that these metrics are determined by the value of the
complex gravitational potential on the axis of symmetry. It is
the purpose of this paper to present an algorithm for com-
puting the gravitational multipole moments in asymptotical-
ly flat, empty, stationary axisymmetric space-times. In Sec.
II we summarize the theory of gravitational multipole mo-
ments in such space-times. The power series expansion of the
potential € on the symmetry axis will be used in Sec. III for
obtaining the multipole moments. In Sec. IV we shall give
the results of the computation for the first ten moments.

Il. MOMENTS IN AXISTATIONARY SPACE-TIMES

We first briefly review the theory of multipole moments
in an asymptotically flat, empty, stationary, axisymmetric
space-time.’ We write the metric in the canonical form

ds* = (1/H[e* (dp* + d2*) + p* dep?]
— fldt — 0 dg)?, (6)

where the functions f, ¥, and » depend only on x! = p and
x* =z

Since tensors on the symmetry axis p = 0 are invariant
under a rotation about the axis, the multipole moments
7’}".’.’ .i,|a are necessarily multiples of the symmetric trace-
free outer product of the axis vector #° with itself. Hansen
has defined the scalar moments by

P, = (1/n) P nt-on"|, (7

Since on the axis n* = (0,1,0), the moments are
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P, = (1/n) P{, |- (8)

Using (6), the metric on the three-dimensional manifold .#
is

er 0 0
n=lo & ol (9)
0 0 p?

After the coordinate transformation

p=p/(P+2),Z=2/(0*+ ), =@, (10)
the metric takes the form
e?r 0 0
=20 e ol (11)
0 0 p?

where P =p* + 7.

We drop the overbar from the coordinates. Let
M = M UA, where A is the origin. Let the metric on M be
h, = Q%h; = 7*h,. One can easily verify thatif |, = 1, the
space is asymptotlcally flat. By Eq. (3), § = (1/r)&. Then
from the field equation for ¢,

(PEE* — 1)AE =2E*[A(VE)2 + 2rEVEVr + 2], (12)
The Ricci tensor is

R, =(1/D?) (G,G¥ + G*G)), (13)
whereD = PEE* — 1,G, = 2&, — p&,, G, = p&, + &, +

and G, = 0. The Christoffel symbols, which are necessary
for the covariant differentiation in (5), are
My =1/p, 33 = —pe™ ¥, L =Th,=-I5 =mn,
', =T}, = — T}, =,, and the remaining components
are zero, where

Y = (P/2)(§11 _ﬁzz): Y2

It follows from Eq. (12) that £ is uniquely determined
by its values on the axis. Let

o
Y m,z"
n=0

It has been conjectured that P, = m,,. This is obviously true
. i

= oR,,. (14)

Ep=0)=

P:(z';;)c = "11—% {a%PSJH—_I,Ib)c + b'g‘P("b_—ll)c

for n =0 and n = 1. For static solutions Hoenselaers has
shown the conjecture to be true when n = 2. Furthermore
Hansen' has given the moments of the Kerr solution as
P, = m(ia)", which conforms with the conjecture for all ».
Singer’ showed that P; = m,. But Hauser® found the conjec-
ture to be false for n = 4 and 5. Subsequently, Hoenselaers®
has calculated the sixth and seventh moments.

lll. GENERATING ALGORITHM

The aim of this section is to construct a recursive algo-
rithm for generating the nth gravitational multipole moment
P, in terms of the expansion coefficients m, . For obtaining
P"" .i,» one has to calculate 3, P ("7 and g, P"‘ i) - Thus
for the nth moment one needs c? 29LE |, where a + bgn.
Here £ can be written as

§ 2 aup

ij=0
where a,; = m;. Putting this into (12) yields

(r+ 2)2a,+2’s = - (S+ 2)(S+ l)ar,s+2

(15)

* 2 2

+ 2 aklamn [apq (p + q
k+m+p=r
l+n+g=s

—4p — 5q — 2pk — 2gl - 2)
+a,, 24 2(P+2)(p+2—2k)

+a,,_2,q+z(¢1+2)(q+ 1 —21)]- (16)

Using this equation one can express the constants g; in
terms of m, . For the calculation of a given a; one needs
nearly all such g, for which i+ j>k + J, or for which
i+j=k + land k <. Equation (16) implies thata; = Oif
isan odd number, which is necessary for £ tobe analytlc atA.
Define
P,(,,';,)C_Pl 120233,

S St S
a b c

where @ + b + ¢ = n. Invoking the forms of the Christoffel
symbols, the recursive definition (5) of the tensors }~’§.'.'?.in
takes the form

(17)

— [2ab + b(b — 1)]?’2Pz(z,';>_—11),c +a(a— l)YzP‘(z"—_z,lb)+ e +b(b— 1)71P((1n+_l,1b)—2,c
+c(c—Dpe 2P, — (n—3)[ala— 1)§11P§"_‘2_zl,{c

+ 2ab§12P¢(1n——1,2b)— e +b(b— l)ﬁzzp:(z,'r—zz),c } ’

where now the symbol &€ denotes the trace-free part only.

For 7’,(.'"’. ;, we also get the correct value if we replace P s

~(k) (k—2)
P +he, Qi

(18)

. by
(19)

where k <n,and Q %, 2’ is any tensor, since we get only additional terms that vanish when we take the trace-free part. As is
shown in the Appendlx, one can take the trace-free part by subtracting such a tensor. Define the tensors S {7}, by writing S

instead of P everywhere in Eq. (18), adding A
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a,b,c

@@ 2’ on the right-hand side, and dropping the operation Z. Let
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0 _ p©
SO,O,O - PO,O,O’
Then
(n)
P . =C (S0

a,b,c

)y _ p
Sa,b,c =P

a,b,c*

(20)

(21)

Wenow show that Q {*7,> can be chosen such that § {7, = 0if ¢ 0. This is obviously true for n = Oand n = 1. Suppose that it

iy a,b,c

is true for k < n. Obviously one has to choose Q |/} sothat Q {/}),

= 0 we get

=0ifc#0. ThenS () #0onlyifc =0orc=2.FromS {7},

a,b,c

o =[(n=1)/ple™*"S "7 0. (22)
Then S (Y. =0if c#0. Let S {” = S (. The definition of the tensors P} takes the form
s = sp=L2so, sp-Lsp,
oz ! o
A =1 [aj——S,‘,"_‘l” +(n—a) iSf,"‘“ +a [(a+ 1-2m)y, — é—- 1] S
n dp dz P
+@a—m(a+n—1pS" Y 4+ata—1)y,S"50
+(n—a)(n—a-—1) (y, —i)Sfl";l” — (n ——%) [a(a— DR,,S" 5
p
+2a(n—a)R,S" P +(n—a)(n—a— 1)1~222Sf,”“2)]} , (23)
and
P(n) =cg(S‘(zn))(n) (24)

a,b,c a,b,c?

where % denotes the trace-free part. For a given n.5 (™ has only » 4 1 components in contrast to the 3" components of the ten-

sor P{"., .

LetR,, =p’R{,,R;, =pR,,R,, = R}y, v, = pv,,and 7, = p*7;. Then it follows from (13) and (14) thatR {;, R {,,

R3,, 7!, and y; are each power series in p® and z. Let
S =paz(n)_
Then (23) becomes

d d

Z§,°>=§, Z(()l)=_Zé0)’ Z§”=——Z((,O),
Jz dp
Zf,") =_1_ {aiiztg"_fll) + (n—a) izg"_l)
nl p dp Iz

(25)

+a@+1=-2my,Z" "+ (@—n)(@a+n—1)pp*Z5 "

tala—WHZIL +(n—ay(in—a— D(p*y; —DHZ Y

— (n —%) [aa— DR} Z" 5P +2a(n—a)RL,ZI P+ (n—a)(n—a— 1)R;22,§"—2’]] . (26)

One can easily verify that Z { again has the form of a power
series in p* and z.

Since S\, = 0if ¢#0, so when one takes the trace-free
part, 4 33, which is singular at A, does not occur. Hence using
the trace-free part of S|, one gets the right value for

(m)
Py [A» 80

PRcla =F(SA) 5 (27)

Using (25) we obtain that S (|, = 0if a#0. For the calcu-
lation of the scalar moments we only need P$™., |, . Thus we
have to calculate the trace-free part of a tensor §{"., for
which only S{"., #0, and we need only the 2- -2 compo-
nent of the result (Cf. Appendix). From the definition (7) of
the scalar moments we get
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P, =[1/(2n — DHUISE. (28)

IV. THE COMPUTATION

The computation up to the mth moment consists of the
following steps.

(1 ~The coefficients g, in the power series expansion
(15) of & are expressed in terms of m; using the relation
(16). We need the coefficients a; up to { +j<m.

{2) The components of the Ricci tensor R ; are obtained
from (13) as polynomials of degree m — 2 in p and z. The
derivatives of the metric function y are then given by Egs.
(14).
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(3) Computation of the quantities S =£, SV
= (3/32)S§”, and S{V = (d/9p)S{”. The polynomial
S is required to degree m, but the polynomials S ¢V are
needed only to order m — 1.

(4) Computation of the polynomials S from the re-
cursive relation (23). Their respective degrees are m — n.
We need only the S {"’s for which a<m — nand a < n.

(5) Evaluation of Egs. (28) for the moments P,,.

The evaluation of the moments by computer requires Ja

facility for differentiation and algebraic manipulation of
polynomials.'® To reduce the size of computations, it is often
advantageous'' to drop terms containing p’z’ whenever
i + j> n for some positive n. We introduce the convenient
notation

M,.j.=m,mj—mi_1mj+1,

where /> j + 1. The results of the computation of the first
ten multipole moments are

Py=m,,
P=m,
P, =m,,
Py =m,,
1
P4=m4—7M20m0,
1 *
5=m5—7M20m, — — Myymg,
1 5 4 8 6
Pi—=m M. ‘my — —— ¥ — M,ym* — — M, m¥ — —M,m¥,
6 6t 2011 Mo =~ Moty — 3 Mgt — == Mg — ~ Mo
3 10 5 15
P, =m, —mMzomgzml +EMzomo*meo ~ a9 M0 ¥+ 143 Myym$*m,
25 30 76 10
— m¥ — — m¥ ——— m¥ — M — — M m,
ap9 oMz — o Maum 143 e a3 e 3 Msomo
Pi=m —LM m*3m2+iM m*im — 2 M mEmtm —+—iM2 mEmoms
8 8 gy 20Mo Mo+~ MaogTmy — —re MagMo M & = Moo Mo
1 1 24 12
'f‘ﬁjwzom,lkzmo_‘W:S_jwzom"t'= 143 M, 3‘2 1+EM3omgm1m0
14 3 23 15
- m¥ + — M, m¥m M, m* + M, ,m**m, — M, m
429 0 13 iMoo — o g Manm: ] a0 Mo — —7 = Maom:
34 45
_’iH amt 3 Msomt 14 12y — — Ms mg — M mg,
=m —LM s 1 M, m* + 2 M, m*m,m 21 M, m* m*m?
9 97 Soq Ma0MaMe ooq o + o Moo Moy — o Maeg ",
174 20 106
mMzomo Mt + 2431 Myym§mom¥ — 7017 Myymimim,
41 8
- 17017 % ¥m, + 2431 M,om? om’zk——Mmmgsm(Z)
18 112 35
——— M, ym¥m*m, + M, m*m,m* + M, m**m
123 aoMomim, + oo Magma oy + — o Moo
49 24 42 7
- 2431 304 ——22_1M31 3‘2 1+ 2721 M, mEm¥m, — 221 m¥
38 42 147
B M m¥ |+51—M40m0m’1"m0 2a3] 4o t+— Mum¥m,
314 .7 , 35 373 87
— + M m* m * %* M m*
2431 R T g OO O g TR g3 T MY
7 148 20 21
_ m* — — m* — 2 *_ M. m*,
17 e o1 520 17 Mo — 7 Moo
70 63 56
Po=mgy——M,,mmm¥ - —M 2 *
10 10 gg a0MaMo i 353 T30MMsMMo 2109 1303
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- 3;3 20— 411192 Magmanoms” + 41799 Maoms“my
4139 Magm'm) + 4?59 Maoms i mo “F;%?Mz"mgzmém;
+ 93689292629 2SN 1235797 Magmmt’ms + 42129 Maomsmomi
- 4229 Maomimm3 + 53227 Maomam?* + 132865267 2omimom3
42(1)29 M,,m¥fm¥m, +—E%6—7—M20m0 +%M30 m¥mom,
_’1?;% som i, + 8111521 Momimoms 32283 Myymims
- 42169‘; Myym3im, — 431?9 My mgmim, + :6817829 Msymimoms
+—%M3'm"ﬂ o 4::9 s 32283 Migms*ms
——22%M40m3‘m;'=m1 ¥ :6817829 M mimom® + 22;'1 Mm¥m,
~ ey Mt = s Mo oL Momsmtm, —ZC M ms
_;_23M5°mgzm‘+%Ms°m°mrm"_ :19929 s+ :19989 Maomimo
_—227% om3 + ié(a) Msimis*mo — 4?129‘; st o+ gg Mogmi'mo
70, o, 426, . 182, . 168 . 1553 .
323 007 4199 TP 323 TN 303 O 4199 T

Note that there exist algebraic identities among the quanti-
ties M, of the form

M

m, My sot+mM, 5, =m, M,

+ 3,00

where a>b>c. This makes it possible to rearrange some
terms. We have not been able to find a closed expression for
all the terms in these results. For the Kerr metric we have
M, =0.
APPENDIX: TRACE-FREE PART OF A SYMMETRIC
TENSOR

The trace-free part of a symmetric n-index tensor
= Ty, is obtained by adding multiples of sym-
metrized outer products of suitably many copies of the met-
ric A, with the traces of the tensor 7,

T,

iy iy,

{n/2]
;, z Ah b

k=1

E(T, )i =T

iy bk — 162k

T2k — n’sz

[ TUTE RIS

Xh ’|’zh rJrA.--h 0

(A1)
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The values of the coefficients 4 {” are determined by the

conditions satisfied by a symmetric and trace-free tensor
€T,

C(T;.... )i, B =0. (A2)
Although these relations are valid generally in D dimen-
sions, we are interested here only in the values of 4 {" in
D =3 dimensions. From (A2) we then get the recursion

relation
(n=2k)(n—=2k—1)
22k+H(2n—-2k—1)

and we can define 4 { = 1. Thus we obtain the coefficients
A in the trace-free part (A1),

(n) __
Ak+1 - -

A (n)

(— D" (2n —2m — 1N

(n) _ .
2"mi(n —2m)!1(2n — N

m

(A3)

As an application, we now consider a domain for which
Ay, = h *? = 1 [This holds on the z axis of a regular axisym-
metric space with metric (3)], and compute'? the 22---2
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component of the trace-free part of a symmetric tensor

T, ..., with the only nonvanishing component 7%,...,,
[n/2]
%(Ti.“'in)ZZ-“Z = T22~~2 + Tzz---z 2 A f:)
m=1
_ Thoont WA (- 1H)™(2n—2m— 1)
Qn—1",%Z  2™m!(n—2m)!
T,.,n
=2—2n. (A4)
2n — 1)1
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After a new presentation of the geometric theory of time-dependent systems in the
Hamiltonian formulation, using Poisson structures, a characterization of canonoid
transformations with respect to a dynamical vector field is given. The associated constants of
motion and the generating functions of canonoid transformations are also studied. The theory

is illustrated with several examples.

I. INTRODUCTION

The symplectic geometry has been shown to be the ap-
propriate geometric setting for the description of autono-
mous systems in both the Hamiltonian and Lagrangian ap-
proaches, but conversely as far as time-dependent systems
are concerned, there exist different alternative geometric ap-
proaches. Leaving aside the homogeneous formulations (see
e.g., Ref. 1 and other references therein), the geometric ap-
proach developed in Ref. 2 seems to be the most often used.
The main difference versus the time-independent approach
is the geometric meaning of the time. While in that case the
time is only locally defined and arises as being the parameter
of the integral curves of the vector field responsible for the
dynamics, in this time-dependent approach the time will be a
new variable and curves obtained by a time reparametriza-
tion have to be considered as equivalent ones. That means
that the relevant mathematical objects in the theory are no
longer vector fields and its integral curves but one-dimen-
sional distributions and its integral submanifolds. However,
use is very often made of the possibility of choosing vector
fields representatives of such distributions in such a way that
the parameter of their integral curves reduces to the time
variable, up to a constant time translation.

The geometric approach to the theory of canonical
transformations in the time-dependent case is not so clear as
in the time-independent one, mainly because the space is
odd-dimensional, and the situation is worse for the theory of
canonoid transformations. In order to elucidate the geomet-
ric meaning of the concept of canonoid transformation as
introduced in Ref. 3, we first give in Sec. II an alternative
approach for the description of time-dependent systems
based on the product structure R X M, which allows us to
define two supplementary distributions of vertical and hori-
zontal fields and a one-to-one correspondence between these
last fields and semibasic one-forms. By making use of these
concepts, we introduce a Poisson bracket endowing R X M
with a Poisson structure. An identification is also given of
those vector fields whose integral curves are obtained as so-
lutions of Hamilton-like equations. Poisson maps and ca-
nonical transformations are analyzed from this new perspec-
tive of Poisson structures® in Sec. I11I.

We remark that not only canonical transformations in
the phase space (those preserving the form of Hamilton
equations of motion whatever the Hamiltonian H is) may be
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relevant for solving, or at least simplifying, a specific prob-
lem. On the contrary, given such a problem, there exist other
transformations that will also preserve the Hamiltonian
character for the equations for this particular Hamiltonian
H but may not be so for another Hamiltonian function H'.
They are said to be canonoid® with respect to H. The proper-
ties of such transformations have recently been investigated®
in the time-independent case, using the tools of modern dif-
ferential geometry. In this way, previous results obtained by
Leubner and Marte® and by Negri et al.” were generalized
and recovered in the language of symplectic manifolds, and
furthermore, some additional interesting properties were ob-
tained as, for instance, the existence of associated non-
Noether constants of the motion.

One of the aims of this paper is to complete the geomet-
ric study of such canonoid transformations by covering the
case of time-dependent systems. Consequently, the theory
must be developed using as basic objects vector fields defined
on odd-dimensional manifolds, and we must use constant
rank presymplectic forms, i.e., degenerated closed two-
forms, and contact structures in the sense of Ref. 2 instead of
symplectic manifolds.

Once the theory of canonical transformations has been
reviewed in this new approach, a suitable geometric defini-
tion of canonoid transformation with respect to a vector field
may be introduced. This is made in Sec. IV, where its proper-
ties are also analyzed. The simplest case of a time-dependent
two-dimensional system is used in Sec. V for an illustration
of the physical meaning of the existence of canonoid trans-
formations, and their consequences are explained; they give
rise to constants of motion of a non-Noether theorem origin.
The more general case of a higher-dimensional system is
then presented in Sec. VI, and as well the theory of generat-
ing functions is developed in Sec. VII. Finally, several exam-
ples are collected in Sec. VIIL.

Il. TIME-DEPENDENT FORMALISM

Let (M,w) be a 2n-dimensional symplectic manifold,
and let N denote the product manifold N = R X M. The nat-
ural coordinate on R will be denoted ¢ and 7;: R X M - R and
7,: R X M — M are the projections of ¥ onto R and M, respec-
tively.

The standard approach to time-dependent Hamiltonian
dynamics uses the so-called” time-dependent vector fields X
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in M and their suspensions to R X M. A time-dependent vec-
tor field in M is a map X: RXM—-TM such that
X(t,m)eT,, M for any (¢t,m)eR X M. Actually, these fields
are but vector fields along the projection 7,. For each such a
field X, there is an associated vector field XeX(N), such that

Toegim LX(tm)] = X (2t,m)

and (dt,X ) =1 (see e.g., Ref. 2). This vector field is called
the suspension of X.

We recall that if w is a two-form on a manifold P, then
the set R, defined by R, = {veTP/i(v)w = 0} is called the
characteristic set of w. So a characteristic vector field is a
vector field X such that X, eR , for all peP. Moreover, if w is
of constant rank then R, is a subbundle of 7P, and if w is also
closed, then R,, is integrable as well.

Given a time-dependent Hamiltonian function
HeC= (RxXM), a contact form o, is defined by
wy =& + dH Adt where ®eA>(RX M) denotes the two-
form defined in R XM by the pullback & = m,*(w). The
dynamics is given by a field X,, that is the suspension to
R X M of a time-dependent field in M and is a characteristic
field for wy. In this way, these fields Xy represent, in this
odd-dimensional manifold, something similar to the Hamil-
tonian vector fields in a symplectic manifold. Nevertheless,
this usual approach presents some difficulties for giving a
correct interpretation of some fundamental concepts, as for
instance, the meaning of locally Hamiltonian time-depen-
dent vector fields or Poisson brackets of time-dependent
functions.

We are now going to introduce an alternative formalism
in which horizontal vector fields and semibasic forms will be
used to define a Poisson structure in NV and for a geometric
definition of canonoid and canonical transformations.

The product structure N = R X M and the natural chart
for R permits us to define a vector field 3 /Jt that gives a basis
for the C* (N)-module of vertical (w.r.t. 7,) vector fields.
Similarly, the one-form d¢ defines a 2n-dimensional distribu-
tion and the vector fields in such a distribution will be called
horizontal vector fields: they are annihilated by the one-form
dt. We also recall that a one-form aeA!(N) is said to be
semibasic (w.r.t. 7,) if the contraction of & with any vertical
field vanishes, ie., i(d/9t)a=0. We will denote
X (RX M) and A}, (R X M), respectively, as the sets

X (RXM) = {XeX(RXM)|{dt,X ) = 0}

(21

If {£'}, i = 1,...,2n, are local coordinates for the mani-
fold M, the coordinate expressions for horizontal fields and
semibasic forms in &V in these coordinates are

AL (RXM) = {aeA‘(RxM)

)
X—f,(f,§*‘)@ (2.1
and
a=a,(t,EHdE", (2.2)
respectively.

Given a one-form, aeA'(N), we will denote o™ as the
semibasic part of ¢, that is,
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@ —a— {i(i)a]dz. (2.3)
at
In particular, if FeC* (N), &° Fwill denote the semiba-
sic one-form defined by

d*™F = (dF)™ = dF — li(g;)dF ]dt. (2.4)
These properties can be extended to higher degree forms, so
any k-form neA* (N) may be written as the sum of a semiba-
sic k-form %*® and a nonsemibasic k-form, and this splitting
is unique. Also, @5 = (dn)*®.

Two important algebraic identities to be used later are

d°FAdt =dFAdt, (2.5a)
(X Md™F=i(X")dF, (2.5b)
for FeC={(N) and any horizontal vector field

X "eX"(RXM).

The form @ = m,*(w) is degenerated and its kernel is
made up by 7,-vertical vectors. The equation {(X)@® = a has
a solution for XeX(N) if an only if « is semibasic; for in-
stance, when « is the differential of the pullback through the
projection 7, of a function defined in M. Moreover, the solu-
tion is not unique but undetermined up to the addition of a
vertical field. Nevertheless, we can define via @ a one-to-one
linear map between the set of horizontal fields £ (R X M)
and that of semibasic one-forms A, (RXM). So, if a is a
semibasic one-form, the vector field X, is the horizontal one
such that i(X,)@& = a. In a similar way, for a field X in
X" (R X M), the correspond one-form a is determined by

ay=iX)o (2.6)
and then {(ay,d /dt) = 0. This map is a linear bijection.

Consequently, if F: RXM—R is a C~ -function, then
there is one horizontal vector field X -X¥ (R X M) uniquely
determined by the condition

i(Xp)® = d*°F. (2.7)

Now we can give an intrinsic definition of the Poisson
bracket in R X M as follows.

Definition: Let (M,w) be a symplectic manifold and
F,GeC* (R X M) be time-dependent functions. The Poisson
bracket of F and G is the function

{FG} = o(Xp.Xo), (2.8)
where X and X are the horizontal vector fields associated

with F and G, respectively.
Using the property (2.5b), we have

(X Xg) =i(X5)d*°F = i(X,;)dF,
so that we can express {F,G} in the alternative form
{F.G} = X5 (F) = — X.(G). (2.9)
The set C= (N) is so endowed with a Lie algebra struc-
ture. The map so defined is bilinear and skew-symmetric and
for the Jacobi identity we will obtain first the value of X p, .
If Fand G are arbitrary functions in N, then using the identi-
ty
i([Xp X )@ = Ly, {i(Xg)@} — i(Xg) Ly, &,

and the conditions defining X and X, we will obtain
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i([XpXs])0 = LXF{dG - <dG, %)dt ]

—i(Xy)d {dF _ <dF, i)dt ]
at
where we have also used that Ly & = d{i(X, )@}, since @ is
closed. Therefore

i([XrXg])0 = d(X:G)

_ [XF<dG, i) _x, <dF, i)]dz,
at ot

and taking into account that

J J fd
Xp<dG, 5) — X, <dF, 5) - z(g)d{w(xc,xp)},

we see that
i([Xr X))@ =d*{G,F},

and as the vector field [X;,X ] is horizontal, the preceding
relation shows that

[XrXs] =X6h- (2.10)

The Jacobi identity is a consequence of the fact that the two-
form & is closed. Thus d& (X, X4,X, ) = 0, and making use
of the property (2.10), this is equivalent to the Jacobi identi-
ty for F, G, and H.

Note that Eq. (2.10) means that the correspondence
assigning the horizontal vector field X,. to the function Fis
an antihomomorphism of Lie algebras.

Moreover, the Poisson bracket defined by (2.8) gives a
Poisson structure*® on the manifold N. In fact, the Leibniz
property,

{F,G,G,} = G {F,G,} + G,{F,G\},

follows from the definition {F,G} = — X, (G), because X,
is a vector field. The skew-symmetric two-times contravar-
iant tensor A defining the Poisson structure is defined by

A(dFdG) = {F,G} = 2(X(,X5) = — X((G). (2.11)

Its rank is 2» and the kernel is generated by dt. The
tensor A can be used for defining vector fields corresponding
to one-forms in N and the vector fields associated to exact
forms dF are the Hamiltonian vector fields X . The Casimir
functions are the ,-basic functions (pullback through the
projection 7, of functions defined by R), namely, arbitrary
functions of the time ¢. If {£' } with { = 1,...,2n, are arbitrary
local coordinates for M, then the local expression for the
Poisson bracket and the vector field X, respectively, is giv-
en by®

IF ;i G
T JE"

Ty il
XF_{ng}aé_iy

{F,G} = , (2.12)

(2.13)
where J* denotes the fundamental Poisson brackets
Jik — {gi,é«k}.

In particular, if {g',p,} are Darboux coordinates in M
for the symplectic form w, then the coordinate expression for
the Poisson bracket {F,G} is

(2.14)
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As a first application of the above definition, we will
deduce the geometrical characterization of the Poisson
bracket theorem,? according to which a time evolution of a
system is generated by some Hamiltonian if and only if for
every pair of dynamical variables R, S, the well-known fol-
lowing relation holds,
d dR das
_{R’S} = {—_ )S} + [R, —}9
dt dt dt

{F,G} = (2.15)

that in geometric terms reads

I'({R,S}) = {T'(R),S} + {R,T'(S)},

where I' is the vector field giving the dynamics.

It has recently been proved” that for time-independent
systems [that is, F'eX (M) ], this relation is equivalent to T
being locally Hamiltonian (that is, Lo = 0). The follow-
ing theorem presents the extension of this equivalence to the
more general case of time-dependent systems.

Theorem: Let (M,w) be a symplectic manifold and
TeX (R X M) be a vector field. Then the relation

F{FGhH ={L(F,G} + {FT (G} (2.16)

holds if and only if I" preserves the horizontal distribution
and L & annihilates any pair of horizontal fields.

Proof: The Lie derivative of the Poisson bracket {F,G} is
given by

Lr{F,G} = (Lré))(XF,XG) + (Z’( [F’XF]sXG)
+d(Xp, [T X5 ])s

where X, and X are the horizontal vector fields associated
to the semibasic differentials &*° F and d*° G.
For &([,Xp],Xg) we get

o([T\Xr].Xc)
= i(Xg)(Lrd*®F) — (L&) (Xp,Xg)

— i(Xg)dT (F) — {f(gt-)dF}{uXG)drm}
(L) (XX )
= {F'(F),6} — {f(%)dF]{s‘(XGmr(:)}
— (L) (XrXe),
where we have used that i( X )dt = 0 and

i(Xg)d ™ T(F) = i(X)dT(F).

A similar expression is obtained for & (X [I',X; ]), so, fin-
ally, L {F,G} turns out to be

LF{F,G} ={I'(F),G} + {FT(G)} — (Lr@) (Xp,Xg)

-[{(2pe

(5)er ficxo]
— il = dF }{i(X;) |dT (¢).
[@prheco
Therefore, if we assume that I” is such that {(dz,I"} only

depends on ¢ and L& annihilates any pair of horizontal
fields, then the relation (2.16) is true. Conversely, if this
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relation holds, necessarily (Lpdf)(Xz)=0 and
(Lr&) (Xz,Xg) = 0 for any pair of functions. O
Notice that the first of these two conditions,

Ker L, (dt) = X (RX M)

means that T preserves Ker(d?), or in an equivalent way,
that the horizontal distribution X¥(R X M) is invariant un-
der T, namely,

[TEM(RXM)CEF(RXM).

In relation to the second condition it seems that, for those
vector fields preserving X" (R X M), the vanishing of the re-
striction to that distribution of L& is the analog in R X M of
being locally Hamiltonian in a symplectic manifold. Remark
that this means that (L-&)® =0.

A general vector field in R X M is locally written in the
form

D gk 9 0
aq* Iy at

Then the first condition, that characterizes only the vertical
part of T, tells us that the coefficient ¢ must be a function of ¢
along, ¢ = ¢(¢), while the second one, that characterizes
only the horizontal part, concerns the coefficients a* and »*
by imposing the well-known relations da*/d¢’
= —3b*/ap,.

The above theorem asserts that vector fields T', for
which (dt,T') = c(t) #1, can be admissible for the descrip-
tion of time-dependent Hamiltonian dynamics. In this case,
their integral curves will be parametrized by a parameter s
that does not correspond with the time ¢, but dt /ds = c(t) on
the integral curves. The following proposition studies the
particular case of vector fields for which (dt,I') =1 and
gives a more direct characterization of the locally Hamilto-
nian behavior for them.

Proposition: Let T'eX (R X M) satisfy (dt,T') = 1, and
define w-eA?(R X M) by

or =é&+ (T)dAdr.
Then
(L[‘&))(Xh)Yh) = 07 VthYhexH(RXM)

is equivalent to Lrow = 0.
Proof: If L& annihilates any pair of horizontal fields,
then we can write

Lrd=38Adt, SeA'(RXM).

But as Ly @ = d[i(I")@], we have d[i(T")&] = § A dt, and
therefore

dor =d[& + (T)oAdt ]
=do + (Lro) \dt
=0.

Since (dt,I') = 1, the vector field T is characteristic of o,
and consequently Lrw = 0.
Conversely, let us assume that Lo = 0 holds. Then,

Lo+ [i(T)Lrd] Adt=0,

and therefore L @ annihilates any pair of horizontal vector
fields. O

I'=a
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lll. POISSON MAPS AND CANONICAL
TRANSFORMATIONS

The time-preserving Poisson transformations ®: N— N
of (N,A), i.e., such that ®*r = ¢, will play a relevant role in
the time-dependent Hamiltonian formalism in much the
same way as in the autonomous case. They are time-preserv-
ing diffeomorphisms ®: N— N such that ®*A = A, or in
other words, {F,G}o®d = {Fo®, Go®} for any pair of func-
tions F,GeC= (N). A characterization of such transforma-
tions in terms of the transformation properties of & is given
in the following theorem.

Theorem: A time preserving diffeomorphism ¢: N- N
is a Poisson map if and only if there exists one semibasic one-

form « such that
O* = + kAdt. (3.1)

Proof: The condition for : N - N tobe a Poisson map is
written using the definition (2.8) of the Poisson bracket as
follows:

q)* [&)(XF’XG ) ] - 5)(X12‘0¢9XGOQ) )’
or in a different, but equivalent, way,
O*[i(XG)dF | = i(Xgogp )d(FOD).

The left-hand side of this expression can also be rewrit-
ten in such a way that the preceding relation becomes

(@ L X5)d(Fo®) = i(Xgoq, )d(Fod),
and this shows that @ is a Poisson map if and only if
P L X, =Xgow, YGEC=(N). 3.2)

If ® is time-preserving, the image under @ of the definition
(2.7) of the horizontal field X is

VF,GeC *(N),

(D Xp)P*0 = d(Fod) — (D*(<dF, gt-»dt. 3.3)

Let us assume that there exists a semibasic one-form x
such that ®*® = & + x Adt. By contracting this relation
with the vector field d /9¢, we see that xk = — i(d /9t)P*@.
Then, using that ® ', X, is horizontal since & is time pre-
serving, (3.3) becomes

(P LX) =d(Fod) — {i(cp—‘.xp)x

(o 2

Now, taking into account that «k = — i(d /dt)P*a, the
term i(® ™', X, )k can be replaced on the right-hand side of
(3.4) by

(3.4)

. e f3 - f 0 L _
l(q) ltXF)!(E;)Q*w= — (¢*W)(Et—'¢ I*XF),
and therefore (3.4) becomes

(L Xp)d =d(Fod) — d>*(<dF, %))dt

_ (d F®, (i)>dt
ot

= d®(P*F).

Since & is time-preserving, the vector field ®~'. X, is
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horizontal, and in this way we see that ®~'. X, = Xpuq.
Therefore ® will be a Poisson map.

Conversely, let us assume that ® is time-preserving and
(3.2) is true for any function GeC> (N). Taking into ac-
count that

(P X))o =d P (P*G)
=d(d*G) — <d(<I>*G), %)dt
transforms under ® into
i(Xg)P™ "o =dG — <I>—'*<d(<1>*G), g>dz, (3.5)

together with /(X )@ = d*° G, we obtain that $*& — @ an-
nihilates any pair of horizontal vector fields X ,,X; and since
they give a local basis for X (), there will exist a one-form &
such that ®*& — @ can be written as P*@ — & = § A dt, and

then k = — ®*§ is such that P*o = & + kA dt. O
Note that this transformation law can be rewritten as
(P*0)® = .

Lemma: Let a be a semibasic one-form. Then, a A dt is
closed if and only if & is the semibasic part of a closed form.
Proof: Let
a=a,(¢"p..t)dgq' + b'(¢"p,.1)dp,,
the local expression of @ in Darboux coordinates for &.

Then, a is closed if and only if
da, da,  Jp’ Ib*  da;  Ip*
o¢" 93¢ dp I, I

and this means that there exists a function A such that

3 3

aj:ili.a bjza_Hy
dq’ ap;

from which we see that a locally coincides with &*° H. The
converse is obvious because if @ = B*° with 5 a closed one-
form, then a A dt = B A dt and therefore a A dt is closed. O

Let us remark that since w is closed, the semibasic one-
form « arising in (3.1) is such that d« Adt = 0, and accord-
ing to the previous lemma, this means that there will locally
exist a function Ky such that k = @K,

The characterization of time-preserving Poisson diffeo-
morphisms in terms of @ supports the definition of canonical
transformation, although some authors apply it only for the
case corresponding to « being an exact form. Actually, Eq.
(3.1) of the above theorem corresponds to the property (S)
of Ref. 2. Hereafter we will refer to such canonical transfor-
mations as Poisson maps. When we have a one-parameter
subgroup P of such canonical transformations, then there
will exist a family «; of semibasic one-forms such that
D *@) = & + kg Ndt and therefore if X is the infinitesimal
generator of &g, then L, & = § A dt, where & is the semibasic
one-form § = ((d /ds)ks | s- o )*®. The vector field X is hori-
zontal because the @ are time-preserving.

The form £ also satisfies that d A dt = O and therefore it
is possible to find, at least locally, a function K such that
L& = dK™ Adt. This property is equivalent to saying that
L é@ vanishes on every pair of horizontal vector fields. On
the other hand, the condition indicating that ®g is a sub-
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group of canonical transformation L, A = 0, reduces to that
of the Poisson bracket theorem because of

(LxA)(dF,dG)
= L, {F,G} — A{d(XF),dG} — A(dF,d(XG))
=L, {F,G} — {x(F),G} — {F.X(G)}.

A general vector field will be called locally Hamiltonian
with respect to the Poisson structure A if L, A = 0. Notice
that in such a case /(X)df must only be a function of ¢, be-
cause the preceding relation shows that {i(X)dt,F} =0,
VFeC* (R X M), and therefore i(X)dt can only depend on ¢.

Let I" be a vector field in R X M such that i(I')dr = 1,
a semibasic one-form, and define @, = @ + a Adt. Then
(D)o, =0ifand only if i(T)® =a and i(D)a = 0.

Proposition: Let a be a semibasic one-form in N. The
two-form a A dt is closed if and only if da annijhilates any
pair of horizontal fields.

Proof: If a A\ dt is closed, then da Adt = 0. This means
that de is of the form

da =nAdt, neAl, (RxXM),
and thus
(da)(X"Y" =0, VX" Y*X¥H(RXM).
Conversely, if
(da)(X"Y") =0, VX" Y'"eX*(RXM),

we can write da=nAdt and therefore daAdt
=d(aNdt) =0. O

According to this proposition, if T satisfies
(Lr&)(X"Y" =0, then dw, =0 and the pair
(RXM,w,) is a contact manifold,’ that is, the manifold is
odd-dimensional and @, is a presymplectic form of maximal
rank. Moreover, there will exist a closed one-form ¢, such
that @ = (£, )™. The one-form £, can be locally expressed
by the differential of a function H and therefore « is locally
written as @ = d*° H and o, as @y, . The vector field I" is then
a characteristic field of w, and the coordinate expression of
I'" in Darboux coordinates for @ is

r_OH 9 H I I

dp; dq¢' aqi ap; E

If ¢ is a time-preserving Poisson map, then using
b*H = @ + k Adt, we obtain for any (RXM,w, =wr) a
new contact structure (R X M,z ), with w; defined by

Wp = Wq,r

=&+ {®, Mo} Ndt
and satisfying ®*(w;) = w,. Conversely, any time-pre-
serving diffeomorphism ®: R XM —R XM which satisfies
O*(wge,r ) = wr for any vector field I" such that i(IM)dt =1
is a Poisson map.

We can reformulate this last relation in a way that al-
lows us to extend the above characterization to maps be-
tween different manifolds.

Let (M, ,w,) and (M,.w,) be symplectic manifolds,
, the product manifold

M, =RXM,XM,, w: M, -RXM,
the projections onto R XM,, i = a,b, and

M

a

J. F. Carifiena and M. F. Ranada 2262



QO =m*(@,) —m,*(d,),
where @, = m,*(w;). If VEX(RXM, XM,), we write §},
for the two-form Q,, = Q + i( V) Q A dt. Then the time-pre-
serving diffeomorphism ®: RXM, -RXM, is a Poisson
map if and only if iy, *(},,) = O for any vector field ¥ of the
form ¥=TX®, T, with FeX(RXM, ), i(')dt =1, G, is
the graph of ®, and iy, is the natural inclusion
ip: Go oRXM,XM,.

The two-form i, *(Q,) is closed and its action on
X(G, ) 1s given by
is*(Qy)(Z,,Z,)

=7, *[w, + (7. Vo, Ndt |(Z,,Z,)

—m* oy + (7, VYo, Adt Y(2,,2,).

As RXM, and G, are diffeomorphic, the fields
Z,,ZcX(G,) may be written as Z, = (X,®_X), and
Z,=(Y,®,1).So
is*(Qy)(2,,Z,)

={[o, +i(7,. Vo, Adt ]

— ®*w, + i(m,. Vo, Adt 1}, T),

and if Vis of the form ¥ =T X ®_T, i.e., the field Vis tan-
gent to G, we obtain

i * () (Z,,Z,) = {(wa)l" - q)*(a’b):b.r}(zvzz)-

Therefore the vanishing of i,*(Q,)
D*(wy)o,r = (@, )r-

An equivalent approach is to characterize such Poisson
maps by the condition [ i, *(Q2) ]** = 0. In any case, we can
use the corresponding relation to prove, the same as for sym-
plectic transformations, the existence of a generating func-
tion.

means

IV. CANONOID TRANSFORMATIONS

The study of canonoid transformations in the time-inde-
pendent case has recently been carried out from the geomet-
ric point of view.>'® We recall that a cononoid transforma-
tion® with respect to a Hamiltonian function H is a
diffeomorphism that preserves the form of Hamilton’s equa-
tions for this particular H. Therefore the aforementioned
property ®*(w, ) = o4, characterizing canonical transfor-
mations, does not hold.

We introduce next a geometric definition of canonoid
transformation with respect to a vector field satisfying the
conditions i(I")dt = 1, and

(Le@)(XAY*) =0, VXLY'EF(RXM),
or in an equivalent way L@ = 0. In the particular case of
I" being globally defined as ' = X,; + d /3t [ Xy is the hori-
zontal vector field associated to HeC™ (R X M)], then the
definition will reduce to the concept of canonoid transforma-
tion w.r.t. the Hamiltonian H.

Definition: Let (M,w) be a sympletic manifold and
T'eX (R X M) a vector field which satisfies i(T")dt = 1 and

(Lr@)(X"Y" =0, VX" Y*X"(RXM). (4.1)

Then, a diffeomorphism PeDiff(R X M) is called a canon-
oid transformation with respect to the field I if it preserves
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the time and the transformed field ®, F'eX(R X M) is such
that

(Lo, r@)(X"Y") =0, VX" Y'E(RXM).
If @ is canonoid with respect to I', then
(Lo, r®)(X"Y* =0, X"Y'eZ"(RXM),

and this means that the semibasic one-form SeA!(R X M),
defined by B = i(®, '), is such that the two-form wg de-
fined by wg =@ + BAdt is closed. Therefore the pair
(RXM,wz) turns out to be a contact manifold” with the
transformed field ®_T" generating the characteristic line
bundle of wg.

Locally, there is a function K such that the form £ is
given by

B=d>K,
and therefore wp; can be written as wg =wx with
ox = @ + dK Adt. In coordinates, if (¢',...,4", p,,..,Pn ) isa

set of Darboux coordinates in M for @, we have the following
expression for I'":

r_9H 9 OH3 3

o o
and therefore if ® is canonoid with respect to I, then the
transformed field ®_ I is given by

or-%9 K 0
3¢ dp, Ot

The first thing to be noticed is that the new local Hamil-
tonian function X is determined jointly by I and ¢ and that,
according to this definition, the associated two-form @,
that will be invariant along the integral curves of the field
®_ T, isnot given by ®*(wg ) = w, butits relation withw
will be, when obtained, something not so simple as a direct
puilback.

Moreover, the transformed field is characteristic of the
form wg. Since i(®, My = O~ "*[{(T)P*wy], we see
that the primitive field I' is simultaneously a characteristic
vector field for two different contact structures (R X M, )
and (RXM,P*w,). This property will be proved later to
have very interesting consequences.

V.CANONOID TRANSFORMATIONS FOR TWO-
DIMENSIONAL HAMILTONIAN DYNAMICAL SYSTEMS

Let ® be a time-preserving diffeomorphism &:
R X M- R X M. Then ® induces for every value of f a unique
diffeomorphism ®, on M such that @, (m) = m,oP(t,m).

If dim M = 2, a two-form on M that is not zero at any
point is a volume element and thus any two arbitrary nonde-
generate two-forms must be proportional. Therefore there
will exist a function f,eC* (M) associated to every P, such
that

D,*(w) = fo. (5.1)

This property will permit us to prove that, when dim M =2,
it is possible to express the two-form ®*(w,) in a form
closely related with w,, .

Since ®*(df) = dt, the pullback of wy is

D*(wg) = O* (@) + P*( P AdL. (5.2)
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Using (5.1), we obtain that ®*(®) is given by

P*(o) =fo+ o,
where the function fEC~(RXM) is defined by
f(t,m) = £, (m) and the two-form @' involves the dt depend-

ence. This means that @' can be written as v’ = § A dt, with
SeA' (R X M), and consequently it satisfies the equality

[

Concerning the second term arising in (5.2), using the
definition of 3, we get

O*(B) Adt = [i(T)DP* (&) ] Adt,

and therefore it turns out to be
O*( P Ndt=fi(D)w] Adt + [i(T)e'] ANdt.

So combining the two expressions, we obtain

D*(wy) = fo,. (5.3)

Locally, the form ' reads
o' =g (g,p)dgNdt + g,(g,p,t)dp \dt,

where (g,p) are local Darboux coordinates for @ in an open
U of M and the two functions ¢,€C” (RX U), i = 1,2 are
given by

aQ oP  dQ JP
'“9q o I g
and
_dgap 30 ap
'*—é; a o dp

respectively, where @ and P denote Q= ®*(g) and
P = ®*( p), as usual. In this case, o, is written as w,
HeC* (RX U),and Eq. (5.3) reduces to ®*(wx ) = fwy, a
relation that replaces, for time-dependent two-dimensional
dynamical systems, to the equality ®*(wx } = wy, obtained
in the case of the transformation ® being canonical.

The relevance of this function f is pointed out in the
following theorem.

Theorem: Let P<X (R X M) be a vector field that satis-
fies (4.1) and {(dt,T’) = 1. If w,€A*(R X M) is the contact
form associated to the field I', defined by
w, =&+ [{T)(w)] Adt, and PeDIff(R X M) is a time-
preserving diffeomorphism, then & is a canonoid transfor-
mation with respect to the field I' if and only if the function
feC* (RXM) defined by ®*(wy) = fo,, where w; de-
notes the contact form associated to the transformed field
®_ T, is constant along the integral curves of .

Proof: If ® is canonoid with respect to I' then we have
Lq,i'=r (wg) =0, and so

L(»*r (wg) = P*[ Ly (P*wp) |
=®*[Lr(fo,)] =0
Now, we can write
Lo(fo,)=T(fo, +f(Lra,),
thus since Lrw, = 0, we obtain I'( /) = 0.
Conversely, assume I'( /) = 0. Then,
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Mo, =Lr(fo,) =Ly [(D*(wg)] =0,
and the theorem is proved. g

In a similar way as was obtained for the time-indepen-
dent case,’ the function f; when expressed in local coordi-
nates, turns out to be the Poisson bracket {Q,P}. This
theorem corresponds to the geometrical approach of the
time-dependent case of a result by Leubner and Marte.® It
generalizes the canonical case for which f takes the value
f=1, and introduces a fundamental connection between
canonoid transformations and the existence of constants of
the motion.

VI. 2n-DIMENSIONAL HAMILTONIAN DYNAMICAL
SYSTEMS

In this section we shall study the higher dimensional
case, dim M = 2n > 2. In this case, the two-form w, can be
used for obtaining a volume element w/ " A dt.

We then have

Lo(dt)=d(L 1) =0
and
Lr(0l™) =nol """ ANLrw, =0,

and so w’ " Adt is an invariant volume element for . Ob-
serve that it follows in a similar way that w, " Adt is a vol-
ume element invariant under the transformed field ®.T.
Consequently we obtain that the (22 + 1)-form
(P*wy) " Adt satisfies

L [(®*wg)""Adt] =0.
Next we consider the family of two-forms
w, €A’ (RXM), AeR

defined by w, = 0w, — A(®P*w;), and we denote by Q; the
volume element generated by w,, Q; = w, " Adk.
Proposition: €1, is an invariant volume element for T".
Proof: The Lie derivative of 2, with respect to the field
I" takes the form

LrQ; =[no) " U ALrw; ) Adt + 0" AL (d).
Then, since
Liw; =Lrow, — AL (P*wz) =0,

it follows that L), = 0. O

From the existence of such an invariant volume ele-
ment, one is able to deduce some important properties for
the transformation ®.

Two different volume forms must be proportional, so
there is a A-dependent function f;€C= (RX M) such that
0, =f, (w2 " Adt). This function f; is a polynomial of de-
gree n in the A parameter, since

Q, = 2(;’)( — DA @l ™ A (D*w, Y] Adt
j=1

= Eaj/lfw;‘"/\dz.
i=1
Then, according to the above proposition, we see that

Le [ filwg"Adt ] =T(f;) (07" AdD)
+fiLe (27" Adt) =0,
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and this shows that the function f; satisfies L (f;) =0.
Using the form of f; just obtained, this last equation can also
be written in the form

S AiLca, =0,

j=1

and as a consequence of this, we wee that every one of these
coefficients must be a constant of the motion Lya; =0,
Vj=1,..,n.

In order to present which ones are the coordinate ex-
pressions of these constants, we consider now the two sim-
plest cases n = 1 and n = 2 and assume that o = dH.

(i) If n = 1, then

Q, = [0y — A(P*o) ] Adt
and we obtain a, = {P,Q}.
(ii) If n = 2, then
O, = [oy —ﬂ.(q)*a)x)]z/\dt
=y Ndt — 2oy N (P*og) Adt
F A D*0 ) Adt,

and we obtain

a; = {Ple} + {Pz’Qz},
a, = [91,¢:1[p,p2] + [91.2:11020,]1 + (9102119201 ],

where [ , ] denotes the Lagrange brackets.

We have proved that to every time-dependent canonoid
transformation, there will be # associated constants of the
motion. The first of them, the coefficient a,, generalizes the
function fobtained for n = 1 in Sec. V, and will always corre-
spond to the sum of {P;,Q, }. The remaining constants of the
motion will be different combinations of products of La-
grange brackets. These # constants are of non-Noetherian
character and they can be nonindependent.

VIl. GENERATING FUNCTIONS FOR CANONOID
TRANSFORMATIONS

In the case of @ being an exact symplectic form,
w= —dO, and we have wy= —dO, with
6,=06-Hdt, 6=m*0. In a similar way,
wx = —dO,, with©, = O — K dt. Now, using these one-
forms, the property L (w,; — $*wg ) = 0 becomes

d[Lr (6, —P*Ok)] =0. (7.1
That is, L (O — ®*O,) being closed is equivalent to ¢
being canonoid with respect to I'. This means the local exis-
tence of a function W such that

L. (O —P*Oy) =dW.
Using local coordinates, we have

d°H JH d
- ——+ P, —{HQ"
agap. " ag T T ag O
k94,
aQ‘ ——’=3—E, (7.3a)
a¢ at  dg;

(7.2)

+ {HyPk}
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dp;p« dp;
k OB,
p; ot dp;
d*H d aQ*
P, —{H,Q* HP
atapkp"+ * at{ Q)+ AP} t
— i(H — ®*K) — {H,&*K} — ac
at at
aw
=—, 7.3
at (7.3¢)
where
k k
4, =P, an’ B =P, aQ ,
aq’ ap;
and
k
c=p 9"
at

Given a canonoid diffeomorphism &, then the associat-
ed function W(q,p,t) may be considered as its generating
function. Same as for canonical transformations, this gener-
ating function can be determined up to an additive arbitrary
function f(¢) of the time ¢ alone. Reversing the procedure,
given a function W, then every solution Q= Q(g,p,?),
P = P(q,p,t) of the above equations represents a canonoid
transformation for the Hamiltonian H(g,p,t).

Asafinal comment concerning these equations, suppose
that when studying the transformation determined by a cer-
tain function W(g,p,t), we see that in that particular case
there is a function Fsuch that W can be expressed as the Lie
derivative W = L F. Then we obtain that the solutions of
(7.3) will represent a transformation that turns out to be not
only canonoid for H, but also of canonical in general. More-
over, one can prove that if we write in Egs. (7.3)
W ={F,H} + (JF /3t), then we obtain

JF JF

S =p -4, —= -8B,
dq’ ap;

ﬁ= —(H—-9*K) — C,
at

recovering in this way the equations that characterize the
canonicity of a transformation.

Vill. EXAMPLES

The resolution of Egs. (7.3) can be a formidable task in
the general case. If we restrict ourselves to the so-called
“fouling” transformations'"'? (that is to say, time-preserv-
ing diffeomorphisms inducing the identity for the Darboux
coordinates g* ) (see Ref. 13) for a time-independent Hamil-
tonian H = H(q,p), then the new variables are Q* = g*,
P, = P, (g,p,t), and the above equations become

d°H oH 04, w
. (pk—Pk)———.+{H,P,-}——J=a—_, (8.12)
3q’dp;. aq’ dr  dq’
d°H oW
(pe —P) =—, (8.1b)
;P dp;
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LK) 4 {orkpy =27
at at
As an example, we will obtain the set of all those fouling
transformations that are canonoid for the Hamiltonian
H = p*/2 of the free particle.

Equations (8.1a), (8.1b) are now

(8.1¢)

aw P P

T p= X 8.2a
dg P dg ot ( )
W P (8.2b)
dp

This system can be integrated and solved for P as a function
P = P(q,p,t) if and only if W satisfies the following partial
differential equation,

W _IW_ W _,

—_— (8.3)
dgdp dq  dpdt
The general solution of this equation is
X df(q,t
W= ﬂjh(p,q -pt)dp]dp p et | b
dq at
(8.4)

where A( p,g — pt) and f(q,t) are arbitrary differentiable
functions of their arguments p and ¢ — pt, and ¢ and ¢, re-
spectively.

With this expression for W, we find that the new mo-
mentum P is given by

P=p—fh(p,q—pt)dp—%;q’—t)

and that, therefore, the Poisson bracket {P,0} becomes
{Q.P} =1—h(pg—pD. (8.5)

That is, {Q,P} does not take the value {Q,P} = 1 obtained
for the canonical case, but only disagrees with it by a func-
tion & depending on the three independent variables ¢, p, and
t by means of u, = p and u, = g — pt. Let us remark that
these two functions are precisely the two independent con-
stants of the motion associated to the Hamiltonian H = p*/
2. Moreover, in the case of h( p,g — pt) =0, we obtain
Q = q, P=p — df(q,t)/3q, and the function W reduces to

dfig.t) | dfig.?)
W= ,
P t T a
that can be written as W = L f with

d a

F'=p 3 + %

Consequently, according to the comments of the previous
section, we see that this f(¢,#) which appears as an arbitrary
function in the general solution (8.4), in the particular case
of considering canonical transformations, turns out to be the
generating function (in the canonical sense).

In short, for every function W of the form given by Eq.
(8.4), we obtain a fouling transformation that is canonoid
for H = p?/2 and that has an associated Poisson bracket
{Q,P} that is a function depending on the two independent
constants of the motion of the free particle. Conversely, from
Eqgs. (8.1a), (8.1b) we see that every canonoid transforma-
tion Q = g, P = P(q,p,t) uniquely determines a function W
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of the form (8.4) up-to an additive f(¢), and from Eq. (8.1c)
we see that this ambiguity is reflected in the new Hamilto-
nian K that will also be determined up to the above f{?).

As a further illustration, let us consider the family of
solutions of the form

W=flgp+ (1/t)h(g —pt) + &,(p) +&:(1),  (8.6)
where f(q), h(q — pt), g,( p), and g,(2) are four arbitrary
differentiable functions. We remark that when h =g, =0,
then W takes the form W = f(q)p + g,( p) and in this form,
we recover the general form of the generating function for
the time-independent canonoid transformations.® The new
momentum P is given by

P=p—flg) —g/'(p) + (1/D)h’ (g — pt),
and therefore the Poisson bracket {Q,P} is
{QPr=1—g"(p)—h"(g—p), (8.7)

depending of the two constants of the motion in an additive
way. Moreover, Eq. (8.7) shows that if g, and 4 are lineal
functions, then {Q,P} = 1 and the transformation is canoni-
cal. If g, and h are quadratic, then {Q,P} = constant and the
transformation corresponds to the so-called extended ca-
nonical transformations (canonical transformation plus a
scale change).

We conclude this section with a final example. Let us
consider now the transformation associated to the following
function,

W= (p*/2) + (1/6t2)(q — p1)>.

The equations giving the transformation are
Q=gq, P=(1/20)(g—p1)°.

The new Hamiltonian K = K(Q,P,t) turns out to be
K= (1/0[Q@—-32tP)'*|P,

and the new equations to be solved are

do 1 \2a AP P

L __g-@pm, Lo L.

dt t [Q ( ) ] dt t
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The skew tensor field and twistor descriptions of the momentum and angular momentum of a
classical relativistic particle are adapted to describe a uniformly accelerated particle. An
extension, natural within the twistor framework, of the usual duality between Poincaré
momenta and symmetries yields osculating planes together with acceleration scalars as
momenta of uniformly accelerated particles. The adapted twistor description leads to the
construction of a local twistor attached to an arbitrary world line in a general space-time and a
conformally invariant prescription for uniform acceleration.

I. INTRODUCTION

In special relativistic kinematics the angular momen-
tum of a single particle about an origin is the bivector ob-
tained as the product of position vector with four-momen-
tum. Summing over several particles and allowing the
space-time origin to vary yields a skew tensor field which
completely encodes the kinematical structure of a system of
particles, including the total four-momentum, the intrinsic
angular momentum, and (in the case of nonzero mass) the
center-of-mass line. Fields arising this way may be charac-
terized by their particular affine dependence on position and
also as certain types of twistors."? In this paper it is observed
that the description of a uniformly accelerated particle may
be similarly encoded into a skew tensor field, now with a
quadratic position dependence and again with a natural
twistor counterpart.

In Sec. II the kinematical structure of systems of parti-
cles in Minkowski space is reviewed and a skew tensor field
that completely characterizes a uniformly accelerated parti-
cle is presented. No mention of twistors is made in Sec. II;
readers unfamiliar with them may read this section profit-
ably. In Sec. III the connection between Minkowski space
symmetries, kinematics, and twistors is recalled and an ex-
tension of the usual duality between momenta and symme-
tries is obtained. In Sec. IV we find twistor counterparts of
the skew tensor fields representing uniformly accelerated
particles and characterize the resulting twistors. In the ex-
tended duality, the new momentum (or set of conserved
quantities) arising in the case of a uniformly accelerated par-
ticle is seen to be essentially the osculating plane of the parti-
cle together with its acceleration scalar. The concluding dis-
cussion includes a construction, based on the twistors for
uniform acceleration, of a local twistor on an arbitrary world
line in a general space-time and a conformally invariant pre-
scription for the notion of uniform acceleration. Also, the
relations these twistors have with Liénard—Wiechert fields
and the linearized curvature of the C-metric are described.

Throughout, Minkowski space M is viewed as an ab-
stract affine space of points acted upon by a four-dimension-
al real vector space of displacements. The action of a dis-
placement v* on a point x is indicated by x+—x-40°.
Otherwise, the notation for Minkowski space objects, in-
cluding spinors, agrees with that of Penrose and Rindler.? In
particular, g,, =€,5€,.5- denotes the Lorentzian metric of
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signature ( + — — — ), the alternating tensor e,,,, satis-
fies e,p,€”? = — 24, and the dual *M,, of a skew tensor
M is*M “ = 1¢°® M *. For relevant material on twistors

the reader is referred to Refs. 1 and 2, whose notation is used
herein.

Il. SKEW TENSOR FIELDS FOR UNIFORM
ACCELERATION

In this section we first review the tensor field representa-
tion of “Poincaré kinematics”—the momentum and angular
momentum of systems of particles in Minkowski space.
Then uniformly accelerated particles are represented in a
way that generalizes this (in the case in which the mass is
nonzero and there is no intrinsic angular momentum).

The kinematical structure of a system of particles in M is
given by a skew tensor field M “® whose position dependence
is

M®(x) = M“(0) — 2x"p®], (n

where p¢ is the total four-momentum and x“ is the position
vector of the point x with respect to a chosen origin o. If the
four-momentum is timelike, then

Mabzz(pCPC)—l(R Iapb]_S[apb])’ (2)

where R°=p,M* and S°=p,*M*. The vector
(p.r") " 'R °(x) is the displacement orthogonal to p® from x
to the world line of the relativistic center of mass and S° is
the Pauli-Lubanski spin vector. If k¢ is a Killing vector
field, then the quantity

%Mﬂbvakb +paka (3)

is constant. As k “ ranges over the standard generators in an
observer’s coordinate system, the values obtained are the
energy, the components of three-momentum and three-an-
gular momentum, and the coordinates of the center of mass
of the system of particles. In a Lagrangian approach, M ** is
in fact defined as an object dual to the Killing vector fields,
with the above pairing.*

Now consider a uniformly accelerated particlein M, i.e.,
a pair (m,y), where m is a positive constant (the mass) and
y'R—M is a path with unit future timelike tangent ¥ and
nonzero acceleration vector 3 such that the “acceleration
bivector”
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C: = 2myley”) (4)
is constant. Note that the positive scalar acceleration a given
by @> = — ¥.%° may be written in terms of » and the accel-

eration bivector. Under these circumstances
¥(ty +t) = o+a~'[ (sinh ar)y*(1,)
+ (coshat)a™'% (8,1,

where 0 = ¥+ [ — a=%/(1,) ] with 7,: = 7(%,). The world
line of the particle forms one branch of a hyperbola having
the center o (to be employed as the origin) and lying in the
timelike hyperboloid x,x° = — a~2, The other branch will
be called the “opposite world line.” The path s —y(ms) is an
integral curve of the Killing vector field

PA(x) = my°(1,) + C,%(x — y5)? = C, °x". (5)
The above formulas hold for an arbitrarily chosen point ¥,
on the world line.

The promised field that completely determines a uni-
formly accelerated particle (m,y) and that generalizes (1)
in the case of a single material particle (without spin) is
given, in the above notation, by

M(x) = —2(x — )" (%)

+3C 0 (x — 7o) (X — 10)°

= — 2PN (x) +(x.x"—a=?)C. (6)
The assertions among the following remarks may be proved
directly with the above formulas; the results of the following
sections may be helpful. (i) The first expression for M “® is
independent of the choice of ¥, on the world line. In fact, we
may choose 7, on the opposite world line. Thus M * vanish-
es on both branches of the hyperbola; these are the only loci
where it vanishes. (ii) We have again, as in Eq. (1),
pP=iV .M b, (iii) If p°(x) is future timelike, then the field
R°®=p,M at the point x is p, (x)p°(x) times the projec-
tion orthogonal to p®(x) of the displacement from x to the
unique world line point on the past light cone of x. Thus
(p.p°) ~! R “at x may be interpreted as the apparent position
of the particle with respect to the observer at x determined by
p%(x). The field p® becomes null on two null hyperplanes
which are approached asymptotically by the hyperbola and
it vanishes on their intersection—a spacelike two-plane con-
taining the point 0 and orthogonal to the osculating plane
(determined by 0 and C “®) of the hyperbola; p® is past time-
like on the opposite world line. (iv) The field p, *M “°, corre-
sponding to intrinsic spin in the unaccelerated case, vanishes
identically. Where p_p° is nonzero, Eq. (2) with §°=0
holds. (v) We will see in Sec. III that there is a duality in-
volving twistors which naturally extends the duality pairing
(3). For a uniformly accelerated particle, the new conserved
quantities that arise determine the locus of the osculating
plane. (vi) At this point, it is clear that the particle (m,y)
may be completely recovered from M “°. (The correct world
line is the one on which p“ is future timelike.) (vii) Finally,
we remark that the Liénard—Wiechert field F,, of charge m
on an arbitrary world line y, when evaluated at a point
x=y(#)+r° (with/°null and /,7* = 1) on the future light
cone of ¥(1),is F,, (x) = —r M, (x).
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lil. TWO-TWISTORS

The twistor decription of Poincaré kinematics, i.e., of
fields of the form (1), is well known.'? In Sec. IV we will see
that there is a related twistor description of uniformly accel-
erated particles, i.e., of fields of the form (6). In this section
some relevant facts about general symmetric two-index twis-
tors, hereafter called two-twistors, are presented. In the spir-
it of Noether’s theorem concerning conserved quantities, or
momenta, associated with symmetries, we start with the
two-twistors most closely associated with symmetries and
then pass to the twistors dual to these, some of which de-
scribe Poincaré kinematics and some of which describe uni-
formly accelerated particles.

A two-twistor .#** corresponds to a symmetric spinor
field .#“® on Minkowski space satisfying the two-index twis-
tor equation V ;. (4. ¥#© = 0. There is a corresponding skew
real tensor field

S = S FAB B @)

satisfying a corresponding equation, the “tensor two-twistor
equation’”:

V(“Sb)c_v(“Sc)b+g"[deSC]d=0. (8)

The expression on the lhs of (8) is simply } times the projec-
tion of V°S * onto a certain Lorentz-irreducible subspace of
the space of tensors # > having the symmetry ¢ > = ¢ (%),
Looking at the remaining irreducible parts leads to the
equivalent equation

VcSab = - 2gc[7b] + ch[ak b]’
where
F=1V,8, ko= |V, *5, )

If S “is a solution, then the fields /% and k “are Killing vector
fields related by

lab = Va kb = - %eab Cdv(‘jd .

The space of solutions to Eq. (8) is a 20-dimensional real
vector space which gets mapped onto the ten-dimensional
space of Killing vector fields via S “4—k . In fact, the space
of solutions is isomorphic to the space of (contravariant)
two-twistors via the correspondence in (7)—and isomor-
phic to the space of dual two-twistors via (10).%

If 7 5 is a dual two-twistor there is again a correspond-
ing spinor field .«#*® and a skew real tensor field 4 ¢, To
eventually match up with usual momentum and angular mo-
mentum quantities, consider the field

M®: = —1*4° = (i/2) (L PP — TPEy;  (10)

define vector fields p° and ¢” in terms of M %, exactly asj° and
k °, respectively, are defined in terms of .§*® in (9) and set
r: =V, p,. The real duality pairing between the two-twis-
tors &, and . then becomes

Re(o 5 ) =IM L, + p,k° — qj° + Lr,,*S . (11)

This will be demonstrated presently. The salient fact about
formula (11) is that the combination of fields on the rhs is
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constant. With an appropriate interpretation of the fields it is
a “conserved quantity.”

Equation (11) is obtained as follows.® Recall that the
spinor parts associated with a symmetric twistor &/ 5 con-
sist of the spinor field ../ #"—the “primary part”—and cer-
tain other spinor fields—the “projection parts”—derived
from the twistor in an essentially algebraic way, but which
may be obtained from the primary part by differentiation.
This association is indicated by

"Q{AB MAB,
Maﬂ" &/A'B JdAE ’

where it turns out,

MAB' = - (i/3)vAA'-MA'B’,

A gp= — %VAA'VBB'-MA'B';
and &% 5 = o »*". (When the matrix elsments are evaluat-
ed at a particular point yeM the symbol ~ is used in place of
~.) The projection spinor parts . 5. and % .. of a two-

twistor ' are obtained by conjugating the above identities
and replacing .7 with .. In terms of spinor parts we have

AL g S = AL o + 2 B gt A 5 TP

Performing spinor-to-tensor translations of the spinor parts
(e.g, A FAB=*M" LM o* =p°—iq°, and
o 15€4p = Fap + i*r,,) and taking the real part of the
above expansion leads to formula (11). The imaginary part
yields an expression which, for a fixed </ ,5, can be made
equal to the rhs of Eq. (11) by an appropriate choice of %%,

IV. TWO-TWISTORS FOR UNIFORM ACCELERATION

In this section we first comment on the twistor descrip-
tion of Poincaré kinematics and then show how uniformly
accelerated particles, i.e., fields of the form (6), can also be
described by certain two-twistors. In the remainder of the
paper every simple skew twistor (X, or X °f, say) repre-
senting a point in M is assumed to be normalized with re-
spect to the appropriate inifinity twistor 1% or I, =_I_aﬁ
(ie., X5l P =X 5 =2).

A skew field M °® has the position dependence (1) (with
p° constant) if and only if V“"M ®¢ = 0, which implies that
*M % gatisfies the tensor two-twistor equation (8). The
structure is thus represented by a dual two-twistor & g—
subject to a restriction involving the infinity twistor; namely,

Pe=I"ol g = A,

(This guarantees that the primary part P“? of the twistor

2 is real and constant. The field p° that we have associated
with a dual two-twistor [after Eq. (10)] is always the real
part of this primary part. Further conditions are required for
the primary part to be future pointing and timelike.} A few
remarks about this well-known representation are appropri-
ate here. First, the “kinematic twistor” 7,5 is given expli-
citly in terms of the four-momentum P %, the Pauli-Lubanski
spin vector S, and an arbitrary point o on the world line of
the relativistic center of mass by
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o oy =20, P%, + 20,55 P ( o P

af — c(at B) + xAVal g~ P.; zsﬁ'PAB')’ (12)
where O, represents the point 0 and P, P“Sj is the unique
trace-free twistor whose primary part is the Pauli~Lubanski
spin vector. Next, a kinematic twistor with nonzero intrinsic
spin may be obtained from a kinematic twistor with no
spin—a ‘“‘monopole two-twistor”—by “translating into the
complex” " by — iS® This is achieved twistorially by apply-
ing the transformation induced by the special linear trans-
formation exp (S5) = 83 + S3 to the monopole twistor giv-
en by the first summand after the equality in (12). Finally,
the spin vector may be extracted from the two-twistor by
considering the trace-free part (or the primary part) of

APl g = P.P(2S; — 155). (13)
(The inner product P, P may be expressed twistorially if
desired.)

Likewise, the dual of the skew field (6) that determines
a uniformly accelerated particle satisfies the tensor two-twis-
tor equation (8). Hence this field also arises from some two-
twistor via (10). In the following we will exhibit the two-
twistor explicitly in the manner of (12}, obtain it from a
monopole twistor in the manner that (12) is obtained—by
applying an appropriate transformation, discuss the duality
pairing (11) for this case, and characterize the two—twistors
that represent uniformly accelerated particles.

The two-twistor will be exhibited in terms of invariant
parameters of the uniformly accelerated particle, namely,
the center o of the hyperbola of the world line—represented
by O, the constant bivector C* = 2my'%*), and the sca-
lar acceleration a. First note that C *® may itself be represent-
ed by a two-twistor 4 * whose only nonvanishing spinor
part is the constant spinor % ., = myc.,¥s . In fact, if '3
and I'j are the trace-free twistors whose primary parts are
the constant vectors y**'(#,) and ¥4 (1,), respectively, then
%P = mI'*T4 X, where X ** represents an arbitrary point
in M. The two-twistor yielding the field (6) is then

A oy = — 2UE 0, 0,5 — i072F 5. (14)

Again, the real part of the primary part of the twistor
Pg =1%o/, (which in the present case is equal to
—2i%*%0,,) is the field p° given in Eq. (5). [The imagi-
nary part is the field — ¢° defined after (10).] The two-
twistor’s relation with the kinematic two-twistor (12) 1s bet-
ter seen when it is expressed in terms of the twistor P and an
arbitrary point y = y(¢) on the world line—represented by
Y%A, It turns out that

‘Maﬁ = 2Yx(an) - 21‘%‘(/1}’,«, Y,{ﬁ
y ( —2iyey* 'rf')
i3 0/
This two-twistor was first obtained by *“‘accelerating”
the monopole two-twistor 2m0, ., T'%,, where T3 is such
that its primary part is a constant unit future timelike vector
[to be identified with ¥(#,)], that is, by applying to it the
transformation induced by a special unitary transformation
G of twistor space which yields a conformal transformation

(15)
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of M mapping the world line of the monopole to the world
line of the uniformly accelerated particle. An appropriate
such G is given by

2 = exp(2i0“T70,, )exp(% ia_zfg)

o ( 53 %ia”zy“'(to))
T\ =2y, (1) 85 )
where I" was introduced in the previous paragraph. Acting
on M, this yields the composition of the translation

x-x 41”2 (1)
with the special conformal transformation
x> 0 [ 14 29, (29)x" — aPx, x* ] 7' [x° + x,x(8) |-
The point 0 maps to ¥(#,) and is the center of the resulting
hyperbola. The transformation actually maps the monopole
world line onto both branches of the hyperbola because the
original world line, and hence the new one, is topologically a
circle in the compactified Minkowski space .#, on which G
acts. (Each of these circles is in fact the intersection with .#
of the rwo-sphere in complexified compactified Minkowski
space on which the primary part of the respective two-twis-
tor vanishes.®) The transformation is illustrated in Fig. 1
using a standard Penrose diagram of .#. With this perspec-
tive it is easy to see that the uniform acceleration field (6)
vanishes only on the hyperbola, as claimed in the remarks
after (6). The calculation of the action of G on the monopole
two-twistor is somewhat long; it results in Eq. (14).

If #%f is a symmetric twistor, then

Re (. o5 P ) = my(t) .k (7o) + 3C,, *S .
If %I, =0, then S * is constant and we obtain only the
second term. Such .#"*# may thus be construed as the “sym-
metries” dual to the “momenta” which are essentially the
osculating planes (and acceleration scalar) of uniformly ac-
celerated particles.

Let us characterize the two-twistors which represent
uniformly accelerated particles.” In what follows €, 5 is
the four-form on twistor space whose twistor conjugate

I

FIG. 1. “Acceleration” of a monopole world line in a Penrose diagram.
Points with the same labels are identified.
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Q7 = Q7 satisfies Q*°7°Q),5, 5 = 24. The determinant
of a two-twistor .o 4 is given by

O el gy Ll 5, = (det &) Vs (16)

Theorem: Let &/ 5 be a symmetric twistor satisfying the
following conditions: (i) A% = det &/ «p is real and positive,
(i) o ™ = — A8, and (iil) o 5 1% >0.
Then o7 5 represents a uniformly accelerated particle, i.e., it
is of the form (14).

Proof: For convenience we rewrite Eq. (14) as

A g = L0,0,5 —1a 2L 5. (17

We begin by simply identifying the quantities involved in
uniform acceleration in terms of 2/ ,,. The twistor .¥**
[which is — 2/C*#in (14) and which determines the accel-
eration bivector (4)] is given by

L = of TP,
the scalar m?/2 is identified with A, the scalar 2(ma)? is
identified with the positive constant in condition (iii)
[ whose reality, we will see, is a consequence of (ii) ], and the
center of the resulting hyperbola is the point o represented by
the simple skew twistor

O = (ma) 2 ol g I (18)

Next we show that these twistors and scalars have the
required properties. First note that (ii) implies

A e 53 QN = A s (19)

as can be seen by contracting each side of identity (16) with
/77 27°%. This in turn implies that the scalar in (iii) is real
and the twistor .« .. 5, I ** represents a point in real com-
pactified Minkowski space. The nonvanishing of the scalar in
(iii} implies that this real point is in affine Minkowski space.
The fact that the scalar is real and positive is necessary to
obtain a bivector appropriate for a timelike osculating plane,
as follows. In terms of the spinor parts of &/ 4, the scalar in
(iii) is .« 4 5.2/ *%. In the particular case considered in (14),
this scalar was

- 4%/;3%“3 = = abcab = z(ma)z’

where € ,; = myc.,75 . Now the condition that the scalar
€ 45 € *? associated with a symmetric spinor % ,; is real
and negative is necessary and sufficient for the associated
skew tensor

Cop = C 4p€ap + C 45 €4p

to be “purely electric,” i.e., of the form C4% = U“V %) for
some timelike U * and spacelike ¥ * (orthogonal to U*).'°
Thus condition (iii) is equivalent to the condition that the
projection part & ,5 = — 2% 5 yield a bivector of the re-
quired type.

Finally, we show that our two-twistor may be written as
claimed in Eq. (17). We already know that the normalized
contravariant twistor representing the point o is simply the
twistor conjugate of (18). Now we observe that the projec-
tion onto the two-dimensional subspace of twistor space de-
termined by /_;, parallel to the two-dimensional subspace
determined by O %, is given by J § = 1°*Op, and the com-
plementary projection is given by J;* = O “ I, . Thus we
have
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J{aﬂzdal‘lg-i—dal"é"

Now by using our expressions for the projections (and in
turn for O,; and its conjugate), we find that the two sum-
mands in this last identity are the two summands in (17), in
the same order. (The first summand is unchanged under
contraction with J¢ since its contraction with J.* vani-
shes.) QE.D.

Here is a further remark on condition (iii) in the
theorem. Assume (i) and (ii) hold. If the scalar in (iii)
vanishes, the twistor is not necessarily a monopole two-twis-
tor (discussed at the beginning of this section), as one might
expect. In fact, to obtain a monopole twistor, it is necessary
and sufficient for o, .« 5, I** to be proportional to I,,5 [cf.
Eq. (18)]. The situation is made clear by observing that for
any nonsingular two-twistor 7,5, the combination on the
Ihs of Eq. (19) maps simple skew twistors into simple skew
twistors and hence induces a transformation of complexified
compactified Minkowski space. Equation (19) implies that
real points are mapped to real points and hence, in particu-
lar, that the point at infinity represented by the infinity twis-
tor is mapped to a real point. If this real point is in real affine
Minkowski space, we have a two-twistor for uniform accel-
eration; if this point is the point at infinity itself, we have a
monopole two-twistor. A third possibility—for which the
scalar in condition (iii) is again zero—is that this real point
is on the null cone at infinity; we do not know a simple inter-
pretation for such two-twistors.

V. DISCUSSION

There are several related contexts in which twistors for
uniform acceleration appear. One, already mentioned, is
that of Liénard—Wiechert fields of charged particles. In the
special case of a uniformly accelerated charged particle, the
Liénard—Wiechert ficld may be obtained directly from (the
inverse of) the appropriate two-twistor by means of a twistor
contour integral.'?

Another context is that of linear gravity. Weak-field
curvatures (i.e., tensors on Minkowski space having Rie-
mann curvature tensor symmetries and satisfying the linear-
ized Bianchi identity) can also be obtained from two-twis-
tors via certain contour integrals. From a kinematic
two-twistor (12) one obtains a weak—field curvature corre-
sponding to one of the Kerr family of solutions; from a two-
twistor for uniform acceleration one obtains a weak-field
curvature corresponding to the C-metric. This weak-field
curvature has been studied by Robinson and Robinson."!
Our construction of a twistor for uniform acceleration by
*““accelerating” a monopole two-twistor reflects the fact ob-
served in Ref. 11 that this weak-field curvature is a confor-
mal transformation of the linearized curvature of the
Schwarzschild solution.

Dual two-twistors also appear as the “charges” result-
ing from the 20 linear gravity intergals of Penrose and
Rindler’ augmenting the usual ten two-surface integrals
arising from total four-momentum and angular momen-
tum.'? We obtain an intepretation for six of the added and
somewhat curious “ten vanishing integrals” in Ref. 2 by ob-
serving that if the weak-field curvature of the C-metric is
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used in the 20 integrals (with the two-surface linking one of
the singular lines), then the resulting two twistor is a twistor
for uniform acceleration. Thus six of the ten integrals that
vanish under the conditions considered by Penrose and
Rindler are the six independent conserved quantities arising
from the parameters for uniform acceleration. (These six
integrals were also constructed by Robinson and Robin-
son.'!)

Twistors for uniform acceleration may have signifi-
cance in general relativity as well. A subtle modification of
the procedure for obtaining weak-field gravitational charges
leads to Penrose’s quasilocal mass construction in general
relativity.>'* Our identification and characterization of the
two-twistors for uniform acceleration may be helpful in clar-
ifying the interpretation of the two-surface twistors ob-
tained in this context. This paper suggests that one need not
insist that a two-surface two-twistor reduce to ten real inde-
pendent quantities in order to obtain a satisfactory physical
interpretation. In particular, this paper is a guide to what to
look for in the case of the C-metric.

In general relativity we may also construct a local twis-
tor on an arbitrary timelike world line ¥ (with y,5" = 1)
simply by taking the matrix form of the two-twistor in (15)
(with m = 1) at each point ¥(7) of the world line. This local
twistor encodes in a certain way the geometry of the world
line. For a straight or uniformly accelerated world line in flat
space this local twistor is, of course, constant. In a general
space-time the matrix of its local twistor derivative along the
world line vanishes except in the upper left-hand block. This
block is essentially the anti-self-dual part of the bivector

i’la:);b | i’[an]c}',C’ (20)

where 7" = V-,V,-,;l/' and P,,=LRg,, — 1R, is a common
rearrangement of the Ricci tensor. A local twistor is said to
undergo local twistor transport along a curve if its local twis-
tor derivative along the curve vanishes. If y is a geodesic, this
occurs for the associated local two-twistor if and only if y is
an eigenvector of the Ricci tensor. The same is true if y is
uniformly accelerated in the sense that the Fermi—Walker
derivative of its acceleration bivector vanishes. [This Fer-
mi—Walker derivative is the first term in (20).] We observe
that since the vanishing of the local twistor derivative is a
conformally invariant condition, a conformally invariant
notion of uniform acceleration is simply that the bivector in
(20) vanish.

We have left open the possibility of interpreting two-
twistors that satisfy some appropriate causality conditions,
but which are neither kinematic twistors nor twistors repre-
senting uniformly accelerated particles. We have not been
able to find any really satisfactory physical analog for such
other two-twistors. However, if this is possible it seems that
such a two-twistor would describe a semiclassical particle
with a spin vector undergoing some kind of transport along a
curve. It should also be mentioned that higher valence sym-
metric twistors lying in certain Poincaré-invariant subspaces
of the appropriate twistor spaces represent multipole mo-
ments." It is open to see whether symmetric twistors lying
outside these subspaces represent some kind of uniformly
evolving multipole moments.
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The elastoplastic shock problem as an example of the resolution
of ambiguities in the multiplication of distributions
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One-dimensional collisions between two isotropic solids, in which the equations of physics lead
to “multiplications of distributions,” are considered. Based on this example, a general
physicomathematical method, to be adapted to each particular case, is proposed to resolve the
ambiguity inherent in such products. This can be achieved with the aid of a new mathematical
theory of generalized functions, which permits dealing with mathematical phenomena of a
microscopic nature that govern products of distributions having singularities at the same point.

This tool has recently been applied in various situations (in continuum mechanics) in which
the equations of physics lead to “heuristic products of distributions.” One obtains new
(algebraic) formulas in the simplest cases, and new numerical schemes in more general cases.
The key to the resolution of ambiguities lies in more precise statements of the laws of physics
than are permitted within distribution theory, and have no analog in classical analysis, so that
in general a resolution cannot be obtained from ““formal calculations.”

1. INTRODUCTION

We consider a frontal collision of two homogeneous iso-
tropic solid layers with indefinite extension in the direction
perpendicular to their common axis of symmetry, so that
there is no “definite center.”

We assume that the physical variables depend only on x
and ¢; then the general system of elastoplasticity (Appendix
1 of Ref. 1) reduces to a one-dimensional system of five equa-
tions (plus a few other equations that are dissociated ). Three
of them express the conservations of mass, momentum, and
energy; the two other ones are constitutive equations follow-
ing from Hooke’s law when the material is elastic, and from
(for instance) a Mie-Gruneisen equation of state when the
material is plastic.

Strong enough collisions produce shock waves. Then
the system is wrought with several products appearing in the
form of classically undefined (indeed really ambiguous)
products of distributions. Indeed the usual formulation of
nonlinear elasticity? does not hold globally in the case of
rather strong collisions, such as the ones of projectiles on
armor; there is not even a bijective correspondence between
the stress and the strain. One states Hooke’s law as an infini-
tesimal linear stress—strain relationship in a Lagrangian
frame of reference following the medium, and then one ex-
presses the full system in a fixed (Eulerian) frame of refer-
ence, since the Lagrangian frame is not convenient for nu-
merical simulations. Although mathematically meaningless
within distribution theory, the system of equations is cer-
tainly “correct” since it is successfully used by engineers for
the design of armors and projectiles (Ref. 1).

There appear multiplications of distributions in many
domains of physics: elasticity and elastoplasticity’-* shocks
in fluids,* thermodynamics,® acoustics,*® plasma physics,’
relativity and astrophysics,*'® and quantum field theo-
ries' 11-13

In this last subject multiplications of distributions have
given rise to a wide literature for a long time. Those of the >
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kind appearing in the adiabatic limit'"'® allow an obvious
interpretation in our theory.'* Those appearing in the formal
perturbation series are much harder to interpret (renormal-
ization theory) and have not been fully understood at pres-
ent, especially in the case of nonrenormalizable theories. In
this latter case it seems that a mathematical tool alone can-
not resolve the ambiguities. But, perhaps, an intricate corre-
lation between (new) mathematics and (new or not) phys-
ics, as presented in this paper for elastoplasticity, could
resolve them. The goal of this paper is to present to physicists
this possibility.

Using the mathematical theory of “new generalized
functions” introduced in the literature,'>~'7 one can state
the system of equations of elastoplasticity in an original, but
physically natural and mathematically correct, form. Then
we obtain nonambiguous jump conditions that we compute
explicitly; more generally one obtains new numerical
schemes.

We believe that the main interest of this paper lies in that
it presents a simple model of the use of this new method,
which lies at the interface between pure mathematics, theo-
retical physics, and numerical analysis. It is clear that this
method could be used in a wide variety of circumstances
(nonlinear and linear problems in which there appear “heu-
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FIG. 1. Frontal collision of two homogeneous layers.
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ristic multiplications of distributions,” see Refs. 1,3,6,18-22
for some results obtained in this way). The ambiguities
which appear in equations of physics cannot usually be re-
solved on purely mathematical grounds: by allowing more
precise formulations of the physical postulates, our method
permits to resolve them, at least in the cases that were stud-
ied up to now. The crucial point lies in that, without the new
mathematical tool, the required more precise formulation of
physics—to be discussed in each kind of application any-
way—mmay be quite hidden, even on a purely formal level.

il. THE CLASSICAL STATEMENT OF A ONE-
DIMENSIONAL SYSTEM OF ELASTOPLASTICITY, AND
ITS MATHEMATICAL COMPLEXITY

In the case of strong collisions the solids are no longer
Hookean: a linear stress strain relationship cannot hold since
different strains can correspond to the same stress, at a given
instant (the history of the collision has also to be taken into
account). A constitutive equation is obtained by stating the
differential form of Hooke’s law in a (Lagrangian) frame of
reference following the medium (the “Lamé constants™ can
depend on the state of the material). We use classical nota-
tions: p = density, v = (1/p) = specific volume, I = inter-
nal energy, e = total energy, # = (4;);;c3 = Velocity vec-
tor, == (0:) 1<icjcs = Stress  tensor, S'= (S;)1cicjc3

= stress deviation tensor, p= —} (01,
+ 0, + 03;) = pressure. Note that e =1+ 1(#-%) and
S =3 + pI'if I is the identity 3 X 3 matrix. The system ob-
tained is given in Ref. 1 (Appendix 1). In the one-dimen-
sional case under consideration it reduces to (simplified no-
tationsu =u,;,S=.5,,)

p. + (pu), =0, balance of mass,
(pu), + (pu*), + (p— ), =0,
balance of momentum,
(pe), + lpeu + (p — S)u}, =0, balance of energy,
S, +uS, —k*(Su, =0,
the deviation part of Hooke’s law, ()

p=®(p,D),
constitutive equation (usually the isotropic part of
Hooke’s law in the elastic state, and a Mie~Gruneisen
equation in the plastic state),

where k 2 = (4/3) G (G'is the shear modulus) is a function of
|S | and where @ is a function. k > depends on |S | and is null
for |S | large enough, say |S | >S,. Then the material is a fluid
and (1) reduces to the classical system of fluid dynamics: we
say that the material is in the plastic state. The terms uS, and
k2(S)u, put in evidence products of distributions of the
kind Y-8 (¥ = Heaviside function, § = Dirac mass) when u
and S are discontinuous simultaneously (case of shock
waves). We do not take into account external forces (gravi-
ty), thermal effects, viscosity, and phenomena in the phase
transition.

In the classical context of weak solutions of nonlinear
PDE’s the fourth equation in (1) cannot have discontinuous
solutions; we refer to Ref. 23 for a standard textbook. In the
context of our generalized solutions'-'>~'” this equation has
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solutions provided system (1) is stated in a suitably weak
form.

It is explained in Refs. 1, 6, and 20 how systems in non-
conservative form, like (1), have an infinite number of
mathematically possible jump conditions. In Refs. 1 and 20a
method is explained to get rid of this ambiguity, in the case of
systems involving only one constitutive equation.

Hi. A MORE PRECISE FORMULATION AND A
RESOLUTION OF THE AMBIGUITIES

The mathematical tool is sketched for physicists in Refs.
6 and 20. It originated in a construction (of pure mathemat-
ics™'5" of a differential algebra & () (£ = any opensetin
R") containing the vector space &' () of all distributions
on ). The elements of ¥ (1) (“new generalized functions™)
have properties mimicking exactly those of the C  functions
(differentiation, multiplication, etc). The classical concept
of equality splits necessarily into two concepts (both induc-
ing on Z'(0) the classical equality): a strong one denoted
by = (and allowing exactly all the standard calculations)
and a weak one denoted by =~ [generalizing exactly the con-
cept of distributional equality, and in general incoherent
with the multiplication: G, =~ G, does not imply GG, = GG,
for arbitrary G, G,, G,, €% ()].

At first, one states the system (1) with weak equalities
~since they correspond exactly to the usual concept of a
weak solution in the distributional sense. Then one finds an
infinite number of possible jump conditions for steady
shocks, see Refs. 1 and 20. This corresponds faithfully to the
classical ambiguity inherent in most nontrivial products of
distributions. In contrast, if all equations in (1) are written
with the strong equality, then one proves easily that the sys-
tem cannot admit shock waves solutions, which is unaccep-
table, see Refs. 1 and 20.

The difference between the two concepts of weak and
strong equalities lies in “microscopic phenomena” such as
those occurring in the “width of a shock wave” (of the order
of magnitude of a few mean free paths). Postulating that the
laws of physics (balance of mass, momentum and energy)
are valid within the “microscopic” width of the shock, we
are led to state them with the strong equality. The constitu-
tive equations have never been checked in a state of very fast
deformation, such as the one inside the shock. This remark
suggests to state them with the weak equality ~ [intuitively
P=¢ (p,]) means that p = ¢(p,]) in the classical sense out-
side the width of the shock wave, and that something like
|p — #(p.I)| < + oo holds within this width]. Then the sys-
tem (1) becomes

P + (Pu)x = 0)
(pu), + (p*) + (p—S), =0,

(pe), + [peu + (p — SHul, =0, (2)
S, +uS, — k*(S)u, =0,
p=¢(p.D).

In the case of a steady shock it follows from the first two
equationsin (2) (Refs. 1 and 20) thatv = 1/p, u,andp — §
are represented by the “same Heaviside function” [in ¥ (R)
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there are several generalized functions equal to 0if x <0, to 1
if x > 0, and whose jump at x = 0 is of the kind of a classical
discontinuity }. In this case we say that v, u,and p — Svary in
phase on a shock.

When the material is plastic, i.e., k?(S) =0, then
S = const = S, and we are in the case of hydrodynamics;
system (2) has nonambiguous (classical) jump conditions;
formulation (2) permits a new formulation of the system in
terms of v, u, and p (which gives at once new numerical
methods), see Refs. 1, 19, 21, 22, 24. Then system (2) ap-
pears in the form

v, + uv, —vu, =0,

u, +uu, +vp, =0,

o+ up, + [(y+ 1)p— F(v) —vF'(v)]u, =0,

S=38,
if the Mie-Gruneisen equation is stated in the form
p=ypl — F(v), y>0and Fa positive function of v.

When the material is elastic, i.e., |S| <S, when one
adopts as constitutive equation p = ¢(p,I) the isotropic part

of Hooke’s law (see Ref. 1 Appendix 1) and drops the bal-
ance of energy, then system (2) appears in the form

(3)

v, +uv, —ovu, =0,

u, + uu, +v(p—39), =0, (4)
S, +uS, —k*(S)u, =0,

P, +up, +ad’u, =0,

(a>0is a constant: this last equation follows from the
isotropic part of Hooke’s law).
One usually considers that k 2(.S) = k2, k> O constant. The
strong equalities in the first two equations imply that u, v,
and p — Sare represented by the same Heaviside function on
a shock (see Refs. 1 and 20), but there exist ambiguities in
the terms w5, and up,, since we do not know the individual
behavior of S and p, relatively to u. Setting o = S — p, (4)
becomes

v, +uv, —ovu, =0,

u, + uu, —vo, =0,
o, +uo, — (k*+a*)u, =0, (4
P+ up, +a'u, =0,

and the ambiguity lies only in the term up, (from above, the
term uo, is no longer ambiguous). We propose to resolve
this ambiguity, as follows, by a method of “transverse ficti-
tious infinitesimal shock waves.” For this we take into ac-
count that the real phenomenon is a three-dimensional one.
Let us imagine an infinitesimal shock wave in the direction
y'y or z'z. One would obtain as above (strong equalities for
the statement of the laws of balance of mass and momen-
tum) that v and o,, (respectively, v and 05;) are in phase in
this infinitesimal shock; since this holds also forvand o, we
obtain that p = — i(0), + 05, + 033) and v are in phase in
an infinitesimal shock. Thus all variables v,u,p,0 (and so S)
are in phase in an infinitesimal shock.

Note: This reasoning does not apply for a noninfinitesi-

mal shock, as will be obvious from the results in Secs. I'V and
V.
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Remark: This result is based only on the strong equali-
ties in the statement of balance of mass and momentum, and
on the hypothesis of transverse fictitious infinitesimal shock
waves. It does not depend on the constitutive equations and
on the (weak or strong) statement of the balance of energy.

We shall show (by explicit formulas in a simplified case
in the next section, then by numerical results in general) that
this is sufficient to resolve the ambiguities due to the multi-
plications of distributions in the heuristic system (1).

IV. RESOLUTION BY EXPLICIT JUMP FORMULAS

For greater simplificity in explicit calculations we con-
sider only shocks in which the density varies slightly in the
neighborhood of a fixed value p, (this assumption is not
always justified physically: in strong metallic shocks the rel-
ative variation of density can reach 0,1). Then as explained
in Refs. 1 and 20, the first two equations in (2) may be
replaced by

polu, +uu,) + (p—8), =0,

together with the assumption that « and p — S are in phase
on a shock. Setting p, = 1/v, we obtain, in the elastic case
IS| <S), the system (S = o + p)

u, + uu, —vyo, =0,

p, +up, +a’u, =0

(isotropic form of Hooke’s law),

o, +uo, —b%u, =0(b>=k?+a*),

(3

with u, p, o in phase on infinitesimal shocks (and u, o in
phase on finite shocks). In the plastic case (S'=.S,) one
obtains from (3) the system

u, + uu, + v, =0,

p. +up, + (dp+e)u, =0
(Mie-Gruneisen equation of state),

S=35,

with 4 and p in phase on all shocks (d,e= constant
numbers).

Calculations of jump conditions for (5): We are going to
show that the assumption that u, p, and o are in phase on
infinitesimal shocks implies, in the case of (5), that they are
in phase also on finite shocks. Setting

(5"

w= AwH(x — ct) + w,,

with w = u, o, p in (5) (H = Heaviside generalized func-
tion), one obtains at once the relations [one uses the relation
HH'’ = (1) H’ whichfollows from H 2 ~ Hby differentiation |

Au Ao
— o =U =V,
2 Au
Au > Au
c——=u; +a" —, 6
5 i Ap (6)
c—ﬂ=u,—b2ﬂ.
2 Ao

Elimination of ¢ gives

Au 4 byv, Ao 4 b (6')
— x 2 y —— = o .
Ap a Au ™
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Therefore, if u,p,o are in phase, then their jumps are
proportional. Therefore a superposition of shocks in which
u, p, and o are in phase gives a shock in which , p, and o are
still in phase (one has to be aware of the obvious fact that a
superposition of two shocks in phase, but in which the vari-
ables have nonproportional jumps, leads to shock waves
which are no longer in phase). Considering a shock as a
superposition of infinitesimal shocks, the property that u, p,
and o are in phase on infinitesimal shocks implies in the case
of (5) that u, p, and o are also in phase on finite shocks.

Note: In this reasoning we have assumed that all infinite-
simal shocks under consideration satisfy (6') with the same
sign 4+ or —, which is the case in the physical situation
under consideration. There is, further, some lack of math-
ematical rigor in this reasoning, since we treat an “infinite
sum of infinitesimal shocks” like a “finite sum of finite
shocks.” Therefore a more refined mathematical analysis
would be welcome. We content ourselves with the above fact
to justify that the variables u, p, and o are in phase on (finite)
shocks for the system (5).

Now the ambiguities in the multiplications of distribu-
tions are resolved and we are able to compute explicitly jump
formulas for {5) and (5'). For simplicity we consider only
the case of a shock wave in which the respective values of
(u,p,S) are (0,0,0) on the right-hand side and (u,,p,, — S,)
on the left-hand side. This represents the shock wave pro-
duced in a target at rest by a projectile. This assumption is
only a minor simplification to make the computations easier;
exactly the same method applies when the values of (#,p,S)
on both sides are arbitrary and, then, for the explicit solution
of the Riemann problem by algebraic formulas: one finds
elastoplastic shock waves like the one considered here, and
also elastic precursors, see Fig. 5 and Ref. 1 (Appendix 4 of
Chap. 3). It is convenient to sum up the system and assump-
tions (with ¢ = § — p)

u, + uu, —vyo, ~0,
o, +uo, +(I(S)o+ m()u, =0,

where
I(S)=0, m(S)= —(k?+4d%
if |S'| <S, (isotropic part of Hooke’s law), (7N
I($Y=a m(S)=p

if |§'| = S, [ (a,8 = constants) Mie-Gruneisen equa-
tion of state],

S, +uS, —k*(S)u, =0,
where
k*(S)=k?
if S| <8, (deviation part of Hooke’s law),
k*(S) =0,
if | S| = S, (no stress deviation in fluids),
u and o = .S — p are in phase on (global) shocks, (7')

u, g, and p are in phase on the elastic part and on the plastic
part of the shock. (7")

The microscopic profile of the shock can be represented
by Fig. 2.
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FIG. 2. Microscopic profile of the shock wave under consideration.

One has introduced the values %, and &, corresponding
to the elastoplastic transition. Let ¢ be the shock velocity.
Then (7”) leads to the following form for u, a, S:

u(x,t) =(u; —u)H(—x+ct) + u4,K( —x +ct),
oxt)=(o,—o)H(—x4+ct) + o, K( —x+cb),
S(x,t) = — SK( —x +c1), 8)

in which H, K are two Heaviside generalized functions, with
HK =0 since they represent nonoverlapping phenomena
(elastic and plastic).

Equation (7') implies that w/u, and o/0, are equal
since they are the Heaviside functions (in the variable
— x + ¢t) of u and o in the global shock. This gives

(1 —&/u)H+ @/uK = (1 — 5,/0)H + 5,/ .K,
i.e.,

7,/u, = 5,/0,. (9)

The first equation in (7) gives
c(uy—u)H' + ci K’

+{(u,—a)H+ a5,k — (u,—u)H' — 5K’}

— vl — (0, - 6)H —5,K'}=0,
ie.,

cuy — (uy — 1,))%/2 — 3 /2 + vy, = 0,

cuy —u}/2 + ujit, — 2 + vy, =0. (10)

The second equation in (7) gives
coy — [ (uy — 4y) (0 — 0y) + 4,54]

—a/2(oy — o) (u, — i) + &,(k* +d°)

—B(u,—u,)=0.

Elimination of &, with (9) gives
coy — (3 +a/2)yuo, + (1 + @)i,0,

— (1+a/2)(@/u)o, + (k2 +a* + B,

— Bu, =0.

The third equation in (7) gives

—cSeK’ + 4, KSoK ' + k*u,K' =0,

(11)

ie.,

Sy — 1,S,/2 — k2, =0. (12)
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FIG. 3. Schematic representation of the solution of the Riemann problem
calculated in Sec. IV: we have eight equations for the eight unknowns ¢, ¢,,
U, 0y, Uy, Oy, Uy, 0. An example is given in Fig. 4. For some values of u;, 0,
u,, o, and of the coefficients one obtains elastic precursors (see Fig. 5), then
the Riemann problem has a different solution.

Equations (9)—(12) contain the five unknowns¢, #,, 7,,
u,, o;. One can more generally compute the complete solu-
tion of the Riemann problem in the form of Fig. 3.

These formulas prove that our original method easily
gives algebraic formulas. They can be used to verify the ade-
quacy of numerical methods. These explicit formulas for the
solution of the Riemann problem can also be used to build
new numerical codes.

V. RESOLUTION BY NUMERICAL METHODS

The ambiguity in multiplications of distributions ap-
pears from the fact that slightly different numerical schemes
give different solutions (while they all give the same solu-
tions in the case where the multiplications of distributions
are not involved ), see Ref. 1 (Appendix 2 of Chap. 3). But
one has learned how to find numerical schemes expressing
that some equations are stated with the strong equality'®
that some variables vary in phase on infinitesimal

shocks.!?"?? Then these schemes permit a general study of
these systems. A few situations are given below, to illustrate
and apply the study in Secs. III and IV.

The numerical results in Figs. 4 and 5 have been ob-
tained from discretization techniques in Refs. 1 and 23 based
on the method in Sec. III. A longer computation time or
minor technical improvements would give very steep shocks.
We prefer to reproduce the curves in Fig. 4 in order to ob-
serve easily the values #, and o,.

Vi. CONCLUSION

The original mathematical tool permits a more precise
formulation of physics, which resolves the ambiguities that
usually appear when one attempts to solve classically, even
formally, i.e., without mathematical rigor, problems involv-
ing “multiplications of distributions.” This fact seems to us
to be of wide interest due to the very large variety of physical
problems involving such multiplications.

An interesting point is that this mathematical tool
brings up new ideas and can be very well taken up on an
intuitive basis; no deep mathematical study is required to use
it successfully in physical situations; one only needs some
familiarity with the basic ideas as explained above in Sec. I11.
The genuine difficulty in the resolution of ambiguities, in any
particular situation, lies in the more precise way in which,
with this new tool, one should formulate the equations. Up
to now, in continuum mechanics, this has been done only by
using classical ideas (the difference between the basic equa-
tions and the constitutive equations). In quantum field theo-
ry one may wonder whether classical ideas would be suffi-
cient, or if new ideas would be needed for this more precise
formulation.

Rasker2aak
: \ | f
A}
: ; =2
FIG. 4. A numerical solution of the Riemann problem for system (7) at time t > 0. In this case k> =4,a* =9, a=0,8= — 9, S, = 2, y, = 1. The initial

conditions at ¢ = 0 are on the left side x <0 (projectile) u = 6, p = S = o0 = 0; and on the right side x>0 (target) u = p = § = o = 0. One observes two
elastoplastic shock waves propagating to the right at different velocities. The right-hand side wave is the one theoretically depicted in Fig. 2 (in #, S, o).
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FIG. 5. A numerical solution of the Riemann problem for system (7) at time t> 0. Inthiscase k> =4,a* = l,@a =0, 8= — 9, S, = 0,1, v, = 1. The initial
conditions at # = 0 are on the left side x <0 (projectile) u = 0,5, p = § = o = 0; on the right side x> 0 (target) 4 = p = § = ¢ = 0. One observes that “each
shock as in Fig. 4” is dissociated into an “elastic precursor” and a “plastic shock wave.” The following is used as empirical evidence of this dissociation in
certain cases. In plane accidents involving a frontal collision it has been observed that passengers in the tail of the plane often survive. An elastoplastic shock
wave (very destructive) would forbid any chance of survival. But in the case of a dissociation as above, the elastic precursor (not destructive) is reflected by
the tail of the plane; then this tail is cut off at the place where the reflected elastic precursor meets the incoming plastic shock wave. Thus the tail escapes from

the destructive plastic shock wave.
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APPENDIX: MULTIPLICATION OF DISTRIBUTIONS IN
MATHEMATICS AND PHYSICS

The formula Y8 = 1§ is certainly the more natural one
concerning multiplication of Y and . Indeed, in our context,
as soon as Y is a Heaviside generalized function one has
Y?=Y and by derivation Y5=146 if § = Y. This formula
gives physically correct results in several cases (Refs. 1 and
20, even those in Fig. 5) but gives radically incorrect ones in
the case of elastoplastic shock waves involving a phase tran-
sition [Figs. 2 and 4, (Ref. 20) Appendix B]. In our context
the key of the paradox lies in that there are several Heavi-
side-like, Dirac-like, etc., functions. When 65 Y’ then the
product Y-6 is not in general associated with 16.

In this case a mathematically correct multiplication of
distributions (usually adopted by mathematicians) results in
physically incorrect jump conditions. In our context thereis a
canonical inclusion Z'C ¥ . In &' there is one and only one
Heaviside-like element Y, one and only one Dirac-like ele-
ment 8; further §, = ¥ ;. Thus Y+ 8, ~16,: one recovers the
formulas usually adopted by mathematicians. The observa-
tion that this formula might be inadequate is not paradoxical
if one thinks of the different ways in which physicists and
mathematicians conceive and use distributions.

For mathematicians the space &' is defined modulo an
isomorphism (concerning all operations). Such an isomor-
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phic copy of &' is canonically included in % . It permits, via
the multiplication in & and the association, a synthesis of
most existing mathematical multiplications of distributions,
see Refs. 14 and 25.

For physicists the space &' is considered as a reservoir
of mathematical objects used to describe the physical world.
In our context the use of the above subspace &' of 4 as such
a reservoir may lead to mistakes in some cases involving
“multiplications of distributions.”” Then the correct reser-
voir is & itself, which contains several Heaviside-like,
Dirac-like, etc., functions.

In this way a nonambiguous mathematical multiplica-
tion of distributions can be reconciled with the well known
Jact that in physics multiplications of distributions such as Y&
or &2 can give different results according to the context.

In Part III of Ref. 15 the author attempted to explain
(perturbative) renormalization in Q.F.T. by adjusting the
definition of the multiplication (by changes in the definition
of the auxiliary set 4,) in order to obtain the renormalized
results. One was forced to this trick from the postulate (done
in Ref. 15 from a too narrow interpretation of the new set-
ting) that the free field operators were (vector valued) ele-
ments of &', and so precisely defined elements of & through
the inclusion &' C ¥ . An exactly similar postulate in con-
tinuum mechanics would amount to imposing the formula
Y5 =16. The subsequent work done in Refs. 1, 6, 20, and 26
suggests that the correct viewpoint is to postulate only that
the free field operators are (a priori unknown) elements of
% which are associated with certain well defined elements of
&' (the free field operators considered as distributions).
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Then, in order to obtain the renormalized results, one should
determine, from physical ground (as done in this paper, for
instance by stating some equations with strong equality in
9 ), which precise elements of & the free (and also the inter-
acting) field operators are. Attempts in particular cases
show that the above trick of adjusting definitions amounts to
such determination. This better method might be predictive,
as it is in continnum mechanics. 4192927

Shock wave solutions of systems in nonconservative
form can illustrate the standard opinion (Richtmyer,>
p- 37) that “no amount of mathematical reasoning can tell us
which set of weak solutions has the right to be called a gener-
alized solution.” Nonconservative systems usually have an
infinite number of possible weak solutions (in the sense of
association in %) which are equally acceptable from the
mathematical viewpoint.""'*?® In each physical situation a
choice of one kind of solution, i.e., a resolution of ambiguities,
can only be done on physical ground.
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Exact solutions of Maxwell-Dirac equations are investigated for which the Dirac field is of the

ip, Ax)‘

type ¥(x) = a(p)e

. In the subclass where the mass parameter m 50, there exists 7o

nontrivial solution of the problem. In the subclass where the mass parameter m = 0, there exist
infinitely many solutions inberent with arbitrary functions. Furthermore, every solution for
m = 0 must have a null four-current vector field associated with it.

I. INTRODUCTION

In quantum electrodynamics, no nontrivial exact solu-
tion is known. The perturbative techniques involving
Green’s functions invariably lead to divergence difficulties.
On the other hand, classical nonlinear field equations such as
Einstein’s vacuum field equations,' Einstein—-Maxwell equa-
tions,' and Einstein-Maxwell-Dirac equations® have yield-
ed plenty of exact solutions (without perturbative ap-
proaches). That is why we are motivated to investigate exact
solutions of Maxwell-Dirac equations, which represent clas-
sical electrodynamics. Recently, the initial value problem
for Maxwell-Dirac equations has been tackled by Flato, Si-
mon, and Taflin.? In Sec. II, we write down the Maxwell—
Dirac equations and an associated differential identity. We
also prove that the four-current vector field /*(x) is always
nonspacelike, irrespective of the (real or complex) values of
the mass parameter m.

In the case of the free Dirac equation, the plane wave
solutions are the easiest ones to find. This fact prompts us to
seek in Sec. III the class of exact solutions of Maxwell-Dirac
equations such that the Dirac field is of the type ¥(x)

=a(p)e” " This problem has been divided into two sub-
classes according to the mass parameter ms0, or m = 0. In
the first subclass (m#0), it is proved that there exists no
nontrivial solution of the problem. In the second subclass
(m = 0), there exist infinitely many solutions involving ar-
bitrary constants and arbitrary functions. All the solutions of
the problem m = O are obtained and classified into four cases
involving subcases. Every solution of this subclass must have
an associated null four-current vector field /* (x). This result
is physically reasonable for the massless particles.

1. NOTATIONS AND FIELD EQUATIONS

The combined Maxwell-Dirac equations are studied in
a flat (Minkowski) space-time manifold M. A Minkowski
coordinate chart is used. (In the sequel, a mixed coordinate
chart will be defined and used.) A space-time event is indi-
cated by x= (x%x',x2,x*) where x° denotes the time coordi-
nate. A greek index takes values from {0,1,2,3} and a roman
index takes values from {1,2,3}. The signature of the metric

) Present address: Okanagan College, Penticton, British Columbia V5A
8E1, Canada.
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is assumed to be — 2, so that the metric tensor [7,,]
= diag[1,( — 1)?]. Einstein’s summation convention is fol-
lowed. The €lectromagnetic four-potential and field are de-
noted by 4 #(x) and F,, (x) Ea‘,A# — 3,,Aw where the par-
tial derivatives are denoted by J,. The four-component
Dirac bispinor field and its Hermitian conjugate are indicat-
ed by ¥(x) and ¢¥' (x), respectively. The four 4 X4 Dirac
matrices are denoted by 3. In this section, we assume that in
the domain D of consideration, the potential functions 4 #
are of the differentiability class C*(D) and the Dirac bi-
spinor functions v, ¥, ¥, ¥, are of the class C?(D). In such
a domain DC M, the combined Maxwell-Dirac equations
(which are Poincaré covariant and gauge invariant) can be
written as

M*(x)=4d,F" —j, (x)
=9, F" — e (x)¥"¢(x) =0,

D(x)={iy*[3, +ied, (x)] —mI}h(x) =0, (2.1)

F,(x)=0,4, 43,4

Yyt =201
Here e and m are the charge and mass parameters associated
with the Dirac field and 7 stands for the 4 X 4 identity matrix.

In this combined system of partial differential equations,
there exists one differential identity, viz.,

F =3,M" —ie[¢' (x)y*D(x)
— DT(x)¥Y’¥(x)] =0. (2.2)

Therefore, to make the system (2.1) determinate we have to
impose one additional equation [which is not inconsistent
with system (2.1) ]. If we choose as that equation the Lor-
entz-gauge condition, then the combined system (2.1) goes
over to

M™(x)=04% — f*(x)=39"0,4,
— eyT (x)y “Y(x)
=0,
D(xy={ir*[d, +ied, (x)] —ml }¢(x) =0, (2.3)
L(x)=d,4*=0.

The above system is invariant under the restricted gauge
transformationfs:

Vv
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P(x) = P(x)e ™ O,
4,(x)=4,(x) 3,9,
oo =o.

(24)

We shall use the following Weyl representation of the
4 X 4 Dirac matrices:

”"*], (2.5)

70:[(1) (I)] 7/kz[o(1 0

where 0*’s are the 2 X 2 Pauli matrices and 7 stands for the
2 X 2 identity matrix.

Now we are in a position to state and prove the following
theorem about a purely algebraic property of the Fermionic
four-current vector field /#(x).

Theorem 2.1: Let the Dirac bispinor field ¢(x) be de-
fined (but not necessarily continuous) in a domain DC M.
Then, the four-current vector field /#(x) = el/f‘(x YPr(x),
is nowhere spacelike in D, irrespective of the (real or com-
plex) values of the mass parameter m.

Proof: Here, the star stands for complex conjugation,
and the vertical bar denotes the modulus of a complex num-
ber. By a straightforward computation we obtain

Ju (X)F(x) = 42115 (X) P (x) + 5 ()P (0| (2.6)

Since, the right-hand-side of Eq. (2.6) is always a non-
negative real number, it follows that ##(x) is a nonspacelike
four-vector field. |

Now we shall introduce a mixed coordinate chart for the
flat space-time M by the following coordinate transforma-
tion:

u=3"=3(x° +x%),
v=2 =1(x" - x%),
pE.i'z = %(x1 + ix?),
pr=3=1x"—ix?);

—
o
= O
—

o

o
I

—_

det[J] = — 4i£0. (2.7)

The coordinates u, v are usually called the nuli or light-cone
coordinates and p, p” are called the complex-conjugate co-
ordinates. Under the coordinate transformation (2.7), the
various tensor and spinor fields are assumed to transform as
follows: 2= (u, p, p~ ,v);

) =% 4,

ox”
44(%) = §[4°(x) + 4%(x)],
A%(%) = 3[4°(x) — 43(x)],
A7(%) =14 (x) +i47(0)],
A7 (%) = [4°(0];

[ﬁab] = [J]T[nvy][‘]]
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0 0 0 1
0 0 -1 0
=2lo 1 o of
1 0 0 0
A, (%) =24"%), 4,(%) =245,
A, = —247° %), 4.(%) = —24°(%);
PR =v(x);

o S N L)
of 0 5 o/’

JG) = ellT® P+ (D71,
F&) =el|h(® + [$5)2),
F@) = e[ (D) — (D3],
F ) =e[ R (%) — & () ).
Dropping hats in the sequel, the Maxwell-Dirac equations

(2.3) in the mixed coordinates, by Egs. (2.7) and (2.8), go
over into

x=(uv,p,p');
0=4,9, —3d,9,;
M (x)=04" — e[| () * + |#4(0)]*] =0,
M (x)=04°—e[[¢h(x) |+ [¢(0) )] =0,
M?(x) =047 — e[¢; (x)h,(x) — 5 (X)) (x) ],
M (x) =[M*(x)]" =0;
D\(x)=[d, +ied,(x)]¢;(x)

— [d, + ied, (x) ]¥ha(x) + imdh(x) =0,
Dy(x)=[d, + ied, (x) ] ¥4(x)

— [ap. + ieAp. (x)]¢3(x) + imy,(x) =0,
Di(x)=[d, +ied, (x)]¥,(x)

+ [, +ied, (x) |, (x) + imihy(x) =0,
Dy(x)=[d, + ied,(x) |, (x)

+ [9, +ied . (x) ¥ (x) + impy(x) =0;
L(x)sauA"+avAv+apAﬂ+ap.Ap' =0.

The preceding systems of equations is easier to solve than the
equivalent system (2.3) in Minkowski coordinates.

(2.9)

lll. A SPECIAL CLASS OF PLANE WAVE SOLUTIONS
In the case of the free Dirac equation, the exact plane

wave solutions of the form #(x) = a(p)e” " are found and
discussed in the standard textbooks. Fourier integrals in-
volving these plane wave solutions yield more general exact
solutions of the free Dirac equation. These considerations
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motivate us to seek the class of exact solutions of the Max-
well-Einstein equations such that the Dirac field is of the
type ¥(x) = a(p)ei’“”‘ . This problem has to be divided into
two subclasses according to m#0, or else m = 0. Complete
solutions can be found in both subclasses.

We shall define the notion of the trivial solution for sub-
sequent use. The Dirac field y(x) is called ¢rivial in a domain
D of flat space-time M, provided #,(x) = ¥,(x) = ¢¥5(x)

= ¢,(x) =0forall x in D.

Now we are in a position to state and prove rigorous
statements on the exact plane wave solutions of the type
¥(x) = a(p)e™.

Theorem 3.1: Let the potential functions 4 #eC?(D),
and the Maxwell-Dirac equations (2.9) hold in a bounded
domain DCM, with ¢#£0, m#0. Let, furthermore, the

Dirac bispinor field be of the type ¢(x) = a(p)e""‘"# , where
x = (4, p, p° ). Then, solutions of these equations exist in
D only if the Dirac field is trivial [¢(x)=0].

Proof: Let us define

Qx)=(e) "[p.x"]
. —1 .
=(e) ' [puu+pv+PPp+P,P ]
This function satisfies the wave equation
oa=o0.
Therefore, we can make a gauge transformation [cf. Eq.
(2.4)]
P(x) =~ MDY(x) = e~ M 0a(p)e = a(p),
A, (x) =A4,(x) — 38,0 =4,(x) — () 'p,. (3.2)
Dropping the hats subsequently, and denoting the values
a = a(p) (which are independent of x), the system of equa-
tions (2.9) reduces to
M*(x)=04"—e(|a,|* + |a,|*) =0,
M (x)=04"° —e(|a,)* + |a;s]*) =0,
MP(x)=04°7 —e(a e, —aja,) =0;
i(e) " 'D\(x)=a34,(x) —ad,(x) — (m/e)a, =0,
i(e) ' Dy(x) =ad, (x) — azd .(x) — (m/e)a, =0,
i(e)'Dy(x)=a,4,(x) + a4, (x) — (m/e)ay =0,
i(e) " 'Dy(x)=a,4,(x) + a4, (x) — (m/e)a, = 0;
L(x)=3,4*+3,4°+ 3,47 +3,.4 P =0. (3.3)
We shall first solve the Maxwell equations [0l4 ¥ = .
We write 4 ¥(x) = A4 (x) + A ;(x) such that O4;(x)=0
and 004 } = /. Since the four-current vector field is a con-
stant vector field, we can write the particular solutions as
A% (x) = (172)]"(uv — | pI?). Furthermore, the homoge-
neous solutions can be written as 4} (x) = + 1W"(x),
where W ¥(x) are arbitrary wave functions in the domain D.

The general solutions of Maxwell’s equations can be written
as

(3.1)

244(x) = e(Ja,|* + |aq|®) (wv — | p|*)
+ W¥(x) =4,(x),
24 °(x) = e(|a,|* + |a,|*) (uv — Vi)
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+ W(x) =4, (x),
24°(x) = e(aja, — asa,) (uv — | p|*)
—WP(x) = — 4. (x). (3.4)

Now, substituting (3.4) into the Dirac equation
i(e) ~'D,(x) =0, we obtain

e(w — | p|>)(la,|’a; + a,a5a,)
+ [a;W*(x) —a,W? (x)] — (m/e)a, =0.

Operating by the d’ Alembertian [J from the left on the above
equation we get

a(aja; + aya,) =0, (3.5a)
a; W (x) — a,W* (x) — (m/e)a, =0. (3.5b)
Similarly, from the other three Dirac equations
—i(e) " 'Dy(x) = —i(e) 'Dy(x)
= —i(e) " 'Dy(x) =0,
we obtain
a,(a,ay + a,a,) =0, (3.6a)
a,Wo(x) —a,W?(x) — (m/e)a, =0, (3.6b)
a,(a,a; + aa,) =0, (3.7a)
a, Wi (x)+a,W?(x) — (m/e)a; =0, (3.7b)
a,(a,a; + a,ay) =0, (3.8a)
a,W"(x) +a,W?(x) — (m/e)a, =0. (3.8b)

By contraposition, let us assume that the Dirac field is
nontrivial, i.e.,

@y |? + |ay|* + |as|® + la,|*> 0. 3.9

Then, from Egs. (3.5a), (3.6a), (3.7a), and (3.8a), it fol-

lows that
aya, + a,a, =0 =a,a; + a,a;. (3.10)

Now, multiplying (3.5b) by a; and (3.8b)" by a,, and add-
ing, we obtain

(a1a; + ;@)W (x) + 0 — (m/e) (|a,|* + |a ) =0.

Using Eq. (3.10) and dividing by — (m/e) #0, the above
equation yields

ey |* + |aa]* = 0. (3.11)
Similarly, multiplying (3.7b) by a; and (3.6b)" by a,, and
adding we get
(a,a; + a,a, YW*(x) + 0 — (m/e)(|a,|* + |as|?)

=0+0— (m/e)(|a,)* + |a;|*) =0.

Dividing by — (m/e), the preceding equation yields

la,|* + |as|* = 0. (3.12)
Equation (3.11) plus (3.12), contradicts the strict inequality
(3.9). Thus the theorem is proved. [ ]

In the above proof, m#0 was used only in the latter
part, in deriving Eq. (3.11) and (3.12). Therefore, Eq.
(3.1)—(3.10) hold for every value of m, including m = 0.
Unlike the subclass of m#0, the zero mass subclass allows
infinitely many nontrivial solutions. In fact, the zero mass
subclass can be completely solved. We shall summarize a
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case in this subclass by the following theorem.

Theorem 3.2: Let the potential function 4 *“eC?*(D),
and the Maxwell-Dirac equations {2.9) hold in a bounded
domain DCM, with e#0, m = 0. Furthermore, let the

Dirac bispinor field be of the type #(x) = a(p)e®™™ such
that every component of a(p) is nonzero. In this case I, the
general solutions of the equations exist and can be summar-
ized [after the gauge transformation (3.2) and dropping

hats] as follows.
Case I: All components nonzero, i.e.,

a,#0, a,#0, a;#0, a,#0,
and
a,a; + aa, =0,
but otherwise arbitrary.
24%(x) = e(|ay|* + |e|*) (wv — [ p|*)
+ W*(x),
24°(x) = e(|ay)* + |a5]*) (w0 — | p|*)
+ |ay/a, P W (x),
247(x) = e(aja, — aya,) (uv — | p|*)
+ (ay/a)) WP(x),
2 (x) = —e{(|an)? + |as|Hu?
+ la/a*(Jas|* + |ag|*)v?

(3.13)

— (/) (aya@;, — asa,)p’

— (aj/a3)(aja, — a;a4)p-2}

+ RCU- [F(Ar + Ao+ vo™:A,v)
C2

+ G(vr+ Ao + vo';A,v) dA dv].

Here,

r=la,/a|*u + v,

o=v— (a,/a,)’ p,

o =v— (a/a)p’;
F, Gare arbitrary twice differentiable functions such that the
improper integral over C? is uniformly convergent.

Proof: Equation (3.10) implies a,a; + a,a; =0,
which can be solved by setting

aZZﬁaI’ a; = _Ba:t: (314)

where s an arbitrary nonzero complex constant. The Lor-
entz-gauge condition L(x) = 0in (3.3), by (3.4), yields

W +9,W>—3,Wr—d,. we
= —e{(Ja,[* + |a|)v + (laa)” + |as|)u
—(aja, — asjay)p’ — (a5 — asa;)pt. (3.15)

Dirac equations (3.5b), (3.6b), (3.7b), (3.8b) (form =0)
go over to

Di(x)=a W (x) —a, W*(x) =0,
D;(x)y=a,W"(x) —a;W?(x) =0,
Di(x)=a;W'(x) + a; W?(x) =0,

(3.16)
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D,(xy=a,W"(x) +a,W*(x)=0.

We want to solve for the unknown functions W#(x)
from the above system of linear equations. The rank of the
coefficient matrix is two, due to the condition (3.10). Thus
we have to solve only two independent equations such as
D (x) = Dj(x) =0. Solving these we obtain

Wr(x)= —BW*(x), W'(x)=|B"W*(x),

B=(aya))= —(ay/a,)". (3.17)

Putting (3.17) into (3.4), we obtain the first three equations
of (3.13) for the four-potential functions 4 ¥(x). Substitut-
ing (3.17) into (3.15), we get the following linear partial
differential equation:

8, + |B1%6, + B3, + B3 IW*
= —e[(Jay]” + |as|)u + (la;* + |aa[*)v
— (a5 —ayay)p — (aja, —asa,)p’].  (3.18)

By the method of characteristic curves,* we obtain the gen-
eral solution of (3.18) as

W (x) = Re[ fir,0,0"}] —%[(1%12 + |as))u?

(la)* + |a* ) . (a,a; —azay) ,

+
1B B
_(a;a2—'a§a4) .~], (3.19)
B
r=|B%*u—v, o=v-—-Bp,

o =v—PBp, p=|B|*u+v.

Here, fis an arbitrary, complex-valued, twice differentiable
function of its arguments.

Now, W *is a wave function. Therefore, from (3.19) we
obtain

0=0W"=(3,9, -3, {Re[f(r,0,0) 1}
=(-39}+4,0,+9,d,. — 3,3, ) {Re[f(ro0)1}.
(3.20)
The above equation yields
Of= —0Of, Of=ik(ro,0), (3.21)

where A is a real-valued continuous function. Solving (3.21)
we get

flrio0™) = ifG( o Yh(--)dr do’ do’t + ¢(r,0,07),
(3.22)

where G(- - -) is the real-valued Green’s function, and ¢ is an
arbitrary complex-valued wave function. Therefore, we
must have

Re[f(r,0,0")] = Re[d(r,0,07)],
Op=(—-92+9d,9,+,0,. —3,3_.)¢=0. (3.23)

We notice that the above differential operator is a homoge-
neous function of degree 2 in the first partial differential
operators. Therefore, we use the ansatz

d(r,o,0") = F(ur+ Ao+ vo';u,v,0), (3.24)
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where u,A,v are complex parameters. The wave equation
O¢ = 0 implies that

(= +pul+uv—Av)F" =0. (3.25)
Assuming that F " exists and is not necessarily zero, we have
w—pud +v) +Av=0. (3.26)

Solving the quadratic equation, we have u=A or u =v.
Therefore, a linear combination of functions F(Ar + Ao
+ vo™;Av) and G(vr + Ao + vo' ;A,v) will solve the wave
equation. The general solution® of the wave equation in
(3.23)is

2Re ¢(r,0,0°) = ReU [F(Ar + Ao+ va':A,v)
CZ

+ G(vr+ Ao + vo';A,v) 1dA dv]. (3.27)

Here, F and G are arbitrary, twice differentiable, complex-
valued functions of their arguments such that the above im-
proper integral converges uniformly. By Egs. (3.19),
(3.23), and (3.27), the last of the equations in (3.13) is
proved and that completes the proof. ]

From Eq. (3.10) it is clear that there exists #o solution
in the case where three of a|, a5, a,, a, are nonzero. In case
I, there exists exactly two nonzero components of a. There
are infinitely many solutions in this case.

In case III, exactly one of the components of « is non-
zero and there are infinitely many solutions. In the last case
for which Dirac field is trivial (a, = a, = a; = a, = 0), the
Maxwell-Dirac equations reduce to Maxwell equations.
That case will be ignored. In the following, all the solutions
of cases IT and III will be listed without proof.

Case II:

(i) a3 =a,=0, a,;#0, a,7#0, but otherwise arbi-
trary. This subcase is obtained directly from Eq. (3.13) by
setting 2, = a, =0.

(ii) ¢, =a,=0, a;#0, a,#0, but otherwise arbi-
trary.

24 4(x) = elay?(uv — | p|*) + WH(x),
24°(x) = e|a;|*(uv — | p|?) + las/a,|*W*(x),
24°(x) = —easa (uv — | p|*) — (as/ay)" WH(x),
W (x) = — e{|as|?u? + |ag/as|??
— (as/a3)(a;)’p” — (@i /a;) (a,)’p '} (3.28)

+ Re{J [F(Ar 4+ Ao + vo'A,v)
C:

+ G(vr + Ao + va'A,v) |dA dvi,

r=|ay/al*u + v, o=v + (az/a,)p,

o'=v+ (ay/a,)p’,
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(iii) @y, =a4=0, a,#0, a;#0, but otherwise arbi-
trary.

A¥(x) =A47(x)=0,

24°(x) = e(|a,* + |as|®) (o — | p|*) + W*(x), (3.29)
Wi(x)= —e(|ay|® + |as]®) (uv + | p|*) + Re[F(up)].
Here, F is an arbitrary function of the u variable and an
arbitrary holomorphic function of the p variable.

(iv) a,=a; =0, a,#0, a,7#0, but otherwise arbi-
trary.

AP (x) =A°(x)=0,
A%(x) = —e(la,|® + |a4|*)| p|> + Re[F(vp)].  (3.30)

Here F'is an arbitrary function of the v variable and an arbi-
trary holomorphic function of the p variable.

Case I11I: Exactly one of the components of & is nonzero,
but otherwise arbitrary. There are four subcases which can
be directly obtained from Egs. (3.29) and (3.30).

At this stage we have found all the nontrivial, local,

plane-wave solutions [of the type ¢(x) = a( p)e"""x“] of the
Maxwell-Dirac equations with m = 0. Now we shall point
out three common features of these solutions.

(i) Comparing Eq. (3.10) with (2.6) we can conclude
that the four-current vector field j#{x) is null for every solu-
tion of this type.

(ii) Transforming back by the gauge transformation
(3.2) and the coordinate transformation (2.8), it follows
that exact solutions for the Dirac wave function are of the
type:

a,(p)

a,(p) o

as(p)

a,(p)

Here, the only constraint on the coefficient functions is
a;(p)la;(p)]” + a,(p)[as(p)]” =0, and there is no re-
striction on the p,’s at all. Therefore, the four-momentum
components p,’s need not satisfy the mass-shell constraint
7p.p, —m*=0.

(iii) Since the gauge transformation (3.1) presupposes
that es£0, the solutions found in this section do not have
limiting cases for e—0, unless p, =0.

P(x) =

'D. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact Solutions of
Einstein’s Field Equations (VEB Deutscher, Berlin, 1980).

M. J. Hamilton and A. Das, J. Math. Phys. 18, 2026 (1977).

*M. Flato, J. Simon, and E. Taflin, Commun. Math. Phys. 112,21 (1987).

“R. Courant and D. Hilbert, Methods of Mathematical Physics (Intersci-
ence, New York, 1966), Vol. I, p. 62.

*H. Bateman, Differential Equations (Chelsea, New York, 1966), p. 273.
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Hostler [J. Math. Phys. 11, 2966 (1970) ] has shown that Coulomb Green’s functions of

different dimensionality N are related by G'V+2

= G, where £ is a first-order derivative

operator in the variables x and y. Thus all the even-dimensional functions are connected, as are
analogously the odd-dimensional functions. It is shown that the operations of functional
differentiation and integration can further connect the even- to the odd-dimensional functions,

so that Hostler’s relation can be extended to give GV +

1. INTRODUCTION

Hostler showed in 1970 that Coulomb Green’s func-
tions of varying dimension N were related as follows'™

G+ (xpk)
S L (L e,
7(x —) dy.
N=1.23,... (1.1)
Here x and y are the two coordinate variables
XYy=ry+r,+r; (1.2)

and k is the wave number variable, such that, in atomic units
(ﬁ = # —= e = 1) .

27,2 2
Ezﬁk =k—, vzg. (1.3)
2u 2 k
Thus the odd-dimensional functions G ¥, G%,... are obtained

by successive differentiation of GV, while the even-dimen-
sional functions follows analogously from G *. We will show
in this paper that the even- and odd-dimensional Coulomb
Green’s functions can be further connected to one another
by the operations of fractional differentiation and integra-
tion.

By the N-dimensional Coulomb Green’s function we
understand the solution of the inhomogeneous differential
equation:

(k2+;v3v+ )G‘”’<rN,r~,k) M (ry — i),

(1.4)

which is not to be confused with the solution to Poisson’s
equation in N-dimensional space.

Ty

il. RESUME OF THE FRACTIONAL CALCULUS

The monograph of Oldham and Spanier® gives a defini-
tive presentation of the fractional calculus. A brief heuristic
account of some relevant results will suffice to make this
paper self-contained.

Multiple differentiation in the complex plane can be rep-
resented by Cauchy’s integral formula:
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— PG

FM(z) = ‘§_(_§f(ﬂ_, (2.1)

z)(n+1)

for a contour enclosing £ = z. A possible generalization of
(2.1) to derivatives of nonintegral order ¢ defines

£9(z) _T@g+1 f)ds
2mi c(E—2z)+!

For g+#n, { = z becomes a branch point. Let the contour C
be taken counterclockwise around z and extending on both
sides of a branch cut to a lower limit £ = a. The valuesa =0
(Riemann) and a = — « (Liouville) are the most com-
mon. For g <0, (2.2) reduces to the Riemann—Liouville de-
finition of a fractional derivative, viz.,

1 T_fdd

(2.2)

@(z) = =,D 2.3
A E) T h Gobr f2). (23)
The case ¢ = — 1 is called the semi-integral:
- 172 f(g)dg 2 4
f(2)= \/» (z——g)”zl (2.4)

For g> 0 (and 5n) the singularity at { = z can be removed
by integration by parts. Thus the semiderivative, with g =}
is given by

sz(z) l f(a)

1 (F f(d
\/— ( a)l/2 ‘/;

B (Z__é—)l/Z :
(2.5)

We will actually require the limit value a = + . For ap-
propriately behaved f (z)-

SV (@)= \/; ] (g(g)z‘fiz, (2.6)
and
Df(z) = \/; ] (2 (g))dlé;z‘ 27

lll. INTEGRAL REPRESENTATION OF N-DIMENSIONAL
GREEN'S FUNCTION

The Coulomb Green’s function in N-dimensional space
can be expanded as a sum of partial waves as follows’:
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'(N/2) & _
GV = —— 2 Q2L+ N—-2)CY"*~Ycos )G, 3.1
2PN —2) 1o t g G
where C; (2) is a Gegenbauer (ultraspherical) polynomial,
L'T(2v)
The partial-wave retarded Green’s functions are given by®

Ciz)=(— (=L, L+2viv+ 1/2;(1 + 2)/2). (3.2)

G M (ry,rak) = (ik) " (rr) T VT(L+ N/2 — 172 —iv)
XMEFXN2=V1 _jky YWEXN2=1( 2 2ikr_), N=345,.., (3.3)

where M and W are Whittaker functions as defined by Buchholz.”®
Using Buchholz’s integral representation for the above product of Whittaker functions,

GzN) - 2( _ i)2L+N72(rlr2)1 —N/ZJ dq e2ivqeik(r.+r2)cotth2L+N#2(2k /rlrzcsch Q), (34)
(¢]
the summation in (3.1) can be carried out using the Neumann series®:
kZ)”'V & T(u+n) 2
—= J(kz) =k* Y —C—— Fi(u+n,—nyv+ Lk*)(u+2n),,,,(2), 35
(2 (kz) ,.5;"0 nC(v+1)° i (u e k2 @) G-

with the identifications n = L, k = cos(8 /2), z = 2k{r,r,csch g, g = n — 2 and v = (N — 1)/2. The result is the following
integral representation for G ™ (see Ref. 10):

G(N)(x’y’k) — (277.)1/2—N/2( _ l')NkN/Z— 1/2,'73/2vN/2

Xf dg(csch q)V/2 —12g2vagikécothay ., (knpeschg), N=123,., (3.6)
0
where

E=ri+r=(x+)/2, n=2rr,cos (6/2) =xp. (3.7)

The above result for N = 2 follows by a separate derivation. The case N = 1 corresponds to Meixner’s one-dimensional
Coulomb system*!

GY= i?]J dq csch ge*™e™E 9] (ky csch q) = (ik) T'T(1 — iv)M }/2( — iky) W2 ( — ikx), (3.8)
(1]

Vv

with the closed form following from Buchholz’ integral representation. For N = 2,

GY= — LJ. dg csch ge*™9e™5°°™ 9 cos (kqp csch q), (3.9)
rJo
which can be reduced to a series of Whittaker functions,
1 d 1
G¥P= — —— I‘(m +——iv)Mﬁ.;’“ — k)W I — ikx), 3.10
mkn,,,;_m |+ ( — iky ( (3.10)

but no further reduction to a closed form is known.

IV. RELATIONS AMONG DIFFERENT 1d
DIMENSIONALITIES z dz

Hostler’s operator [cf. Eq. (1.1)], when applied to a
function of £ and 7 [cf. Eq. (3.7) ], reduces as follows:

ﬁz__l—(a ‘7) 1(‘9)=_1_D2. Dy~ "J, (kn csch g)
£

7m(x—y)\ox dy/ 2m\dy 77 =(—kcschg/2)"p=> " "J,, . (kpcschg). (4.3)

(4.1)
By the well-known derivative formula for Bessel functions, ' Applying Hostler’s operator succesively to the integral rep-

)"z_VJV(z) = (=), (). (42)

Identifying z with k7 csch ¢, we have
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resentation (3.6) then gives the odd-dimensional Green’s
function

GON+L = gNGW (4.4)
and analogously, for even N,
GOV = gNG?. (4.5)

The identity (4.2) can be reexpressed as follows (with
Z—»JE):
D'z~ (Jz) = (= "2~ “+™2 L (J2). (4.6)

Taking #n = 1 and integrating between the limits ¢ and z, we
find

¢ G |o= 1 e, (B,
4.7)

For v>0, the lower boundary term in (4.7) vanishes for
a = + . Thus the analog of (4.6) for negative n (multiple
integration) can be written

Dz—nz—vﬂjv(‘/;) — ( —2)"2_(v_")/2-’v_,,(\/;)-
(4.8)

It is now suggested that (4.6) and (4.8) might be general-
ized to fractional n. For the semi-integral, Eq. (4.8) with
n =1, use (2.6) and evaluate the integral.'’ The result is

— w2 Jv ( \/ZT )
-2

o0

. o g—
-D V2T, () = #f ¢
Jir J:
=1'\/71_V/2+V4Jvm|/z(\l;)- (4_9)

Likewise, Eq. (4.6) works for n = 1. One can therefore write
the square root of Hostler’s operator as

o'2= — (INT) D2 (4.10)
such that
ﬁ”zG(M=G(N+ l)’ fN/szzG(N+”,
N=1,23,.. (4.11)

This does not, incidentally, provide a closed form for G®
since the semiderivative still involves either an integral or an
infinite sum.
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For Z =0, the above reduce to free-particle Green’s
functions. In particular,

G{.-:,) - (ik)—l[eik(x—y)/z i eik(x+y)/2]’
GE = — (i/2)HV(KkR),
G = —e**/27R,

where R=r;, = (x —y)/2. It can be verified that the
Hostler operator and its square root also transform among
the functions (4.12) in accord with (4.11).

(4.12)
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A closed and analytical formula is given for the free Green’s function in a harmonic oscillator
basis. It is very useful for solving the Lippman—Schwinger equation for the scattering of two

clusters within the resonating group method formula.

I. INTRODUCTION

For some problems in atomic or nuclear physics, one is
led to solve scattering equations describing collisions of com-
plex systems formed with identical particles. The exact solu-
tion for such a problem is presently not feasible once the
number of particles exceeds 4. Among the approximate
methods introduced to solve the general problem, the reson-
ating group method (RGM) proposed a long time ago by
Wheeler' is very attractive and powerful. This method and a
related one, the generator coordinate method (GCM), have
been extensively used in atomic and nuclear scattering.” In
the RGM, the N-body problem is transformed into a system
of coupled channel equations for the wave functions relative
to the various partitions defining the scattered clusters. The
coupling potentials between distinct channels are strongly
nonlocal.

Il. RESONATING GROUP METHOD

It is not our aim to enter into detail concerning this
method but we shall give the basic equations necessary for
understanding the philosophy of our paper. The trial RGM
wave function looks like

1W(1,2,...N))

=S & |{[¥., (L2 . N)¥ (N + LM [ox 3D,

(H
where the sum runs over the various channels ¢ defined by
the chosen eigenmodes ¢, and ¢, for the clusters 1 (contain-
ing particles 1,2,..,N;) and 2 (containing particles
N, + 1,...,N) as well as the various intrinsic couplings (col-
or, spin, isospin, etc.) symbolically denoted by [ ] and the
total angular momentum coupling denoted by { }. The state
vector |y.) describes the relative motion between the clus-
ters ¢, and c,.

The variational RGM principle only acts on the relative
function y, while the cluster states ¢, and ¢, are supposed
frozen once and for all. The Schrédinger equation in the
Hilbert space spanned by the RGM function (1) gives rise to
the well known Hill-Wheeler equation®

S [EN,.

The norm N_. and energy H . kernels are, in general, very
complicated as a result of the presence of the antisymmetizer

_Hcc']IXc'>' (2)
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& in the wave function. It is usual to split the contributions
of & into two parts: the one called direct (D) comes from
terms in & analogous to unity, and the other called ex-
change (E) comes from all other terms. The direct terms are
relatively easy to calculate; while the exchange terms are
very cumbersome. Expressing the Hamiltonian as the sum of
intrinsic cluster Hamiltonians plus the relative kinetic ener-
gy K plus the intercluster interaction ¥,,, the Hill-Wheeler
equation (2) is transformed into

[EC_K:‘D)]LYc):z Vcc'(Ec’)LYc')’ (3)

wheree, = E — E, — E_ is the relative intercluster energy
and

Vcc' (Ec’) = KEE) + Vg)c:, + Vﬁg’i - €¢1N§§7) (4)

is some kind of effective potential, usually nonlocal. The
form (3) is quite similar to a Schrodinger equation with
coupled channels, although |y ) does not represent a proba-
bility amplitude because of the nonorthogonality of the ba-
sis. Anyhow, from Eq. (3) one can use the well known meth-
ods of dealing with scattering problems. In particular, the
Lippman—Schwinger equation relates the transition matrix
T tothe potential matrix ¥ [in this case Vis given by (4) and
is energy dependent]:

T=V+VGyT (5)

All the physical information concerning the scattering can
be obtained from the transition operator 7.

Usually the Lippman-Schwinger equation is solved in
configuration or in momentum space in which the free pro-
pagator G5+ = (E + ie — K) ' takes a particularly simple
form. In that case, G ;" has a pole and this may lead to some
numerical difficulties. However, the point is that, within the
RGM framework, the exchange kernels are never calculated
directly in the configuration or momentum space. Most of
the time the cluster functions ¢, and ¢, are approximated
by Gaussians, and the more natural way to calculate the
kernels is to expand y. on peaked Gaussians.* Recently we
proposed”’ an alternative method based on harmonic oscilla-
tor (HO) functions ¢,,. The advantage is that we are not
limited to ground state clusters, but radial excitations can be
considered as well. We proved in a previous paper® that the
exchange kernels

Hg)(n’”';l) = (¢n11H£§)‘¢n'1)
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can always be calculated exactly in such a basis with the help
of Brody-Moshinsky coefficients. Moreover, it can be
shown in some cases, and it is expected on general grounds,
that the exchange quantities are very rapidly convergent in
the HO basis. In practice they are roughly zero once
n,n'>n, =4. In other words, the nonlocal exchange poten-
tials are a very limited sum of separable (in HO basis) poten-
tials. The only problem comes from V{2’ in (4), which is, in
general, local and cannot always be expanded on HO in a
very convergent way. A possibility in that case is to use the
propagator (E+ie—K— V)~ "' in the Lippman-
Schwinger equation. In a number of interesting situations
(electromagnetic interactions of two neutral objects, strong
interaction of two colorless systems, etc). this fortunately
will not be necessary since ¥ {2’ vanishes identically. Thus in
the RGM a natural basis for evaluating the kernels is the
harmonic oscillator one. In solving the Lippman-Schwinger
equation, one must manage matrices of order n. Xn, (n. is
the number of channels), which is around a few tenth. Com-
ing back to the coordinate or momentum space makes neces-
sary (i) additional calculations to express the kernels from
the HO basis to the new basis, and (ii) the discretization of
the r or p axis into 1, = 100 points. This will result in dealing
with matrices of order n. X n,, which is typically of several
hundred. From these remarks one sees that there is a great
advantage to solving the Lippman-Schwinger equation in
the HO basis directly.

lli. MATRIX ELEMENTS OF THE FREE PROPAGATOR

But to perform such a program we absolutely need the
expression of the free propagator G 5 in the harmonic oscil-
lator basis. As far as we know this analytical expression was
never published and the main topic of this paper is to derive
it in a closed form.

Thus we are faced with the problem of evaluating

G O+nn'1 (E’b)

= lim (@i, (D) (E + i& = K) "' |@u1n (B))- (6)

The kinetic energy operator K = p?/2u is invariant under
rotation and it is the same angular momentum /m that ap-
pears in the bra and in the ket. Let b be the size parameter for
the harmonic oscillator wave function; it is more convenient
to define the space vectors r in units of b, x = r/b, and the
wave vectors k in units of b ~!, q = b k. The HO wave func-
tions are defined in the configuration space with the usual
Moshinsky’ phase conventions:

(x|nlm) = @, (X) = [ U, (x)/x]Y,,,, (2),
U,x)= [\/Z(n!)/l"(n + 1+ 3) ]

Xxl+le—xz/2L1+1/2(x2), (7)
Livngy - 3 (o TOHIED 5
=0 n—s)T(s+714+3 s

are the Laguerre polynomials.

In the momentum representation |q) the HO wave func-
tions [ Fourier transforms of ¢,,,,, (x) ] have the same form as
in the coordinate representation but differ by an important
phase factor. Explicitly
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(q|nlm) = (2m) 32 f e T, (X)dx

= (=D g, (q). (8)
It is more convenient to use the momentum representation
to evaluate the Green’s function. For typographical reasons
we will omit the ( + ) (outgoing propagator) and (0) (free
propagator) superscript indices in all that follows having
always in mind that we deal with the free outgoing propaga-
tor. One can write

Gnn'I (E’b)
=(—1D"""Qub*/#)

Xhm | @ %, (@)@ () [¢6 — g +ie] " 'dq, (9)

with g3 = 2ub’E /#. The integration over angles is trivial
and we are left only with the radial integration

A=lim | U, (@)U, (g)[g —¢ +ic] ' dg. (10)

-0 jg

Using the well known property
lim[ g} — ¢* + ie] ™!
=0

=PP.[g —¢'] ' — inb(g5 — ¢*), (11)
the Green’s function can be split into two parts: the real part
G® coming from the principal part P.P. and the imaginary
part G' (present only for scattering problems g2 > 0) com-
ing from the delta function. The imaginary part is easy to

calculate; the real part is more involved. One has to evaluate
the following integral:

R =PP. Jw e Tgt?
(0]

XLL*’I/Z(qZ)Li:{—]/Z(qZ)[qZ_q(Z)]—l‘ (12)

Let us remark that L.t (g*)L'*?(g*) = Py(g%) is a
polynomial of degree N = n + n’. The trick is thus to isolate
the singularity of (12) in a much simpler integral. The origi-
nal integral can be decomposed into two terms R, and R,.
Explicitly

R=R,+R,,
with

R = P.P.f e T[g@" Py (g") — @ PPN () ]
0

X[¢—q] "dq (13)

and

Ry = Py (GIPR. [ e e[~ @] d

0

In R, the pole disappears and the resulting integrals are
standard. We are left with polynomials in g2 whose coeffi-
cients b, are purely geometrical and can be computed and
tabulated once and for all.

The integral R, containing the pole is related to the com-
plex error function erf(z).® After some manipulations, one
gets
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P.P.f e 7[¢—q3] 'dg
(1]

F(x) =e‘*zf e dt

0

_m e % erf(igy) = — _‘/j F(qy), (14) is the real Dawson integral.
24, 9o Now everything is complete. Let us summarize the re-
where sults:
i
G,,,,',(E,b) = Gf",,(E,b) + iGi,,',(E,b), (15)
o 12ub?
Gl (Eb) = (= D" " U, (g0) U (90), (16)
i 2q,
2 ; I+n+n
R (Eb)=(—1)rtr+1 —2% [i U, (90) Uni (goderflige) + 3 bk<n,n',l)qé"], (17
24, K=o
with
bk (nyn’)l)
—p+lon—w (n!n'!(Zn +2/4+ DI2n" + 21 + 1)!)‘/2
(n+ DA+ D!
n n' i M- ! ! g !
Xy )y (—1)p+» 2I+2p+2p' =200 (p + DIP' + D) (18)

p=0 p=0,p+p>k—I+1

The geometrical coefficients b, (n,n’,/) fulfill the relations
by (n,n' ) = b, (n',n,0D),
b, (nn')=0, ifk>n+n"+1,

and g, is given by (9).

IV. CONCLUSION

The expressions (16) and (17) give the free propagator
in the HO basis; the pole has been eliminated analytically
and this is a great advantage. This procedure allows us to
solve the Lippman-Schwinger equation in the HO basis; this
will be very well suited for scattering equations of Hill-
Wheeler type with kernels rapidly converging in the har-
monic oscillator basis. In fact, this method was applied with
success in the description of nucleon—nucleon interaction in
terms of quarks,® of QQgg multiquarks,'® or of the dilambda
system.!!
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Asymptotic transition probabilities
J. H. Arredondo R.®

Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de

Meéxico, Apdo. Postal 20-726, México, D.F., Mexico

(Received 17 June 1987; accepted for publication 3 May 1989)

The impact parameter model for the scattering of two heavy particles and a light one is
studied. The asymptotic behavior of the transition probability is studied when the relative
velocity of the heavy particles goes to zero. In particular, rigorous proof is given from first
principles, within the context of the model, of the validity of Massey’s criterion.

|. INTRODUCTION

In this paper we consider the impact parameter model
for the scattering of a light particle and two heavy ones. In
this model one assumes that the heavy particles are infinitely
massive and that their motion along a classical trajectory is
not affected by the light particle. In this approximation the
influence of the heavy particles ~n the light one is represent-
ed by time-dependent potentials. We will neglect magnetic
effects and will take the potentials of interaction between the
light particle and the heavy ones to be separable.

For any positive integer m, let L>(R™ ) be the Hilbert
space consisting of all complex valued Lebesgue measurable
square integrable functions on R”. For teR !, H(¢t) =H,, (1)
is the following self-adjoint operator' in L *(R™) with do-
main H,(R™) (see Ref. 2), the Sobolev space of order 2:

H()=—{A— A V—A,V,, (1.1)
where A is the Laplace operator,*

m 62
A=252

i=1

with derivatives in the distribution sense. Also, A; and 4, are
real, A, >A4,>0, and Vis the rank 1 operator,

Vo =g(g9), (1.2)

for all peL?(R™), and g a fixed function in L?*(R™),
llgll = 1, with (-,-) denoting the scalar product in L *(R™)
antilinear on the factor on the left. Moreover, forgeL 2(R™),
we define

V,$=8,(8,9),
with
8, (x) =g(x —p(n)}. (1.4)

Here p(t) is a function from R Yinto R™, two times continu-
ouslydifferentiable and such that, for some ¢, >0,

[[p(6) — ¢,

(1.3)

—v, t]I<C/t]|S Y+t ,

dk
217;[/0(!) —c,. — v, t]|<C,

V+it>t, and k=12. (L.5)

Here @ >0, and ¢, and v, are vectorsin R™ with v, #0.
Furthermore,

) Present address: Departamento de Matematicas, Universidad Autonoma
Metropolitana, Av. Michoacan y la Purnsima, Iztapalapa, C.P. 0934
Apdo. Postal 55-534, México, D.F., Mexico.
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O<v=lv, | =v_[«1 (1.6)

and

<vf, —it_<i<t, and k=1,2. (L7)

d k
—p(1)
‘ de* £
We will assume that for some fixed positive constant M, and
Bbeing anyof ¢ _, |¢, |, or C;, k =0,1,2, one has

B<M. (1.8)

The state vector of the light particle satisfies the Schro-
dinger equation*

19wy = H,(H¥ @) .
at

(1.9)
The solution to (1.9) is given by a two parameter family
of unitary operators’

U,(ts), tseR'. (1.10)

Let H;, i = 1,2, be the following self-adjoint operators
with domain H,(R™):

H = —1A—4V. (1.11)

Since ¥V is rank 1, from the essential spectrum Weyl’s
theorem,® the essential spectrum of H,, i = 1,2,is [0, + ).
It follows by explicit calculation that either H; >0 or H, has
at most one negative eigenvalue — Q, with multiplicity 1.
We assume in this paper that this negative eigenvalue — Q,
exists for H;, i = 1,2. Note that since A, > 4, it is enough to
make the assumption for H,, and that for given g one can
find such a 4,.

Let P, be the orthogonal projector onto the nondegener-
ate ground state of H, (i.e., the orthogonal projector onto
the subspace generated by the eigenvector for the negative
eigenvalue corresponding to the minimum of the spectrum
of H,). The existence of the Moller wave operators

Q, (v) = s-lim U, (0,1)e “"P, (1.12)
Lt

is proved in Howland,” Yajima,® and Hagedorn® in the case
of local potentials. We give in Lemma I1.3 the simple proof
in our case of rank 1 interactions (see, also, Arredondo'?).

Let ¢, ||#|| = 1, be a ground state of H,, and assume that
initially the light particles is in the state given by ¢. Then the
probability that after the interaction the light particle re-
mains in the state ¢ is given by®!!

P(v) = |(6,Q, (1)*Q_(v)¢)|?

= |[(Q..()$,Q_(v)P)|*. (1.13)
We denote by F the Fourier transform as an unitary
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operatorin L >(R™ ). We have proved the following theorem.
Theorem I: Let H, (¢) be defined by (1.1)-(1.8) with g
and Fgin H,(R™). Then

|P(v) — 1| = O0(v),

Here v is defined by formula (1.6).

The well known fundamental experimental criterion of
Massey'?* states that transitions between states of different
energy are improbable if fiv/d < 1, where d is the range of the
interaction and v = |v| is the relative velocity between the
particles in the scattering process.

Theorem I gives, apparently for the first time, a rigorous
theoretical proof from first principles of the validity of Mas-
sey’s criterion.

v-0. (1.14)

il. PROOF OF THEOREM |

Lemma II.1: Let g and p be as in Theorem I. Then if
A,>A,>0, the ground state energy, — E(¢), of H,(?) is
nondegenerate and lies for all zeR ! in the interval [ — E,,
— @], where — E; is the ground state energy of the self-
adjoint operator — 1A — (4, +A4,)¥V. Furthermore,
— E(1) is a twice continuously differentiable function of z.
Moreover, there can exist other nonpositive eigenvalues only
in theinterval [ — Q,,0]. The eigenvector for — E(¢) canbe

J

[1 — AllE¥/2 + E(n)) )
—A1(8,.8p°/2 + E(1)™")
The equation has a nontrivial solution if and only if

p2 —1/2 2
(1 _ g(—+E(z)) )(1 — A,

2
We show now that the ground state — E(z) satisfies

2

— E(t)< — @, < — Q. Note that — Q, is strictly negative.

Let us take a fixed E > 0 independent of t. We define

D (1) = (A + Ay)a + A, A f(r) —d?), (2.8)
with

a=|g?/2 + B) =2 (29
and

£ = @8, (/2 + E) ). (2.10)
We have in this case

sup  Dp(0)<(4, +4,)a, (2.11)

—w<i<®

inff De(t) =Dg(+ )= (A, +4)a—1,4,a*.
(2.12)

Note that in (2.11) the equality will be fulfilled if and only if
p(2) isacurve through the origin. Then — E'is an eigenvalue
for H, (¢t) if and only if

Dg(+ »)<I<  sup

— o <I< +

D (<4, +4y)a.
(2.13)
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—A,(28,0°/2+ E())™") H (V)
1— /Izllg(pz/z + E(t))_”2||2

)—~1/2

2
E(f— + E(1)

taken as
V() =F'Q; '(p?/2+ E(®)) 'c(1)g, +8), (2.1)
with
A,(8,,8p%/2 + E(1)) !
o) = Z(gf’jg(”z + E )ll/i _, (2.2)
1 - 4,18(p°/2 + E(0)) 7|
and @, ' a normalization factor in order that | ()| = 1.
Here~F ~! denotes the inverse of the Fourier transform func-
tion . Moreover,
1 P2 E -1z g v . 3
<||8l=—+E(t <—, teR 2.
2+ 4, g(z ()) 7, (2.3
and
p2 —1 ~ ~
0.=||(Z+Em) s, +a|
2 -1
>(1 —ﬁ> (("’—+Eo) ||, VeeR'. 2.4)

Proof: Let W(t) be an eigenvector with eigenvalue
— E(t) and E(¢) > 0:

H,()¥() = —E@0)V¥(r) . (2.5)

If we apply the Fourier transform® F on both sides of Eq.
(2.5) and take the scalar product withg = Fgand g, = Fg,,
we get, in matrix notation,

(g, ¥) |~ (2.6)

)=k (sa (5 20) )

Furthermore (4, + A4,)a — A,4,a* = lifand only ifa = 1/
A,ora=1/4,. We also have

(2.7)

sup (4,,4,)a — 4,4,a°

= (A, + A,)a — 4,487, _ (A, + A) /2R A,
— (4, + A,) /A4, 1. (2.14)

Thenif — E <Qisaneigenvalue of H, (¢) for some reR !
either

1/(A; + A,)<a<1/4y or axl/A,. (2.1

Since a is a monotone decreasing function of E, we ob-

tain that either —E<—EWn<—-Q or
— Q,< — E(1) <0, where — E; is the ground state of
— (A, +4,)V. Note that since A,>A4, then

— @, < — @,, and that by explicit calculation
18P%/2 + @)~ V||* = V/4,, (2.16)
18(0*/2 + E) ™' *P = 1/(4;, + 42) - (2.17)

From (2.9) and (2.15)—(2.17) one obtains (2.3).

We prove now that there is only one eigenvalue of multi-
plicity 1in [ — E,, — Q,]. Let A(¢) be a continuous function
from R ! into R™ such that 4(r) =p(2) if |¢| > £, for some
t,>0and h(0) = 0. Now consider ITL, (t) defined as H, (1)
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with 4(z) instead of p(7). We prove by explicit calculation
that

dmP, _; _o,0) =1, (2.18)

where P, (2) is the spectral projector of H, (¢) associated
with the set 4. By a continuity argument as in Arredondo, ™
we can prove that

dimP _z _o,()=1, (2.19)

for every teR '. Consider again H, (¢) as in (1.1) with our
original p(#). From (2.19) we know that, for |¢| > ¢,

J

Eit) -0 =

dim P _g, _g (N =dimP_g _o,(1) =1, (2.20)

where P, (#) denotes the spectral projector of H, (¢) asso-
ciated with 4. Using the same continuity argument as in
Arredondo,' one proves that (2.20) is true for all zeR .
Then,

dimP _g _q () =1, for all teR!. (2.21)

Moreover, the eigenvalue corresponding to the ground
state, — E(t), is two times continuously differentiable by
standard perturbation theory.'

It follows by (2.7) and (2.16) that E(¢) must satisfy

1(88,(0*/2 + E())™H|?

(1/2, — ||g(p*/2 + E(0))~ 3| ®) |Ia*/2 + E()) 20?72+ Q) ~V3*

Note that since for the ground state eigenvalue, 1/
(4, + 4,)<ag1/4,, we conclude that

C,<l/A,— ||_§(p2/2+E(t))'”2|l2<C2, (2.23)
for some C,,C, >0, and every t€R '.
By (2.6) we see that
I A(gW) (&8P /2 + E(D)™)
8,8 = 1(8,¥) (&,.8lp ) (2.24)

1—A,|30%/2 + E(1)~

Taking the Fourier transform in H, (1)¥(¢) = — E(1)¥(¢)
weobtain (2.1) and (2.2) from (2.24). We now prove (2.4).
From (2.2), (2.3), and (2.7) one obtains

1{2”2 '

fe(t)] = ( 1/4, — ||g(p*/2 + E(0))~ " ),/2
1/4, — ||8p*/2 + E(0)~'72|?
giz/ﬂq <l1.

From this one obtains (2.4) easily. This proves the lemma.[]

Lemma IL.2: Let g and p be as in Theorem I. Let ¥(?)
and — E(t) be the ground state and its corresponding eigen-
value of the time-dependent self-adjoint operator H, (z).
Then one has the following estimations:

(2.22)

i
Here C,, and T, are positive constants depending only on
M as given in (1.8).
Proof: Statement (2.26) follows easily by noting (1.5)—
(1.7) and the formulas given below. We prove only (2.25).
We want to show at first that

756)
dt v

Without loss of generality we can assume that p(#) is of the
form

c
<—t’;i, [>Ty (2.27)

p(t)=(p,(1),0,0,0,...,0) . (2.28)
m — | times
We note that
loi(e/o)[>4 -1l t]> Ty,
d* (t .
dt"p <C,y>» VR and k=12, (2.29)

One can see that

- (== () ()
v ) dt \v v v v
(2.30)
From (2.30) we obtain the expression for — (d /dt)E(t /v):

d* a4 gt CM d* lll CM
ark NPEl NPER — A=z (o(E)p) () ®( 1)z
dt*  \v/| "t dt* \v t A WL ~)&
V|t|>Ty and k=12, (2.25) O\~ [t ¢
y @A) C)  ew
e 7r ()] <cw e ||l <c AP
e dt* \v d’ v where - denotes the dot product in R™. From (2.29) and
k=1.2. (2.26) {2.1)-(2.4) one has
i
B ] ol [ s Can
v
We estimate now the second term on the right side of (2.32). This term is equal to
d, —-1-,( ) 32 gPC/OR 2( ( ))_1 m
v P11&(P) +E d"p
gaml| P o’ |
t d? AN d
= v ! ’(—)fe‘”"/”“’ ( )2( +E(—)) d™pl<=2, |t|>Ty, 2.33)
) il 32 p1lg(p)] " 7)< t]> Ty (
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where we have used (2.29) and the hypothesis on g.’®'” Similarly, one can prove by using (2.2) and (2.3) that
le(t/V)[KCp/t? (t]> T, . (2.34)
One obtains (2.27) from (2.30)-(2.34). We now prove (2.25) for (d /dt)¥ (¢ /v). From (2.1)—(2.4) one can see that

w0)=rlaeso()ren 5o

Here F ~! denotes the inverse of the Fourier transform function and
G(N=(p*/2=E®1) '(c(t)E, +8) -

Thederivativesof Q ) behavefor |¢ | > T, asthederivativesof E(¢ /v) and of ¢(¢ /v). Here one uses (2.4). The L 2norm of the
derivatives of G(f /v) also behaves in this manner. By using (2.3) and an estimation as in (2.33) one can see that the first
derivative of c(# /v) behaves as O(1/¢?). Since we have already seen that (d /df) E(t /v) is of this order, we obtain (2.25) for
k = 1. Now we note that

- = () + (@O O ) + (O E 20 +C)
——E ¥ -|¥ - — - |=—H]|-}|¥|- Y- |—H,J=-)|—¥Y-]]. .
dr? (v) (()ldt H”(v v + d \v/'ldt "\v v + v dtH v/idt \v (2.33)
From (2. 29) and the hypothesis on the function g we get

<C, ¢=12. (2.36)

U

’ ‘ dt? v
From (2.36) and the just proved estimation for (d /d) ¥ (¢ /v) we obtain that the last two terms on the right side of Eq. (2.35)
are of order 1/¢2. To estimate the first term on the right side of (2.35) one can proceed as above: we note that

d? d’ USI V7 A ol 1 px
S H, (1) = (—-e""“"" ,‘)—e_’p(’“‘ F. (2.37)
d 2 r+§ 2 dt r g dt s g

Here F denotes the Fourier transform. Furthermore, if r = 1,2,
d_e—ip(t)'p:_e—ip(t)-p z (i)aﬁ.ﬁ:dﬂlﬁz (p"p)ﬁ'(p"‘l))ﬁ’ . (2.38)
dt’ Bi+28,=r

Here f3;, i = 1,2 are non-negative integers. Therefore, as in (2.32)-(2.34) with (2.1)-(2.4) and (2.29) we get

(=)

c(é)l +§1§ fe"f’“/“"l’a—ze—"ﬂ“/”)'v(d—r(e”’"’”"”)lg(p)lz( +E )_ld"‘p 4
1

ap? dt t?’
. . .
where we have used (1.5)—(1.7), (2.38), and the hypothesis  the equality P?(¢) = P(¢) one obtains
0;1 tl;; gzcgi)o;(g-/B)ydusing (23(51);( 22) 3?) w;\tllxen Tgmj: PPP=0, P=i(AP—PA).
that { t /v) decays as to),forall |#|>T,,. . .
very similar argument as the one given for the first derivative 1t follows then that W(1) = P(1) U, (4, T) 1s also a solution
of ¥ (¢ /v) canbeused to prove thatd 2/dr 2 (t /v) isoforder  © (2.40)—(2.42). This is only possible if
1/¢2. This proves the lemma. a W) =P(t)U,(t,T) = U, (t, T)P(T) . (2.44)
We prove some equalities before we state some results W
. . 18 e take
on the adiabatic theorem.

[t]> Ty (2.39)

Let P(¢) be the projector onto the subspace generated by V(1) =~ #O(1), (2.45)
the ground state — E(r) for H, (¢). The operator differen- d .
tial equation B(t)= — Imf 3 (W(s),¥(s))ds. (2.46)
X(0) =id(OX(), (240) 1t follows that
where (P, W) =0. (2.47)
. . We get from (2.40)-(2.47) that W{(¢ t) satis-
A== APOPD = POPD), (2.41) fy thge followiilzg ini)tizfl vahfe il:ctor(di)ﬁtig;)t;?i;itzon:t )
and with initial value @(t) = P(t)¢(t), (D) =¥(T).
X(T)=P(T), TeR, (2.42)  Therefore, we must have
has the nnique solution given by W(HW(T) =¥(t), VYT,eR. (2.48)
U,(t, THP(T) . (2.43) Now let the time-dependent operator H,,, () be de-

Here U, (1,5) is the two parameter family of unitary opera- fined with (1.1) by
tors® that solves (1.9) with — A(¢) instead of H, (). From H, (t)=H/ t/y) (2.49)
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and
Uu/y(tss), t,SeR ! ’ (2.50)

and two parameter family of unitary operators associated
with i, () by (1.9). We take the adiabatic transformation
for t,seR ! and y#0,'%-%¢

t
IL (t,s) = exp[ — iyj E(s)ds] U,,(rtysy. (2.51)
We also define

Y(t) =(H, () + E(n))" (1 — P(1)). (2.52)
By using (2.40)—(2.44) and (2.51) one obtains
2L, (L) W(6)) = T (T W) (2.53)

We take T= — 7 in this identity and we apply it to W( — 7).
Integrating then from — 7 to 7 and noting (2.48) we get

I, ( —7,n)¥(r) — U(—7) =f I, — r)¥(s)ds.
- (2.54)

Now we integrate this last integral by parts,'®%'->

n,(—-nn¥(r) —¥(—1)
o (" [d -
= (iy) ‘J_T [E; I, ( T,S)]T(s)\l’(s)ds
= (iy) 'L (- 1,)Y)H¥()|,

+( —iy)“‘f I, ( —r,s)dis[r$}(s)ds. (2.55)

We make the change of variables = r/vand takey=1, 7=t/
v. From (2.51) and (2.55) we get

ol ()
v v v
—efi [ £(2)aa)(;)
—t U U,
<lim sup vJ dr i’—[T(f)i @(.’:)} ’
- dr v/dr \v
= 0(v). (2.56)

i~ + o
Here we have used Lemma I1.2. Furthermore, for the deriv-
ative of Y one can see that

lim sup

t— + oo

|

=)

r U

|G () 22N C)
-0 C) -2 G

<C (G — @), (2.57)

for some positive constant C. Here we have used Lemma
II.1, Lemma 11.2, and (2.36). Therefore (2.56) is proved.
Lemma II.3: The Moller wave operators

Q. (v) = slim U,(0,5)e~ ""P,

t— + oo
exist.
Proof: From (1.9),

4
dt
where ¢ is the normalized ground state of H,:
Hg¢= -0,
1 { A )*‘
= -+ ¢g.
’ ZE A
It follows, for [#| > |7| > Ty, >0, that
H[U,(0,r)e = "™ — U, (0,7)e~ "H1]4||
1
STE 2 —1
872+ Q07|

r o pz -1
«J #lea(5e) )
<Cv[72(r ™ = |17, (2.59)
by the hypothesis on the function g. Then the left side of this
last equation tends to zero as 7,#— + oo. This proves the

lemma. O
Proof of (1.14): Letting r— + o in (2.59) we obtain

e, ) —U,0,ne"]g|
N 2 1 -1
lg(p*/2+ 0"

< al(wa(5e)))

<C v 7?70

U,(00)e~ ¢ =iU,(0,0)g,(g,$)e"®,  (2.58)

(2.60)
By using (2.60), we get

| 1605 00 0)66)] — 6] | <limsup {12 8.2, 039) — (0,0, — L)e 4,0, (02)e " 0g)]

<lim sup

t— + oo
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U, (i ,
v

o) (02~ )
(e (- e | (Dl
oo Yoo}
(-0 -eofe | o)

|

’ . (2.61)
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Here ¢ differs from ¢ only by a phase:
g=e %,
+ oo
B= — Imf (W(s),¥(s))ds.

It follows from (2.1)-(2.4), (2.22), (2.45), (2.46), (2.62),
and (2.63) that

lim ||¥(z/0) — 4|l =0(1/1) .
-+

(2.62)

(2.63)

(2.64)

Similarly, ¥ (¢ /v) —¢@,t— — . Therefore, from the adiaba-
tic estimate (2.56) and (2.61)-(2.64) we get

| (0% ()Q_()¢.0)| — |(8.4)] | =O0(), v-0.
(2.65)

This proves (1.14).
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Generalized Taub—-NUT (Newman-Unti-Tamburino) space-times have compact Cauchy
horizons and (generically) admit one (spacelike) Killing field in their globally hyperbolic
regions. A large family of such vacuum space-times can be defined on circle bundles over

K X R, where K is a compact two-manifold, with the circular fibers of the bundle being defined
by the orbits of the Killing field. For the simplest case of product circle bundles the symmetry
preserving vacuum perturbations of such backgrounds to arbitrarily high order in perturbation
theory are considered. The analytic form of the general solution of the nth-order perturbation
equations for all » is derived under the restriction that the perturbations considered preserve
the (one Killing field) symmetry of the background. The evolution equations are treated first
and then the constraint equations are imposed, recovering along the way the well-known result
that linearization instabilities arise only if one attempts to perturb from one {Killing)
symmetry class to another. Gauge transformations, decompositions, and the natural
symplectic structure associated with the perturbation formalism are also discussed. The
possibility of extending these results to the case of symmetry breaking perturbations and of
using the results to derive the asymptotic behavior of solutions near their singular boundaries

is briefly discussed.

1. INTRODUCTION

One of the main open problems in classical general rela-
tivity is the understanding of space-time singularities. Even
if quantum effects should ultimately be shown to modify the
nature (or even the existence) of the singularities predicted
by Einstein’s theory, it seems likely that this should happen
only at distance scales on the order of the Planck length or
beyond. Thus one would expect that the approach to the
singular state predicted by general relativity should remain
valid up to corresponding large values of space-time curva-
ture. The domain of applicability of the classical theory
would thus extend from Planck scales to cosmic distance
scales, a range of at least 50 orders of magnitude.

One of the main difficulties in studying singularities is
that of producing reliable approximation methods for solv-
ing Einstein’s equations near a region of divergent curvature.
In this paper we develop a new approach to this problem by
considering the perturbations, to arbitrarily high order, of a
family of non-curvature-singular space-times, the general-
ized Taub-NUT (Newman-Unti-Tamburino) space-times
discussed in earlier work."? The generalized Taub-NUT
space-times all have compact Cauchy horizons at the boun-
daries of their globally hyperbolic regions and each has at
least one Killing vector field spacelike in the globally hyper-
bolic region and null on the Cauchy horizon. In the analytic
case (to which we restrict our attention) the metrics of these
space-times can all be expressed in terms of certain conver-
gent power series expansions about the horizon surfaces
themselves. They comprise, on any given allowed manifold,
an infinite-dimensional family of inequivalent solutions of
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the Einstein equations. Though infinite-dimensional this
family contains (roughly speaking) only half the number of
free functions one would expect to have in the general solu-
tions of Einstein’s equations of the chosen symmetry type.
This is hardly surprising—even within the chosen symmetry
class one expects the generic solution to exhibit a curvature
singularity instead of a Cauchy horizon at the boundary of
its maximal Cauchy development. Unfortunately, however,
the method used to construct the generalized Taub-NUT
solutions (a slight extension of the Cauchy-Kowalewski
theorem) does not seem to be directly applicable to obtain-
ing the general solution within the given symmetry class.
This also is hardly surprising since the generic solution, in
view of its expected curvature singularity, seems unlikely to
admit an expression in terms of convergent expansions about
its singular boundary. Of course, one can always expand the
general solution about a nonsingular (Cauchy) hypersur-
face in the globally hyperbolic region but, uniess one is mi-
raculously able to sum the infinite series expressions explicit-
ly, this technique is unlikely to shed much light on the nature
of the singularities such general solutions are expected to
include.

In this paper we consider the sequence of linear prob-
lems generated by perturbing Einstein’s equations, to arbi-
trarily high order, about an arbitrary generalized Taub-
—-NUT background space-time. For the present we only
consider perturbations that remain within the given symme-
try class (of one spacelike Killing field) but we believe that
the same methods are equally applicable to the general prob-
lem of nomsymmetric perturbations. Our main results in-
clude the determination of the form of the general solution of
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the nth-order perturbation equations for arbitrarily large n.
In a sense we accomplish this by showing that one can “fac-
tor out” the singular parts of the nth-order perturbation
functions and determine the analytic coefficients of these
singular factors by means of the extended Cauchy-Kowa-
lewski theorem alluded to above. At first order our tech-
nique is quite analogous to the classical Frobenius method
for solving an ordinary, linear differential equation near a
regular singular point of that equation. At higher orders the
technique is similar except that we now encounter inhomo-
geneous, singular terms that arise from all the lower-order
perturbations. Remarkably we find that the Frobenius-type
approach can be extended to handle these singular source
terms and to determine the form of the general solution of
the nth-order perturbation equations for arbitrary .

The plan of this paper is as follows. In Sec. I we recall
the main features of our (background) generalized Taub-
—NUT space-times and derive the form of the general solu-
tion of the nth-order perturbed evolution equations for per-
turbations that remain within the chosen symmetry class. In
Sec. I we impose the perturbed constraint equations and
discuss gauge tranformations, decompositions, and the nat-
ural symplectic structure for our perturbation formalism. In
Sec. IV we briefly discuss several possible extensions and
generalizations of our work. In the future we hope to show
how one can collect together the “dominant singular terms”
from each order and sum the resultant truncated series to
determine the asymptotic behavior of the perturbed solu-
tions near their singular boundaries.

Il. SOLVING THE nth-ORDER EVOLUTION EQUATIONS
A. Generalized Taub~-NUT space-times

The main property we desire for our background solu-
tions is that they admit compact Cauchy horizons. Com-
pactness corresponds to the physically interesting boundary
condition of a closed universe whereas the existence of a
Cauchy horizon ensures (at least in the analytic case) that
we can express the background metric in terms of conver-
gent power series expansions about the horizon surface it-
self. A compact Cauchy horizon has a null geodesic gener-
ator passing through each of its points and lying entirely in
the horizon surface. If the null generators are all closed
curves then the horizon surface must have the structure of
either a circle bundle or a Seifert manifold (which is covered
by a circle bundle).>* In these cases Isenberg and the author
have shown that any analytic vacuum (or electrovacuum)
space-time with such a horizon necessarily admits a Killing
vector field null on the horizon (and thus tangent to its gen-
erators) and spacelike in a globally hyperbolic region neigh-
boring the horizon (where its integral curves are also
closed). Thus a globally hyperbolic region neighboring the
horizon has the natural geometrical structure of a circle bun-
dle or a space covered by such a bundle. In particular, the
Taub regions of the Taub-NUT solutions are (nontrivial ) S
bundles over S?x R.

Isenberg and the author are attempting to extend this
result with a proof of the conjecture that if the generators of
the compact horizon are not closed then there is nevertheless
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a Killing field tangent to the horizon generators and further-
more the dimension of the full isometry group for the space-
time must be greater than or equal to 2. The last assertion
follows from the fact that the isometry groups of compact
Riemannian manifolds are necessarily compact whereas the
isometry group generated by a single Killing field (with non-
closed orbits) acting on a suitably chosen Cauchy surface in
the globally hyperbolic region would be noncompact. If the
stated conjecture is true then clearly the circle bundle hori-
zons (and those covered by circle bundles) would provide
the “largest” families of vacuum space-times admitting com-
pact Cauchy horizons since the other families would neces-
sarily have higher-dimensional isometry groups.

Because we wish to treat space-times having only one-
dimensional isometry groups and because the perturbation
of spatially compact vacuum space-times from one symme-
try class to another is beset with linearization instabilities>®
we find it most convenient to choose background solutions
admitting only one Killing vector field and thus belonging to
one of the S '-bundle (or Seifert) families mentioned above.
We therefore consider vacuum space-times that are S ! bun-
dlesover K X R, where K is an arbitrary, compact, orientable
two-manifold. For simplicity we shall restrict our attention
to the trivial bundles K X R X.5'—K X R, though the same
methods could certainly be applied (by suitably patching
together local trivializations) to handle the nontrivial bun-
dles as well (see Ref. 2 for the treatment of the nontrivial
bundle S3*XR->S2XR). We shall refer to such vacuum
space-times having S '-symmetric, compact Cauchy hori-
zons as generalized Taub-NUT (GTN) space-times, al-
though, strictly speaking, that term ought to be reserved for
the bundle S>X R—S?XR.

In the following we let {x°, @ = 1,2} represent local co-
ordinates on the compact two-manifold K, x* (defined
mod 27) represent an angle coordinate on the circle, and
x° = teR represent the “time.”

The Lorentzian metrics on ¥ =K XR XS are ex-
pressible in the form

ds’ =Yg dx* dx”
=e ¥ —N?dt?+g,, dx"dx")

+ 12 [k dx® + B, dx°]?, 2.1)
where k is a nonzero constant and @ /x> is a Killing vector
field. By analogy with the well-known Kaluza—Klein—Jor-
dan reduction we may view ¢, B, dx°, and
(—N?dt? + g, dx°dx®) as a scalar field, one-form, and
Lorentzian metric, respectively, induced on the base mani-
fold K X R by the space-time metricon X X R X.S'. Forsim-
plicity we have imposed the coordinate condition of zero
shift vector field, which corresponds to dropping the time
component of the one-form field and the two-dimensional
shift field of the Lorentzian metric induced on K X R.

The line element (2.1) degenerates at ¢ = 0. However, if
we reexpress it through the change of coordinates

t'=1t% x¥=x>—(1/k)Int, x* =x°, 2.2)

then we can easily show that the transformed metric is ana-
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lyticr and  Lorentzian on a  mneighborhood
N =K XS'X (— A,A) of the surface ¢’ = 0 provided

(1) g’ x™), N@t'x™), B.(t'x")dx,

and g, (¢',x°" )dx” dx*
(ii) N>0and g, is positive definite on ./
(ili) ((N?—e*)/4t")
The transformed metric has the form

are analytic on ./

is analytic on /",

ds® =Yg, dx* dx”

= (—e #/41")(N? — ") (dt')?

+e” 2¢gab dx® dxbr
+ &t [kdx* + B, dx*']?

+e?dt'[kdx> + B, dx™]. (2.3)

For such a metric it is easy to show that

(iv) the surface ¢’ = 0 is a null hypersurface with g /dx*
tangent to its null generators;

(v) the Killing field 3/dx”' is spacelike in the region
t'>0 but timelike in the region ¢' < 0—its orbits
there being closed timelike curves.

Space-times satisfying the conditions (i)-(iii) above are
globally hyperbolicin the regions ¢ ' > O (which were covered
by the original charts with either ¢ > 0 or < 0), have Cauchy
horizons diffeomorphic to K X.S ' att’ = 0, and have closed
timelike curves through every event in their acausal exten-
sions ¢’ < 0. For each such space-time, a second, inequivalent
extension through the Cauchy horizon can be defined by
introducing the chart

'=x*4 (1/K)Int:, x* =x° 2.4)

instead of (2.2) and proceeding as before. These two exten-
sions correspond to the well-known pair of extensions for the
Taub space-time that cannot simultaneously be accommo-
dated within a Hausdorff manifold.

The Einstein equations for a metric of the form (2.1) are
written out explicitly in Egs. (2.4)-(2.6) of Ref. 1. As dis-
cussed in detail in that reference one may prove the existence
of analytic solutions of Einstein’s equations having all the
properties (i)—(v) above by imposing a suitable coordinate
condition to fix the lapse function N and applying the ex-
tended Cauchy—Kowalewski theorem sketched there and
provedin detailin Ref. 2. Every choice of analytic initial data
{¢ B8 (0x°) specified over K (with # a function,
B, dx*a one-form, and &, dx*dx® a Riemannian metric on
K) determines a unique, analytic solution of Einstein’s equa-
tions having all the properties (i)-(v) above provided the
lapse function is chosen to satisfy both conditions (i)—(iii)
above and the condition

(vi) (NAPg), =0, (2.5)

where Pgis the determinant of g, . These restrictions lead to
the requirement that

N = (#/P8)7g,
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t'=1% x3

(2.6)
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which fixes NV uniquely.

The rigid coordinate conditions described above were
chosen originally to simplify the form of the Einstein evolu-
tion equations and are not strictly necessary for the analysis
to follow. Any choice of lapse and shift that still permits one
to apply the extended Cauchy-Kowalewski theorem would
probably work just as well. For simplicity, however, we shall
retain the coordinate conditions of zero shift and a lapse
satisfying (vi) above in the present discussion.

Many of the solutions determined by data {¢ B, Eant
prescribed on K are isometric to one another. In order to
characterize the space of inequivalent generalized Taub-
—NUT space-times it is convenient to transform the metrics
to a canonical gauge. For this purpose we consider, for each
such space-time, the group of analytic diffeomorphisms that
preserve the horizon at ¢’ = 0 and commute with the iso-
metry generated by the Killing field d/9x. Infinitesimal
generators of such diffeomorphisms are vector fields X that
are tangent to the null hypersurface at ¢ = 0 and that com-
mute with d /9x*.

We can express such vector fields as

@y __ 4+ d ar d 3 d

x=t Yc?t' +X Ix +X ax*'
where (Y,X%,X *) are analytic in (¢',x* ). The infinitesimal
gauge transformation of “g induced X is given by the Lie
derivative .¥ v 4“'g. In order that “X preserve the coordi-
nate conditions we have imposed on “g it is necessary (and
sufficient) that X be required to satisfy the evolution equa-
tions [Eqgs. (3.4) of Ref. 1]

Y, _2L_a_($”§ Aa,)
Vg Ox°
(tA*) , = (N2/2)1g™Y,,

(X3I + Y),g = — ZﬁaXa',u
where
Aar — (l/t) (Xa/ _Xal)

and X are the initial values of X * (i.e., X**|,._ ). Asin Ref.
1 we can apply the extended Cauchy-Kowalewski theorem
to prove the existence and uniqueness of solutions of Egs.
(2.8) that are analytic and even in ¢ (hence also analytlc in
t' = t?) for arbitrary analytic initial data (Y b lD & ') pre-
scribed at t = 0.

The infinitesimal gauge tranformations of (¢, 5, ,8.,,N)
induced by such a vector field are determined by computing
£ wy¥g and are given in Egs. (3.5) of Ref. 1. These pertur-
bations reduce, as t— 07, to the expressions [also given in
Egs. (3.6) of Ref. 1]

8¢ =LY + Loy,
8B, =3 X + V), + (LoxB).

, (2.7)

(2.8)

5§ab = oYéab + (f‘f‘xé)ab, (2.9)
51GV= i’iv-*— flszjv,
where
@y _ g9 _ya 9
ax ox°
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and .7 .y signifies the Lie derivative with respect to this
vector field on K.

These infinitesimal gauge transformations of the
Cauchy horizon data clearly consistoof (i') an infinitesimal
diffeomorphism of K generated by ?'X; (ii’) an “electromag-
netic” gauge transformation of 5, generated by

Z=y(X¥ + D),
and (iii’) a “conformal” transformation of (4,8, ) genera-
ted by Y. The “conformal” transformation is just such as to
preserve the tensor e ~ *%%,,, and in general these gauge trans-
formations preserve the regularity condition N = ¢2* dis-
cussed earlier.

Equations (2.9) define the Lie algebra of a group of
transformations acting on the space of Cauchy horizon data.
To see the structure of this Lie algebra let (Y‘Z’X Z) and
(Y‘Z)XZ) withZ=}(X* +Y) and Z = '(X3' +7 beany
two such mﬁmtes1mal transformations and compute their
commutator. The result is a transformation of the same type
with a generator given by

(Y*2X*Z%)
= (jm/\’,)\,— fmj\‘,Y,[(ZjX,(z)i’],meE— ij\,Z).
(2.10)

The associated group has two obvious, commuting, Abelian
subgroups determined by generators of the type (Y,0,0)
(“conformal” transformations) and the type (0,0,Z)
(“‘electromagnetic” gauge transformations). In addition
there is the non-Abelian subgroup with generators of the
type (0,2X,0). This last subgroup is clearly just the diffeo-
morphism group of X.

As is well known, every Riemannian metric on K is con-
formal to a metric of constant curvature. The scalar curva-
ture of the transformed metric will be a positive constant if
K =57 zeroif K~ T?, and a negative constant if K is a higher
genus two-manifold. We can always choose the conformal
factor so that the transformed metric g*, satisfies (say)

| v =am,

in which case the scalar curvature, @R (?g*), will assume a
(constant) value fixed by the Gauss—Bonnet theorem and
depending only upon the genus of K. Without disturbing this
gange condition we can apply an “electromagnetic” gauge
transformation to make Ba divergence-free (with respect to
the new, constant curvature metric g% ). Next we can, with-
out disturbing these conditions, apply a diffeomorphism of
K to bring the constant curvature metric into a canonical
form. For example, if K~.S? one could require that

&% dx°dx® = d@? + sin® 0 d¢?
whereas, if K~ T2 one could require that the (flat) metric

£% have constant components and thus, in view of the condi-
tion

f VPg* = 4,
K

depend on only two real parameters. More generally, for
higher genus two-manifolds, the moduli spaces of conformal
equivalence classes of Riemannian metrics are parametrized
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by 3g — 3 complex parameters for genus g>2. Thus in a suit-
ably chosen canonical gauge g%, could be uniquely specified
in terms of 6g — 6 real parameters.

Finally, without disturbing the foregoing conditions one
can apply gauge transformations generated by the “confor-
mal isometries” of §*, . More precisely, if ®X* is any confor-
mal Killing field of §*, and we set

Y= —

(2.11)
\/m— 8x
then

o, = Y& + (Logf*)a =0,
and one can check that the condition that E * have vanishing
divergence with respect to %, is left undisturbed provided
weset Z=}(X¥ + V) =0.

The conformal isometry group of (K,g% ) is a Lie group
of dimension 6 if K=~.S?, dimension 2 if K~ T'? (and coin-
cides with the isometry group since £%, is flat), and dimen-
sion zeroif K is a higher genus two-manifold. Thus for K =S ?
or T we can take the quotient by the corresponding group
action and further reduce the space of inequivalent general-
ized Taub-NUT space-times.

To summarize, we can always choose a canonical gauge
for the Cauchy horizon data {$,3, 8., } such that (a) §,, isa
constant curvature metric on X depending only on zero (if
K=5%,2 (fK= T?), or 6g — 6 (if K has genus g>2) real
parameters; (b) 5, has zero divergence with respect to g,,;
and (c) there is a residual gauge subgroup action of dimen-
sion 6 (if K =S ?) or dimension 2 (if K =~ T'?) generated by the
conformal Killing fields of (K8, ), which acts on the data
(6,825 8as)-

B. First- and second-order perturbations

We want to consider perturbations of the Einstein evo-
lution equations for ¢, B,, and g,,, [cf. Egs. (2.4) of Ref. 1]
about an arbitrary generalized Taub-NUT background. To
generate the perturbation equations of arbitrary order one
imagines having a one parameter family of exact solutions
{4, B,.8.) (t,x°,€) and differentiates the exact equations
with respect to the parameter € arbitrarily many times, set-
ting € = O (the background value) at the end. The nth-order
equations consist of a linear second-order operator acting on
the nth-order perturbations,

6"¢ a "Ba angab ]
o Je"  Je
and an inhomogeneous “source” term formed from pertur-

bations of the lapse function and (for n> 1) from all the
lower-order perturbations. For simplicity we retain the co-
ordinate conditions of zero shift and of (N /\/mg),, =0,
which means that we only allow perturbations of the lapse
function N generated by differentiations of

(2.12)

{¢(n) B (n),gag)} [

e=0

a
ezl(x .e),

(2.13)

;Xﬂ=(AL)
Vg \{7g
where A(x?,€) is an arbitrary analytic function of the indi-
cated arguments with A(x*,0) =0

€=0
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The main tool we require is the extended Cauchy-
Kowalewski (CK) theorem sketched in Ref. 1 and proved in
detail in Ref. 2. Since the applications of this theorem to the
present problem follow the same pattern employed in those
earlier papers (once we have factored out the singularities)
we shall simply state the results of applying the theorem
without giving repetitious details. Just as for the background
‘solutions, all of the coefficient functions determined by
means of the extended CK theorem will prove to be both
analytic in (x?,¢) and even in ¢ (and thus also analytic in the
time variable ¢’ = ¢? defined above). For convenience we
shall refer to any function analytic and even in ¢ as a regular
function. The analyticity of the solutions will follow directly
from the application of the CK theorem whereas the even-
ness in ¢ requires a more detailed consideration of the specific
evolution equations—one shows inductively that all odd ¢
derivatives of the analytic solutions vanish at ¢ = 0.

The main result we intend to prove may be stated as
follows. The solutions of the nth-order perturbation equa-
tions are expressible (suppressing the tensor indices on
B =B and g =g'® for simplicity) as

¢(") n—zl)/Z (ln t)n~2k—l

k=0

(n—1)/2 (ln t)n—2k—1
2 t2k

[(n nal” . + al —2k-1]

B(n),:

k=0

(2.14)

b
X1 (In )b 5 +—-t—22"—‘—] ,

(n—1)/2 (Int)n—lk—[
(n)
g =2 T
if nis odd (i.e., n = 1,3,5,...), and
(n—2)72 (lnt)n—Zk—l

¢(n) 2

[(In e o+ el oy ],

[(n t)a(")zk +a” ]

=0
ai”
+ ,
tn
(n—2)/2 n—2k—1 bm
B = (n o) = [(ln Db g + — ]
k=0 t t
b(n)
°_, (2.15)
tn

(n—2)/2 (]n t)n—2k—l

R

k=0

[(In e o+ 0y ]

cim

+t",

if n is even (i.e., n = 2,4,6,...). Here each of the coefficient
functions {a{™,b {",c{™; I =0,1,...,n; n = 1,2,3,...} will be
shown to be regular [i.e., analytic in (#,x° ) and evenin ¢] in
a neighborhood of ¢ = 0, the horizon surface of the back-
ground solution. The solutions at each order are determined
uniquely by the solutions from all the preceding orders up to
the addition of an arbitrary solution of the first-order
(n = 1) equations.

The first-order perturbations, according to the above,
have the form

2301 J. Math. Phys., Vol. 30, No. 10, October 1989

¢(l)_ (In, t)a(l) (1)’
B(l)-: (In t)b(l) + b(”/tz,

=(In e + ¢,

(2.16)

and, as we shall see, the freely specifiable data will be the
initial values
aWwy

(1) (1) j (1)
al ’aO ’bO ’
[ at?

,C“’,c‘”] (2.17)

t=0

prescribed as analytic tensor fields on K and the first-order
perturbation of the lapse function computed from Eq.
(2.13). Thus at nth order the only freedom is that of adding
an arbitrary solution of the first-order equations, which in
turn is uniquely determined by the data indicated above.
Later when we impose the nth-order constraint equations
some of this “free data” will itself be restricted. The data
indicated above are, aside from the arbitrary perturbation of
the lapse function, just the 12 independent functions one
would expect to have in solving the six second-order evolu-
tion equations for {¢, 5., g,, }, but they are not conventional
Cauchy data since we are choosing to specify the “initial
conditions” on a Cauchy horizon instead of on a Cauchy
surface of the background space-time.

The difference in form of the perturbations {¢* g™ }
from the perturbations {8 } is traceable to the difference
between the singular time derivative operators that occur in
the evolution equations for these quantities. The operator
d?/3t? + (1/t)3 /9, which acts on the quantities ¢ and
g'™, annihilates any field of the form ((Inf)a,(x®)

+ ay(x?)), whereas the operator 8%/dt% + (3/1)0 /3¢,
which acts on the 8, annihilates any field of the form ((1/
t2)b,(x°) + by(x°)). These facts determine the form of the
freely specifiable data in the perturbation equations for these
quantities. The interaction terms between these variables
force the additional (In ) term in the first-order perturba-
tion of B, and, at higher orders, these interactions drive the
higher-order logarithmic singularities and the higher-order
singularities in 1/¢ %, which appear in the general solution for
the nth-order perturbations. If one turns off the 3, field
altogether (which is always allowed on the trivial bundles
K XR XS'-K XR) then the general solution for the re-
maining perturbations simplifies to

¢ =(In)"a” + (Inn"‘'al®, + -
+ (Inp)ai™ + a®,
g =Unt)"e 4+ (In)" el + -+

(2.18)

+ (In0)cf™ + 5",

where the coefficients {a{™,c{} are all analytic and even in
t.

To analyze the perturbation equations we shall employ a
convenient schematic form for the evolution equations.
Since ¢ and g,,, occur in somewhat parallel ways in the evo-
lution equations we can compress them into a single symbol,
which, with indices suppressed, we shall call ¢. Thus we let ¢
stand for the pair (4,g,, ) and S stand for S, as before. Tak-
ing account of the coordinate condition, which we have im-
posed to yield (N /y@g), =0, we find that the evolution
equations can be written schematically as
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.+ (/D¢ = AWN) + B(y,N)t* dB dB

+CY, ¥, + DW)’B.B,,
= E(¢,N)dB + F(,N)d dfS

+GWWY.B.,

where dff is the exterior derivative of the one-form £ [i.e.,
dB =4(B,, —B»a)dx"Ndx°], A, B, E, and F are certain
analytic expressions in {¢#,g,,,N} and their first and second
spatial derivatives and where C, D, and G are similar expres-
sions in ¢ and g, alone. The second spatial derivatives of 5
are indicated explicitly by ddf whereas the spatial deriva-
tives of ¥ and N are contained in the quantities 4,...,G and
thus suppressed in the above notation.

Linearizing Egs. (2.19) about a regular background so-
lution and taking account of the coordinate condition (2.13)
when perturbing the lapse function N we obtain first-order
perturbation equations of the schematic form

W+ (/DYY =Ry +’RdB"Y
+ Ry +>RB° + R,
R,¢(1) + R-d (1)
+tRY\V +tRBV + R,
where R - stands generically for a linear (spatial) differential
operator with regular coefficients and R stands for a regular
multiplicative operator or a regular additive inhomogeneous
term (induced by perturbations of the lapse function).

We now seek solutions of Eqgs. (2.20) of the form [cf.
Eqgs. (2.16) above]

(2.19)
B+ (3/DB,

BY+ 3/ = (2.20)

lp(l) . (ln t)a‘” + a(l),
(2.21)

BY=(Inn)b{" +b§"/1?

with coefficients {a{",5 ('}, whlch are regular. For conven-
ience we write b §"” = ,(x°) + %y, where 7, is analytic in
{x*} and independent of ¢ (as signified by the overhead
naught) and where ¥, is regular. Thus we write

BY=(nt)bV + yo(x) /12 + y, (2.22)

and

¢(1)_ (ln t)a(1)+a(1) (2.23)

and substitute these forms into the linearized evolution
equations (2.20). We organize the resulting system by col-
lecting together all terms having, as an overall factor, a com-
mon power of (In ). At this {# = 1) level only the two pow-
ers (In £)*, k = 1,0, occur. To obtain solutions we demand
that the coefficients of each power of (In ¢) vanish separate-
ly. The vanishing of the coefficients of (In ¢) is equivalent to
the requirement that Eqs. (2.20), with #'" and 8 replaced
bya{" and b {"’ and the inhomogeneous R terms dropped, be
satisfied. But one can apply the extended CK theorem to this
system and prove the existence of regular solutions
{a{V,b ("} that are uniquely determined by the arbitrarily
specified, analytic initial data {a{", b {"}|,_,. Having thus
killed all the terms with the factor (In t) we find that the
linearized equations reduce to
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", + (1/0a§", + (2/0)alV,

=R-a§" + tR(a§" , + a{V/t)

+ 2R Ay, + yo/t?)

+ 1Ry, + b/t = (2/1%)0) + R,
Vi + 3/071+ (2/0510, + (2/t1)5 ("

=R-al’ + R-d(y, + /1)

+ tR(a(l) y + afl)/t)

+ Ry, + b/t — (2/t%)y,) + R.
These have the form of Egs. (2.20) (with {a{",y,} in place
of {¢", B'"}) supplemented with some additional inhomo-
geneous terms arising from a{"’,b {", and ¥,. Recalling that

a{V and b (" are regular (and thus even in ¢) one sces that all
of the inhomogeneous contributions are regular except for
the terms (2/t2)b{1), occurring on the left-hand side, and
[R-d(yy/t*) — 2RY,/t?] occurring on the right-hand side
of the equation for ¥,. We can kill the singularity provided by
these terms, leaving only an additional regular inhomogene-

ity, by requiring that the initial data for & {"> (which was
arbitrary up to this point) be fixed by the equation

(2.24)

26{V],_o = [R*(d70) — 2R%,] .o, (2.25)
for any choice of ;/O(x“ ). With this restriction, Egs. (2.24)
become amenable to the extended CK theorem, which guar-
antees that regular solutions {a{",y,} exist for arbitrary,
analytic initial data {a{",y,}|,_,.

Thus we obtain solutions of the linearized equations
uniquely determined by the independent data
{a$2,a8", 71,70 ()} |, — o with b {V fixed by Eqgs. (2.20) and
the initial condition (2.25). The independent data consists
of two analytic functions, two analytic one-forms and two
analytic, symmetric tensor fields that one can prescribe arbi-
trarily on the two-manifold K. By treating the linearized
equations as a Hamiltonian system one can show that this
free data consists of canonically conjugate pairs of variables,
as we shall see in Sec. III D. When we impose the linearized
constraints some of this “free data” will, of course, be fixed
in terms of the remaining data. The constraints will be dealt
with in Sec. IIIL

Before turning to the general inductive proof it may be
useful to sketch how the pattern of solution continues to the
second order. The second-order perturbation equations con-
sist of equations of the form (2.20), with {¢"", 8V} replaced
by {¢¥®, 8@}, supplemented by additional inhomogeneous
terms that arise from quadratic terms in the first-order per-
turbations. These additional inhomogeneities consist of
terms of the form [R(In £)> + R(Int) + R /t*], occurring
inthey®equation,and [R(In )% + (R /t?)(Int) + R /t*],
occurring in the B2 equation. Following the inductive hy-
pothesis [ (2.14) and (2.15)] we seek solutions of the form

¥? = (In )% + (In)a{> + af>/t3,

27 (2 2 2) /42 (2.26)
BP=(Unt)?bP 4+ (In )b @ /t? + P /13,

with regular coefficients {a;>,b {¥}. For convenience we
also write
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2 (2),0f wb 2,,(2).0
al? = &P (x%) +t?a®

J(2),1( 4.b 2, (2,1

bi® =y (x") +79”

2 2(2),00 b 2, (2),0
b =y (x") + 17

where {&2°(x),75" (x?), 7§2°(x®) } are analytic and in-
dependent of ¢ and where {a{?%,#{',y(>°} are analytic
and even in z. Thus we substitute the forms

(2.27)

¥? = (In)2%a® + (In H)a® + aP° + &§¥°(x) /12,
B? = (In t)2b‘2)

+ (In t)[y(z)l (2)1(xb)/t2]

+ [7(2)0 + y((,”’o(xb)/tz] (2.28)

into the second-order perturbation equations and collect to-
gether all the terms with the factors (In#)*, where
k =2,1,0. Again we attempt to solve the equations by re-
quiring that the coefficients of each independent power of
(In ¢) vanish separately. Demanding that the coefficients of
(In £)? vanish leads to equations of the form (2.20), with
{y"V,pY} replaced by {a{®,b{®}. The extended CK
theorem applies and yields regular solutions for arbitrary
initial data {a{®,b $}|, _ ,. Next we demand that the coeffi-
cients of (In #) vanish. This leads to equations of the same
type for {a{®,7{?"'} except that there are some additional
regular inhomogeneities arising from {a{?,b ¥, "' (x%)}
and, in the y{**! equation, a collection of inhomogeneous
terms with the singular coefficient 1/¢ 2. This singularity can
be killed, leaving only an additional regular inhomogeneity,
by requiring that the (heretofore arbitrary) initial data for
b (¥ be constrained to satisfy an equation of the form

45|, o = [Rd(¥P"(x") — 2R (x*) + R ]|~
(2.29)
With this restriction the extended CK theorem becomes ap-
plicable and assures the existence of regular solutions deter-
mined uniquely by arbitrary, analytic initial data
{a®,7»'}|,_, and arbitrarily chosen, analytic 3§ (x?).
Finally we demand that the remaining terms in the sec-
ond-order perturbation equations vanish. This also leads to
inhomogeneous generalizations of Egs. (2.20) for the quan-
tities {a‘z’ °,y§2”°} with inhomogeneities of the form R
+ r/t? 4+ r/t?* occurring in each of the equations. Here
r = r(x"®) stands generically for a time-independent, analyt-
ic factor and R is regular as before. One can kill the singular

terms by imposing the conditions

4 &0 =
) 7,(2) 1 __

26,0 = (R0 — 2mego s Hizon
27 co ={—2b5 + R-4§°

(2.30)

+ R (d(y°)) — 2RE>®
+ RY§™ — 2Ry + 1Yo

leaving equations that are again amenable to the extended
CK theorem. The latter have regular solutions uniquely de-
termined by arbitrary, analytic data {a‘” 0y 20}, _o- This
procedure leaves {a{?°,1{2°, o,y °}l, - o completely
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arbitrary, which of course simply corresponds to the free-
dom to add an arbitrary solution of the first-order equations
to any solution of the second-order equations.

We can describe the above procedure in a more logically
ordered way as follows. First, choose the free data
{a®0y@0 g 0} _ . arbitrarily; then use the first
three of Egs. (2.30) together with Eq. (2.29) to determine
{&2°, 7, a$?,b P}, _ o; and, finally, use the fourth of
Egs. (2.30) to fix ¥{*!|, _ ,. Having fixed all the initial data
in such a way as to guarantee the cancellation of the singular-
ities described above, solve in order for each of the pairs
{a®,b$7}, {a?,7*1}, and {a{¥°,y{°} by applying the
extended CK theorem to the corresponding (desingular-
ized) evolution equations.

C. Perturbations of arbitrary order

We now complete the proof of the inductive hypothesis,
given in Eqs. (2.14) and (2.15), for the form of the nth-
order perturbations. Since the previous section has already
treated the first and second orders we need to consider all the
orders n3 in the following.

We first need to determine the form of the inhomogen-
eous “‘source” terms in the nth-order equations that are in-
duced by all the lower-order perturbations. Assuming the
inductive hypothesis to be valid up through order n — 1, it is
straightforward to compute the form of the inhomogeneous
terms generated in the nth-order equations. The results of
that rather lengthy computation may be stated briefly as
follows. Let S represent the source term in the nth-order
perturbation equatlon for ¥ and S " represent the corre-
sponding source term in the #nth- order perturbation equation
for B. These sources are certain polynomial expressions in
the lower-order  perturbations {y®,8%®}  (for
k=1,2,...,n — 1) and their first and second derivatives and
in the perturbations '”,...,a™ of the function a, which de-
termines the lapse function N [cf. Eq. (2.13)]. For conven-
ience we include the nth-order perturbation of « as a part of
the source since the quantity '™ is specified arbitrarily and
thus contributes a fixed inhomogeneity to the nth-order
equations for {¢‘,8 }. For all n>3 one finds that

S{=(InH)"R+ (Inr)"~ 'R
(n—1)/2 (lnt)n—ZkR 4 (lnt)n—Zk—lR]

t2k+2 t2k+2

k=1

(2.31)

S =(n0R+ (np- &

(n—=1)/2

(In )"~ *R

k
t2 +2

(Ing)* - 'R
= (2k+4 ?
if n is odd, and

5S¢ =(nH"R+ (Inp)"~ 'R

(n—2)/2 (lnt)n—ZkR (lnt)n—Zk—lR
= f2k+2 f+2
(2.32)
+R/I"+2,
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S =(nt)"R+ (Int)"~ 'R /t?

(n—2)/2 (ln t)n—ZkR
t2k+2

+

(ln t)n——2k~lR:|

4
Pyt t2k+

+R/t"+2

if n is even. As before, R stands generically for a regular
function.
The nth-order perturbation equations take the form

v+ (/DP",

— R'l//(") + tszﬂ(") + tRlﬁ(")’, + taRﬂ("),, +S$/’n)’
(2.33)
B, + B3/,

— R.¢(n) + R‘dﬁ(") + th,(n),t + tRﬂ(")‘, + Sl(gn);
where the notation used is the same as that introduced for
the first-order equations (2.20). If we now substitute the
conjectured form for {¢'”,8 ™} [cf. Egs. (2.14) and
(2.15)] into the above equations and collect all the terms
having the common logarithmic factors (Inz)* (for
k = n,n — 1,...,1,0) we may attempt to solve these equations
by requiring that the coefficients of each independent power
of (In ¢) vanish separately.

Beginning with the coefficients of (In ¢)" we obtain the
equations

a”, + (1/0a”, = R-a{” + Rta(”,
+t?Rdb " + Rt*b " + R,
(2.34)
b+ 3/0b, =Rdb{” + Rth(",

+R-al” + tRal” , + R.

The extended CK theorem applies to this system and guar-
antees the existence of regular solutions for arbitrary, analyt-
ic initial data {a{™,b (M}, _,.

Turning to the coefficients of (In ¢) we find it con-
venient to reexpress the (regular) function b {” | as

n—1

b(n) ___,;,(n),n—l + tly(n),n—l

n-1 (2.35)
where ¥} is regular and where 7; is analytic and
independent of t (as signified by the overhead “naught”).
Demanding that the coefficients of (In #)” ~ ' vanish leads to

the equations

(m)yn—1 3 (n)n»l

fnﬂ—) L (l/t)af,”_’ et (2n/t)af."),z
=R-a”, + R(tal”, , +na”) + Rd(y50 !

k—1

2 4(l —

2k (nr),n— 2k 1 (ny,n— 2k
¢ (ak,u + —t_ Qg )

+2(n—2k+ 1)tal” 1, +(4—4K)(n -2k + 1a

k) t21~2°(n)n—2k

+t2'}/ n)nvl)_i_Rt 7/(n)n—l 2R7°,(()n),n~l

+nRt%p ™ + R, (2.36)

(n)n«l

7 3 ,ygn)n*l E;bf,")-l-*zlbf,ﬁ)
' t t
=R.d,y(n),n—l +Rt7/(n),n—l
+ R-al” | + R(tal”

n— 1,z

+ nal™)

+nRb + F[R-df/{)"""— '+ R — 2Ry 1.
Tocancel the singularity of order 1/¢ % in the second equation
we require that the (heretofore arbitrary) initial data for
b (" be fixed by the condition

2nb"|,_ o ={R-ady{™" = ' + R — 2RY§"" '}, _o.
(2.37)

With this in force (for arbitrary %’”"‘ ~ ') the above system
becomes amenable to the extended CK theorem, which as-
sures the existence of regular solutions determined by arbi-
trary analytic initial data {a;" , ,¥{"" ~ '}{,_ ;. The quanti-
ty 75"~ 1 also remains arbitrary at this point.

Continuing in this manner we write

(n) 2! — 2k 2k —Zk
ann—zk (2 t a(n)n )+t (n)n

S:n—)zk ( i (n) n—Zk) + tlky(n) n~2k
(2.38)

n)n—2kfl)+ t2ka(n)n—2k~l

(n)
n~2k—

(n) —
anfzk— _(

1IM»”M1

(n)n—2k-l)+ t2k+27(n_+)_"_2k—1,

,...,(n —1)y2, if n is odd, and
,(n —2)/2, if nis even. For n even, we also write

n/2 —1
a(()n)z( Z tzlo(n)0)+t ai;;o’
I=0

where k= 1,
k=12,..

a1 (2.39)
bén) — ( z t ,}/(n) O) 4t y;%,o,
1=

which extends the pattern of the first two of Egs. (2.38) to
the case k = n/2. In the above quantities {&{"™,y{""} are
all taken to be analytic and independent of t (signified as
before by the overhead “naught”) whereas the
{ain),n - 2k!7/;<n)," — 2k’ a]((n),n — 2k — 1,,}/;("_3—,'11 — 2k — l} are expect—
ed to prove regular in the subsequent analysis.

Requiring that the coefficients of (In¢)"~%* vanish
leads to the equations

neak+1 + (n—2k+ 1)(”—2k+2)an‘2k+z

_t2k{R a(n)n—2k_+_Rta(n)n—2k+tZRd}/(n)n72k+t3R?/(n)n—2k}+ 2 t2IR,&§n),n72k
=0

k—1 k—1 °
+ z (21 Zk)tZIRd(") n— 2k + z t21+2Rd,)/(n) n——2k+ z (2] 2k)t21+2R,y;n),n—2k (240)
=0
+ (n—2k+1Dt?Ral” i, + (n =2k + )Rt 5 .1 + R/,
2304 J. Math. Phys., Vol. 30, No. 10, October 1989 Vincent Moncrief 2304



k=1
(,V;(nt)tn—ﬂc 3 ,},(n')n—?.k)_'_ z 41— k)l — (k—

1))t 21—2,;/;n),n — 2k

+[2n=2k+ 1/t 10 1+ Q=4 [(n—2k+1)/t2)07 5oy + (n =2k + 1) (n =2k +2)b 7 5 12

k—1 N
=tzk{R,d,’/fcn),n—zk+Rt?/}:t),n—zk+R,a;<n),n—2k+Rta§:l),n——2k}+ z tZIR'd’}’§")’"—2k
I=0

k—1
+ > @l-
1=0

2k)t21Ry(n)n~2k+ 2 tZIR a(n)n—2k+ 2 (21

k—1

2k)t21R&;")'"_ 2k

+(n—2k+1)Rb'” 5 + (n—2k+ 1)t?Ral” 5 + R /17,

where k=1,2,....,(n —1)/2, if n is odd, and where
k=1,2,..,n/2,if nis even (with n>3 in either case).

We should like to divide these equations by #** and ap-
ply the extended CK theorem to find regular solutions. To
do this, however, we must first cancel the inhomogeneities of
order ¢t 72, t°,...,t**~2 that occur in both equations, since
otherwise division by #2* would not yield a regular “source.”
If k = 1, it is easy to see that we can always choose &3 ~
to cancel the terms of order ¢ ~2 in the equation for a{"" ~2.
If k>2, then a careful inspection of Egs. (2.40) reveals that
one can always choose the quantities

2

&gn),n*y" ] = 0,1,...,k - 1’ 41
,;/En),ﬂ - Zk’ l: 0,...,k - 2’ (2 )

in such a way as to cancel the inhomogeneous terms of order
t 72,..,t*~* in the a{”" ~ ** equations and the correspond-

ing terms of order # =2,...,t%* ~ ¢ in the ¥{"" ~ 2 equations.
|

k—1

S 4(—
I=0

ok 1 ok
t (aingn 2k 1+_t_a;:t),n 2k —1 +

+ [2(n —2k)/t 1@l 4, —

=
One first solves for the /=0 coefficients {&{™" %,

75" =2} and then proceeds successively to higher values of
1. For all k>1, we must still cancel the terms of order r2*—?

in the a{"" ~ ** equations and the terms of order ¢** ~* and
£*~2 in the y{""" ~ ** equations.

Assume for the moment that we can cancel these re-
maining inhomogeneities (we shall show below how this is
accomplished). Then one can apply the extended CK
theorem to obtain regular solutions for arbitrary, analytic
initial data {a{""" — 2X,y{"" ~2*}|, _ . The analytic quantity
7/‘ M. =2k would also remain arbitrary at this point. Recall-
ing Egs. (2.38) we see therefore that the coefficients of 1% in
a'™ ,. and the coefficients of t?* =2 and t *in b (" ,, would
remain arbitrary through this stage of the argument.

Returning to the mainstream of the proof we now de-
mand that the coefficients of (In £)” ~2*~ ! in the nth-order
perturbation equations vanish separately. This leads to the
equations

k) t21~—2°(n)n—2k—1

(4k /t*)(n —2k)a™ 5 + (n —2k) (n — 2k + D)al” i o

=t2k{R,a(n),n—2k—1+Rta(n),n—2k~l+t2Rd,}/(n),n—2k~‘l+t3R,y(n).n—2k—l

k—1

k41,1

+ Z IZIR a(n)n—2k—l+ z (21_2k)t21Ra(n)n—2k—l_+_ Z tlle,y(n)n—Zk—l

+ 2(21— (2K + 2) e YRy =2k =1 4 (p _
I=0

k—1
2k+2 (n)n—zk—l 3 {n),n—2k—
4 (7k+ltt yk+ll )+

2k)Ra‘" 5, + (n —2k)t?Rb ™ ,, + R /t?,

(2.42)

T 4= R~ Gk D)2
=0

+2(n _2k)tb;"_)2k,, 4 (n—2k)(2 — 4k)b ™ 4, + (n— 2k) (n — 2k + 1)b,,_2k+,

_t2k+2{R d'}’(")n_Zk_l+Rt7/;(n_+)_"1";—2k_l+R'a;(n)'n_2k—l+Rta§(;)'"_2k'1}+ z tZIR_d;/;n),n—Zk—l
=0

+ 2(21_(2k+2))t21R7(n)n—2kvl+ z t21+2R a(n)n-Zk—l+ 2 (21

+(n—=2k)Rt*b ", + (n—2k)Re?a™ ., + R /13,

where k=1,...,(n —1)/2, if n is odd, and k= 1,...,(n
— 2)/2, if n is even (and n>3 in either case).
We should like to divide Eqgs. (2.42) by t** and t2¢+2
and apply the extended CK theorem to prove the existence of
regular solutions. To do this, however, we must first cancel
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k-1
Zk)t21+2R&;n),n~2k—l

{he inhomogeneities of order ¢ ~2,t°,...,¢2*~ 2 that occur in
the equation for a{™"~ -1 and the inhomogeneities of or-
der t 72,t9,...,t%* that occur in the equatlon for y{ g~ 21
since otherw1se the remaining “source” terms (after division
by t2* and £ 2**+ 2 respectively) would not be regular. A care-
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ful inspection of Eqs. (2.42), however, reveals that we can
always choose the quantities

e (n),n—2k—1 =0.k_
?l » I 9eccy 1 (243)
yior=2=10 1=0,.,k—1,
in such a way as to cancel the inhomogeneous terms of order
t 7%,...,4%~* occurring in both of these equations. One first

solves for the quantities {&{""~ %! 7/"'”" —2k—1} and
then proceeds successively to higher values of /. We must still
cancel the inhomogeneities of order 2* =2 in the equation

for (™"~ 2~ 'and those of order £>* ~ 2 and ¢t?** in the equa-
tion for (""" ~2*~ 1 If we can succeed in canceling these
k+1

remaining inhomogeneous terms then we shall be able to
apply the extended CK theorem to prove the existence of
regular solutions of Egs. (2.42) determined by arbitrary,
analytic initial data {a}™" =2~ 1, {7721}, _

’7’k+1 —o- Inad-
dition, the quantities 7,(::) n— 2k —

! would also remain arbi-
trary at this point. Recalling Eqs. (2.38) we thus see that the
coefficients of #2* in a{™ ,, _, and the coefficients of ¢ ** and
t**+2in b ™, _, would therefore still remain arbitrary at
this stage in the argument.

Now we shall show that one can cancel the remaining
troublesome inhomogeneities by appropriately choosing the
free data that rests at our disposal. We have yet to cancel the
terms of order >*~ 2 in the equation for a{"" ~** and the
terms of order #2* ~* and ¢ ** ~ 2 in the equation for y{"" — 2,
However, the coefficient of £2* ~2 in the quantity a‘® ,, . »,
which occurs on the left-hand side of Eq. (2.40) with a con-
stant coefficient, remains at our disposal for k> 1. We there-
fore choose this heretofore free data to cancel the remaining
singularities in the a{"-" ~ 2* equations. Furthermore, since
the coefficients of £2* =2 and t** in b { ,, . ; remain at our,

1

= te*\[Pg [

4N*
1 e’ _@ 20,
+— X B, Bu, — PR + 28" .6, +
2 N
a |ty
#y= 2|0 g, |
? ax*l N &P

%a =Baﬁﬂ3 - z[vb [—ﬁ% (gbdtgad,r - t(SZnggcd,t):I

t 2 e4¢gacgbd

disposal for k3> 1, we can choose these in such a way that the
terms

(/DB 0y + [(1=2k)/82107 5

which occur on the left-hand side of Eq. (2.40) with a non-
zero constant coefficient, cancel the inhomogeneities of or-
der t**~* and %~ 2 in the ¥{"" ~ 2 equation.

Finally, we need to cancel the inhomogeneous terms of
order t**~? in the equation for a{""" ~2*~! and those of
order **~2 and ¢%* in the equation for y{"" ~2*~ ! How-
ever, the coefficient of t * ~?ina'” ,, , , [which occurs with
nonvanishing coefficient on the left-hand side of Eq. (2.42)]
remains at our disposal. We therefore choose this data to
cancel the remaining troublesome singularity in the
ai™" ~2*=1 equation. Furthermore the coefficients of r>*
and t**~%in b ™ ,, remain at our disposal. One can choose
this (heretofore arbitrary) data in such a way that the quan-
tity 6 {5, + (1 — 2k)b (™ 4, which occurs with nonvan-
ishing coefficient on the left-hand side of Eq. (2.42), cancels
the singularities of order #2* =2 and ¢** in the "7~ 2¢~!
equation.

lll. SOLVING THE PERTURBED CONSTRAINT
EQUATIONS

A. Constraints and Bianchi identities

The Hamiltonian and momentum constraints (written
# and 77, respectively) of the usual Arnowitt, Deser, and
Misner (ADM) formalism’ are given explicitly (in the un-
primed coordinate chart) by

. 2 2
[g“’g 8ed18abt — —g‘ Cois — 8°8ea 8 gef,] + N (¢,,¢,, + T¢")

(Ba,b - ﬁb,a ) (Bc,d - ﬂd,c )] ’

(”W)¢ 1, +1)+M—’N R ‘/mé “"’g”"ﬂd,.(ﬁa,b—-ﬁb,a)]-

2

Here g = det(g,, ), g*%is the inverse of g,,,, V, is the covar-
iant derivative with respect to g,,, and @R is the scalar cur-
vature of this metric.

Equations of motion for the quantities {%,%, } are im-
plied by the Bianchi identity and, when our evolution equa-
tions are imposed, take the form®

ox
e R )
t
=2e¢g"”N,b(Z”a —~ B.,H3)
+ e¢N(gﬂb(%a —ﬁa%3)),by
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(3.1
-
X _ 0, (3.2)
at
ad;f" —¢X) + V,(Ne~?57).

These equations have a slightly different form from those
usually presented because we have derived them from a
Hamiltonian in which the lapse function N depends explicit-
ly upon the dynamical variables [through the coordinate
condition (2.6) above] and the shift vector is zero. Any reg-
ular solution of the evolution equations [Eqs. (2.4) of Ref.
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1] that, in addition, satisfies the regularity condition N=¢*
(discussed in Sec. IT A above) yields analytic expressions for
{57, 97} that, moreover, vanish as t—0. However, the ex-
tended CK theorem applies to the system (3.2) and shows
that the unique analytic solution of these equations having
vanishing initial data is, in fact, identically vanishing. This
result was used in proving the basic existence and uniqueness
theorem for generalized Taub-NUT space-times given by
Theorem (2) of Ref. 1.

B. Solving the linearized constraint equations

Recalling the results of Sec. II B let us write the first-
order perturbations of {#,g,,.,5, } in the form

¢(l) — (11'1 t)h(l),l + h(l),O’ g‘(zz) _ (ln t)h (0,1 + h 1(1[[)),0?

where, as before {4 !, A W0 j (11 (10 (D1 fy (1.0} ape
each analytic and evenin ¢ (i.e., regular) Recalling also Eq.
(2.13) we see that the first-order perturbation of the lapse
function N can be written

8N =2NA" 4 1 Ng™gD, (3.4)

where A " is an arbitrary analytic, time-independent func-
tion on K.

Linearizing the constraint equations # =", =0
about an arbitrary generalized Taub—-NUT background so-
lution and substituting the perturbations (3.3) and (3.4)
into the linearized expressions we find that the necessary and
sufficient conditions for the vanishing of % and 8§77, as

B = (nnh 4 (1/tH)R 0, (3.3)' t—0are

(4h(1)1 gabh(l)l)II:():O,

(%[2\/&7@ e4¢gabhl()1),o])’ =0,

ax N t=0

e 2 (0 v anon L) v, [TE gy
ox¢ 2 i

4\[(7)§ ¢ h (1,1

+
N

e ﬁ]

In fact, conditions (3.5) are actually sufficient to guar-
antee the vanishing of the linearized constraints {877,677, }
for all ¢ (in the interval of existence of the perturbations). To
see this we first consider the terms in {657,65,} that con-
tain the factor (In z). The coefficients of this factor are pre-
cisely the linearized constraint operators acting on the (reg-
ular) quantities {4, A, A {V'}, which occur (as
coefficients of In ) in the perturbations (3.3). However, as
we showed in Sec. I1 B, these quantities are regular solutions
of the homogeneous, linearized evolution equations. It fol-
lows from linearizing Eqgs. (3.2) about a GTN background
and applying the extended CK theorem to this system that
the linearized constraints (evaluated upon such a regular
perturbation) vanish identically if and only if they vanish at
t = 0. The vanishing at ¢ = 0, however, is ensured by the first
of the three conditions (3.5) above. Thus the coefficients of
In z in the linearized constraints {85, §7%°,} vanish sepa-
rately (for all ¢ in the interval of existence of the perturba-
tions) leaving purely analytic expressions for these quanti-
ties, which, moreover, vanish at ¢t = 0 by virtue of the three
conditions (3.5) imposed above. Once again the extended
CK theorem may be applied to the linearized form of Egs.
(3.2) to conclude that 557 and 857, vanish identically on
the domain of existence of the perturbations.

Thus the solution of the linearized constraints reduces
precisely to the solutions of Egs. (3.5) that constrain the
choice of initial data at £ = 0. The first of these equations
merely fixes the trace of the (heretofore unrestricted) quan-
tity 4 1',_o in terms of A™!|,_ ;. The second of Egs.
(3.5) merely requires that the (heretofore unconstrained)
one-form ((e**/N)h{"°)|,_, have vanishing divergence
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t=0

“,

=0. (3.5)

r
(relative to the metric g, |, _ o). The third of Egs. (3.5) can
[upon making use of the background regularity condition

Ne %%, ,—1
and the first of Egs. (3.5) ] be reexpressed in the form

, (r*) —

1 gac Py
[ 2 \/Ur 2¢gbd(ﬂa,b - Eb,a )h 4(11)’0
d

(—2/1“)—+—h“)"+2h“"0

ax°
- %g“fh ié”")] =0 (3.6)
where
PR e,
B = € 'gu, 3.7

V7= e,

and where V,, signifies the covariant derivative with respect

» 10 8-

The quantity * is a symmetric, traceless tensor density
defined on the two-manifold K (we have suppressed the re-
striction to ¢t = O to simplify the notation). Any such field
can be uniquely decomposed into L *-orthogonal summands
of the form®'°

P =y 4 PR(Teyt 4 Poye — gu¥ ¥, (3.8)

A AN
where V?=g*V _, etc., and where the “transverse traceless”
summand y*° ™7 satisfies
A
bTT
v, =0

v = (3.9)
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The vector field ¥ = ¥ ° d /dx“ is determined by solving the
linear elliptic equation obtained by computing the diver-
gence of Eq. (3.8). By standard linear elliptic methods'® one
shows that this equation always has a solution unique up to
the addition of a conformal Killing field of (X,g,,). Since
only the conformal Killing form of Y occurs in Eq. (3.8) the
decomposition of #*® is unique even if Y'is not.

For any compact, orientable Riemannian two-manifold
(K,g,,) the space of transverse traceless symmetric tensor
(densities) is finite dimensional and represents (roughly
speaking) the tangent space to Teichmiiller space at the
point represented by £,,.'* In particular if K ~ S then y** ™"
vanishes identically, if K~ 72 then **T" belongs to a two-
dimensional space, and if X is diffeomorphic to a manifold of
genus g>2 then ¥**™T belongs to a (6g — 6)-dimensional
space.

Substituting the decomposition (3.8) into the con-
straint equation (3.6) one gets

(18,9, [ VPR (VeY< 4+ T¥* — g%V, ¥) ] H,_o
= {e2¢\/rz’§gbd(ﬂa,b - Bb,a )h ‘(11),0 + \/(Z)E( - u w

F RO L0 peedp DOy Yy (3.10)

The self-adjoint linear elliptic operator on the left-hand side
of this equation has precisely the conformal Killing fields of
(K, 2,,) as its kernel. By standard linear elliptic theory,
therefore, Eq. (3.10) has a solution (unique only up to the
addition of a conformal Killing field) if and only if the
source term on the right-hand side satisfies the integrability
conditions

[ (4582 (B — B D Mo
K

+f {J(Z@(Qaza)(um_hum
K

_opwo L ey 3»0)} =0, (3.11)
2 =0
for all Z = Z° 3 /Jdx° such that
(Vezb 4+ 9°Z9 — 3V, Z°)|,_, =O. (3.12)

Since the transverse (i.e., divergence-free) part of
((e*/N)B V) _o = (R (D) o

remains at our disposal along with 4V, A™! etc., we can
always satisfy the finite number of integrability conditions
by imposing the integral conditions in Eq. (3.11) upon this
free data.

Solving Eq. (3.10) for Y uniquely determines the “‘lon-
gitudinal” part of *° in the decomposition (3.8) and thus
completes the solution of the linearized constraint equa-
tions.

C. Singular gauge transformations and gauge
conditions

In Sec. II A we considered analytic diffeomorphisms of
the background space-times generated by vector fields of the
form

(4)X=tlyi+Xa"‘"é—+X3' a

z ax™ ox*’ (19
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where (Y,X*, X*' ) were required to be analyticin (', x*).
Since we are now studying singular perturbations of these
same backgrounds we must also consider singular gauge
transformations (i.e., infinitesimal space-time diffeomor-
phisms) since the latter can masquerade as nontrivial singu-
lar perturbations. To do this we relax the requirement that
(Y,X*,X ) be nonsingular and demand only that “’X pre-
serve the coordinate conditions that we have imposed on “g
throughout.

This requirement leads to the following system of differ-
ential equations for the vector field components
(Y X“.X*):

tY,, ____&_?_(\fﬂyé Xar) _'_4/{(1),
JPg ox*\ N
X, = (IN¥/2)g*Y,,
X¥+1,=-28X",
where AV is, as before, an arbitrary time-independent ana-
lytic function of the {x°}. Since both 4" and N /\@g are
independent of ¢ we can time differentiate the first of Egs.

(3.14) and appeal to the second of these equations to reex-
press the result as a wave equation for the function Y-

1 N 4
Y,n + _t_ Y,t = (MNgabe)

g ox°
By means of the same techniques developed in Sec. II B we
can show that the general solution of Eq. (3.15) (in the
analytic case) has the form

Y= (Int)p, +y., (3.16)

where y, and y, are both regular and determined uniquely by
their initial values prescribed at r = 0.

Substituting the result (3.16) into the second of Egs.
(3.14) and reexpressing the result slightly leads to an equa-
tion of the form

X, =t(In )6, + 157, (3.17)

where 67, and &7, are both regular. Integrating this one
finds that X °’ has the form

X =t>(InHA%, +1%,, (3.18)

where A {5, and A {, are both regular and given explicitly by
the formulas

(3.14)

(3.15)

2R %, =J 58%, (s,xP)ds,
; 0 (3.19)
@ =fo $(8%, — A%, ) (sx0ds + A% (x*),

where A ¢y (x%) is arbitrary, analytic initial data for 4 ],
(and hence for X *).

Substituting this result into the third of Egs. (3.14) and
reexpressing the result slightly leads to an equation of the
form

(X3’ + Y)‘; = ¢t(In Bpoy + 100y, (3.20)

where p,, and p,, are regular. Integrating this as above
leads to the expression

X'+ Y=1*(In ¥, + Yay» (3.21)
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where ¥, and ¥,, are regular and given by

t
%0, =J 500y (8,x°)ds,
. ’ (3.22)
Y =f stpay — Yo ) (5,x%)ds + Y (x%,
0

in which y,,, (x*) is arbitrary, analytic initial data for 7,
(and hence for X + ¥).

The wave equation imposed on Y together with the
equation for X  suffice to ensure that the quantity

W5 (V% y.)
JPg Ix*\ N .

is indeed independent of ¢ as required in the first of Egs.
(3.14). Thus we need only evaluate Eq. (3.23) at t—0 to

determine the relationship between A " and the free data {y,,
VX%, X* + Y}|,_o. The result is

4,t“>=[y0—(—2—’\ii(ﬂxm))” . (3.24)
g e \ N

Having obtained the general form of a vector field that
preserves the assumed coordinate conditions we can com-
pute the induced gauge transformations of the first-order
perturbations {¢", g}’, B (", 5N}. Since these quantities are
determined by data prescribed at £ = 0 it suffices to compute
the gauge transformations of this “initial data.” Recalling
the parametrization of the first-order perturbations given in
Eq. (3.3) one finds the induced gauge transformations are
given by

SR, o= /)0
RO _ o =(/2) + X8 )|i—o>

40 =1y, — (3.23)

Sh M im0 = (8a¥o)|i=0s (3.25)
8h 3 —o = 8asd1 + (L )18 as)| =05
Sh VY ,_o =0,
and, if we express 4 {*° in the form
h ‘(11),0 — 7"/{(11),0(xb) + t27’,(,”'1, (3.26)

where y{"° is analytic and time independent and where
{1 s regular,

Va
sy D0 =0,
5721)’1II=0 = {%(Xs’ + Y),a + (y‘z'i”ﬂ)a},r=0’
(3.27)

Here L. designates the Lie derivative with respect to the
vector field X * 8 /9x°.

If, recalling Eq. (3.4), we express the perturbed lapse
function as

ON=(nt)ng, +ng,, (3.28)
then we find that n, and 7 ,, undergo the gauge transfor-
mations

6n(O)|t=o =(Ny0)|z=0 (3.29)

neylico =Ny + (N/2)pg + Loy N =o-

If we let  represent the linear perturbation of Ne ~ %%, i.e.,

@ = ONe—?* — 2Ne~ #¢'", (3.30)
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then one can easily show, using the results above, that »
undergoes the gauge transformation

6o|,_o = Woli—o- (3.31)

The foregoing results could be used to impose suitable
gauge conditions upon certain of the unconstrained initial
data. Rather than pursue that issue here, however, we shall
use the above results to study the possible existence of addi-
tional Killing fields of the background space-time metric “'g
and the characterization of such Killing fields in terms of the
background initial data. The possible occurrence of such ex-
tra Killing fields is important for the study of the higher-
order perturbations of the constraint equations since it is
directly related to the “linearization stability problem” for
the constraints as discussed in Refs. 5 and 6.

A vector field X induces gauge transformations of “g
through Lie differentiation, .# vy ¥g. If X is a Killing field
of Wg it thus induces purely vanishing gauge transformations
of “g. From the first of Eqgs. (3.25) it follows that a Killing
field must have y,|,_, = 0. However, y, is uniquely deter-
mined (as a regular solution of the wave equation) from
Yol: = o and thus, in this case, must vanish identically. This in
turn implies 67, =0in Eq. (3.17) and thus that 4 {5, =0in
Eq. (3.18). Thus Y and X * both reduce to regular quanti-
ties. This in turn implies that p,, =0 in Eq. (3.20) and
hence that ¥ o, =0in Eq. (3.21). Thus X > + Yalso reduces
to a regular quantity. It follows that any Killing field X of
@g must take the nonsingular form already considered in
Sec. IT A. The gauge transformations induced by such a vec-
tor field are therefore regular solutions of the linearized evo-
lution equation that vanish identically if and only if they
have vanishing initial data. Recalling Eq. (2.9) we thus see
that “Xis a Killing field of “g if and only if its initial data { Y,
X, X%}, _, satisfy

{%Y + g‘z'k'¢}|z=o =0,

X7+ D)+ (LogB)oHioo =0,

(3.32)
{Ygab + (g'z')\”g)ab}L:O =O9

{YN+ vf'z’)ﬂ(‘N}lt=0 =0.

Since (N — )|, _, = 0, the last of these four equations is
redundant, being equivalent to the first.

Equations (3.32) always admit the “trivial” solution
Y=X%=0,X% =1, since “X = 3 /9x* is always a Kill-
ing field of our background space-times. We shall see in Sec.
IIT1 E, however, that the occurrence or nonoccurrence of
“nontrivial” Killing fields plays a key role in the analysis of
the higher-order perturbed constraint equations. Roughly
speaking, there are no obstructions to solving the higher-
order constraint equations unless nontrivial Killing fields of
@g exist. If such Killing fields do exist then additional inte-
grability conditions must be imposed upon the first-order
perturbations in order to proceed to a solution of the higher-
order constraint equations. These are simply the “lineariza-
tion stability” constraints that arise when one attempts to
perturb from one (Killing) symmetry class to another (cf.
Refs. 5 and 6).
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D. Symplectic structure and canonically conjugate
perturbations

The evolution equations discussed in Sec. II are Hamil-
tonian, having been derived from an ADM variational prin-
ciple after a suitable choice of lapse and shift. It follows from
general properties of Hamiltonian systems that one can de-
fine a symplectic form that yields a conserved, antisymme-
tric contraction of any pair of solutions of the corresponding
linearized equations of motion. This form will be conserved
whether or not we choose to impose the linearized constraint
equations, provided our perturbations leave the Hamilto-
nian itself fixed. More precisely, we must require that the
function A, occurring in the coordinate condition [cf. Eq.
(2.13)]

N/\Pg =

(NNPg) | =o€, (3.33)

1

remain unperturbed from its (vanishing) original value if we
wish to have a conserved symplectic form for arbitrary pairs
of solutions of the linearized evolution equation. This is so
because a nonvanishing variation of 4 induces a correspond-
ing variation of the Hamiltonian itself through its induced
perturbation of the lapse function.

One can evaluate the symplectic form on any pair of
perturbations 4 and ‘Y4 that satisfy the linearized evolu-
tion equations about a given background “g. Since the re-
sulting quantity, here designated by (A, k"), is con-
served, it has a limit as #— 0 even for singular perturbations
(provided we take A = 4 ("’ = 0 in lieu of imposing the
linearized constraints).

A lengthy but straightforward evaluation of the sym-
plectic form yields [in the notation of Egs. (3.3) and (3.26)
and taking A " =1 " = 0]

w((4)h,(4)h I) =J \/-(;E {4(h(l),0k(l),l: _h(l),Olh(l),l) +2e4¢ ab(,y(l)() (L)1 ,}/‘(71)01 (l),l)
K

+ %(gacgbd _ gabgcd) (h ‘(ZL),Oh élli),ll
If we identify the quantities

{h (l),o’h :(zé)'o”y‘(zl)'l}lt =0

(1,007, (1),1
_hab ’hcd )}|t=0‘

(3.34)

(3.35)

as the canonical “coordinates” of the linearized evolution equations (at ¢ = 0) then their conjugate ‘““‘momenta” are evidently

given by

[4\/.(2? h 1), l \[(7]_ (gac gabgcd)h E‘;),l, -2 \/(;E e4¢gab7/él),0]

(3.36)

t=0

These two sets of quantities are precisely the free data we found for the general solution of the linearized evolution
equations in Sec. II B. The canonical “momenta” provide the coefficients of the singular terms in the general first-order
perturbation whereas the canonical “coordinates” yield the regular terms in the perturbation.

If for “h " we substitute a pure gauge perturbation with parameters y,, Yay = =X+ Y, X" 3/9x° and (since we are

taking AV =41’ =0)

- Jrzg‘ ai (—@X)

then o (“h, “h ') reduces, after some simplification, to

’

J’o‘x=o

(3.37)

w((4)h’(4)hgauge) =f [yl \[(ﬂé (gabh ‘(Ill,),l _ 4h(l).l) + ('}/(1) +B Xcr) [ —2N & \/II‘E 4¢ abh (1)0]
K 2N 2 N

ko o ;:’-°—4h‘”’°>,,,—( f:g g (VOB — /3{,,»)

—a L g o py [ TE g sigonyn ]}
t=0

Comparing this with Eq. (3.5) we see that the gauge param-
eters are canonically conjugate to the linearized constraints
as one should have expected.’®

If, of course, as we eventually intend to do, we impose
the linearized constraints upon the perturbations, then we
can also permit perturbations in the lapse and shift (e.g.,
permit nonvanishing 4 ", 1 ¢’} and still have a conserved
symplectic contraction w (4, YA ’). A more complete state-
ment of this fact, together with a discussion of its geometri-
cal significance, is given in Sec. III A of Ref. 1 and thus need
not be repeated here.
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(3.38)

—
E. Solving the nth order constraint equations

It is well known from linearization stability analysis™®
that obstructions to solving the higher-order perturbed con-
straint equations (on a compact Cauchy surface) arise pre-
cisely whenever one attempts to perturb from one (Killing)
symmetry class to another. The obstructions take the form of
certain second-order integral restrictions upon the first-or-
der perturbations one must impose, in addition to the linear-
ized constraints, in order to be able to continue solving the
constraints to higher order. These second-order conditions
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are precisely the vanishing of the perturbational conserved
quantities associated with the Killing symmetries of the
background solution which the perturbation is breaking. If
the perturbations considered preserve all the Killing symme-
tries of the background solution then the second-order con-
ditions are identically satisfied and no obstructions prevent
the solution of the constraints to higher order. In particular,
if the background has no Kiiling symmetries at all then ob-
structions are absent.

QOur background solutions all share the Killing symme-
try generated by Y = d /Jx> but, at the same time, our per-
turbations have all been constrained to preserve that symme-
try. Thus we should expect that obstructions to solving the
higher-order constraint equations will occur only if our
background solution admits some additional “nontrivial”
Killing symmetry (generated by one or more Killing fields
linearly independent of @ /9x*). The necessary and sufficient
conditions upon the background data prescribed at ¢ = 0 for
the occurrence of such additional Killing symmetry were
given at the end of Sec. III C above. We shall see explicitly
below that the absence of such additional Killing fields is
indeed precisely sufficient to exclude obstructions to solving
the higher-order constraint equations.

Ordinarily one imagines solving the perturbed con-
straints on a Cauchy hypersurface of the background space-
time but, for our purposes, it is more desirable to solve them
at ¢ = 0, the Cauchy horizon of the background. In this re-
spect we shall follow the pattern already developed for the
treatment of the evolution equations and the linearized con-
straint equations.

Suppose for the moment, however, that we have already
solved the perturbed constraint equations up through order
n on a Cauchy surface, t = £, >0, of the background. Then
Eqs. (3.2) and their perturbations up through order n may
be used successively to prove that the perturbed constraints
remain satisfied V¢ > 0 such that (in particular) #<#,. This
follows from the uniqueness result in the ordinary Cauchy-
Kowalewski theorem and the fact that identically vanishing
peturbed constraints are clearly a particular solution with
the right initial conditions. Thus the perturbed constraints
vanish VO < 1<, if and only if they vanish on the Cauchy
surface t = 1,

However, for any 0 < k<n, we may compute the k th-
order perturbed constraints directly by differentiating the
exact expressions (3.1) & times with respect to € and substi-
tuting expressions (2.14) and (2.15) [as well as the pertur-
bations of (2.13)] for the fundamental perturbations. Su-
perficially it is clear that these k th-order perturbations of the
constraints will each contain terms proportional to (In z)’
for each /=0,1,...,k. Contributions to these terms come
from both the linear terms in the & th-order perturbations of
the fundamental fields and (for k> 1) from the nonlinear
terms in the lower-order perturbations. A typical term in the
k th-order perturbed constraints has the form (In ) r/¢",
where ris analytic in  and x° . However, it is straightforward
to show that such expressions cannot, in fact, vanish on an
interval (0 < #<t,) unless the coefficient of each independent
logarithmic power vanishes separately. Otherwise one could
arrive at a contradiction by first multiplying the perturbed
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constraints by a suitable power of ¢ (to clear the factors in the
denominator), then differentiating sufficiently many times
with respect to ¢ and demanding that the resulting expres-
sions have vanishing limits as t—0.

Thus to satisfy the kth-order constraints we must
achieve the vanishing of the coefficient of each logarithmic
power, (In ¢t)’, for/ = 0,1,2,...,.k. However, the only freedom
we have to adjust the k th order perturbation is that of adding
an arbitrary solution of the homogeneous (first-order) per-
turbed evolution equations to any particular solution of the
k th order perturbation equations. But such first-order per-
turbations contain only the lowest two logarithmic powers
of t (corresponding to / == 1,0) and thus (entering linearly as
they do) contribute only to these two powers of In ¢ in the
expressions for the perturbed constraints. Clearly, for k2,
there is no freedom to cancel the terms in (In ¢)*, for I>2. On
the other hand, we know, from the Cauchy surface argument
given above, that (barring linearization instabilities) it is
always possible to solve the k th-order constraints for arbi-
trarily large k.

This apparent contradiction is avoided if and only if the
terms in (In #)’ (for 2</<k) vanish automatically as a con-
sequence of the perturbed evolution equations and the per-
turbed constraint equations (up through order k — 1)
which we assume to have already been imposed. For the
same reason the coeflicients of the negative powers of ¢ that
multiply (In ¢)’, for = 1,0, and that cannot be canceled by
adjustment of the free data must also vanish automatically as
a consequence of the evolution and lower-order constraint
equations. Thus the k th-order perturbed constraints auto-
matically reduce to expressions involving only the same
powers of (In ¢) and of 7 as those encountered in the study of
the first-order constraints. Any other result would contra-
dict the a priori known solvability of the k th-order constraint
equations.

Since the free data at & th order has the same form as a
first-order perturbation [cf Eq. (3.3) ] we shall use the same
notation introduced at first order to designate this data.
Thus we let {¢", g5}, B (P} represent an arbitrary solution
of the first-order (homogeneous) perturbed evolution equa-
tions which we may add to any particular solution of the
(inhomogeneous) k th-order equations.

The dominant surviving term in the kth-order per-
turbed constraints is one of order ¢ ~! in the Hamiltonian
constraint. It takes the form

(4h Dt — go®h (1) |, _ o = source, (3.39)

where ““source” stands generically for an analytic inhomoge-
neity that arises from the lower-order perturbations. The
imposition of this constraint ensures the vanishing of the
perturbed Hamiltonian constraint as ¢—0 and also causes a
term proportional to In ¢ in the (k th-order) perturbation of
#°, — B, 5 todrop out in the limit as r— 0. The remaining
contributions to the k th-order constraints can be forced to
vanish as #— 0 by imposing equations of the form

d [M”Tg 4doab m
—_—|—¢ h(l),O = s
(3x" N g7h . source
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1 Aac S c ~
[7 j;ﬁ Vo (1) — €8 (B, — By )R §° (3.40)
4
- 0,‘,} = (source),, ,
where
o=(— 2,1(1) + Rt + 2h (10 _ ég“’h ﬁ,})‘o) (3.41)

and where £,, and y* are defined as in Eq. (3.7). As above,
“source” stands for an analytic inhomogeneity arising from
the lower-order perturbations. Equations (3.39) and (3.40)
are inhomogeneous generalizations of Eqgs. (3.5) and (3.6)
and are necessary and sufficient for the vanishing of the k th-
order constraints in the limit as - 0.

To show that Egs. (3.39) and (3.40) are also sufficient
for the vanishing of the perturbed constraints for >0 we
appeal to the evolution equations (3.2), which represent the
(contracted) Bianchi identities for our system. Since Egs.
(3.2) are linear and homogeneous in {#°, #°,, 57, }, the
k th-order perturbations of these equations yield equations of
precisely the same form for the & th-order perturbed con-
straints (provided, of course, that the constraints up
through order k£ — 1 have already been imposed). In fact,
the surviving (analytic) coefficients of (In ) in the k th-or-
der constraints must separately satisfy these same evolution
equations since the contributions to the full equations pro-
portional to (In ¢) cannot be canceled [on any interval of the
form (0,t,), for example] by the contributions lacking this
factor. However, when Egs. (3.39) and (3.40) are imposed
the contributions proportional to (In #) vanish in the limit as
t—0. Equations (3.2) imply therefore the vanishing of these
{analytic) coefficients ¥¢> O just as in the earlier example of
purely first-order perturbations.

Thus the & th-order constraints reduce to purely analytic
expressions (all the logarithmic terms and terms involving
negative powers of 7 having been canceled out) that satisfy
Eqgs. (3.2) and that, moreover, vanish as - 0. Applying Egs.
(3.2) once again we thus find that the & th-order perturbed
constraints vanish identically (i.e., V> 0 within the domain
of existence of the background solution).

The only possible obstruction to implementing the
above scheme for solving the constraints at k th order is the
possibility that, in fact, Egs. (3.39) and (3.40) may fail to
have solutions. We shall now show that this eventuality nev-
er occurs unless the background space-time admits “nontri-
vial” Killing symmetries.

First of all, Eq. (3.39) is purely algebraic and can al-
ways be solved for (say) (g?°h "')|,_, in terms of the re-
maining quantities. Thus we shall regard the trace of
(A "M, o as fixed by Eq. (3.39). To solve the first of Egs.
(3.40) we decompose the vector field

Ve=((2e*/N)g"h §"),_, (3.42)
into L >-orthogonal summands of the form
Ve=v 4 gy, (3.43)

where V, V< = 0. This decomposition always exists and is
unique on the compact Riemannian manifold (X.,g,,) by
standard linear elliptic analysis (the “Fredholm alterna-
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tive””). Substituting this decomposition into the first of Egs.
(3.40) leads to a Poisson equation for the function y,
d
ax*
Again by standard linear elliptic theory this equation admits

a global solution on X if and only if the source satisfies the
integrability condition

(VPgg®y,) = source. (3.44)

f (source) = 0. (3.45)
X

However, from the form of the exact constraint 57 (i.e., the
fact that it is a divergence) it is easy to see that the source
term will inevitably have the form of a divergence of some
vector density constructed from the lower-order perturba-
tions. Therefore the integrability condition (3.45) will auto-
matically be satisfied and thus the “longitudinal part” of V*
can always be chosen [via Eq. (3.44)] in such a way that the
first of Egs. (3.40) is satisfied.

Finally we must solve the second of Eqgs. (3.40). We first
decompose ¥ “® (which represents the trace-free part of
h (1) as in Eq. (3.8) and then substitute this decomposi-
tion into the constraint equation. The result is a second-or-
der linear elliptic equation for the vector field Y ¢ d /dx‘ of
the same form as Eq. (3.10) (but supplemented with the
“source” term ). This equation admits a solution (unique up
to the addition of a conformal Killing field of g, ) if and only
if the inhomogeneous term is L *-orthogonal to every confor-
mal Killing field of g,,, . This integrability condition takes the
form

| ez g p,, — Buon
K

+VP8Z% , +PgZ (source), }|,_o =0, (3.46)

forevery Z¢ 9 /9x satisfying Eq. (3.12). Reexpressing this
somewhat by making use of the background regularity con-
dition (N /e*?)|, ., = 1and (after integration by parts) the
first of Eqs. (3.40), one finds the condition

K
— (4 ZB.) (source) — 1L ezB) o V P8}, _o,

(3.47)

where V° d/9x? is defined as in Eq. (3.42). Decomposing
(ZLezB), dx° into L 2-orthogonal summands of the form
[cf Eq. (3.43)]

(J‘Z’ZB)a - (jmzﬂ)z"{' 6,0 (348)

and substituting this expression into the condition (3.47)
one finds, after some further manipulation, the equivalent
condition

0= f {— ™8z ,0 +P2Z “(source),
K
— (1 Z°B,) (source) — WPg(VO)T(LuyB)f
+ 1 8(source)}|,_q. (3.49)

At this point (¥ ?)7 and o are still completely arbitrary and
may always be adjusted to satisfy the (finite number of)
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integrability conditions given by Eq. (3.49) unless their co-
efficients vanish identically. Thus we can always solve the
k th-order constraint equations without obstruction unless
both

gZ% . =0
and
(gmzﬁ)a 2(8“, (3.51)

hold for some conformal Killing field ?Z = Z* d/3x" of
2.5 - Equation (3.50) implies that Z must be an actual Kill-
ing field of &, . Identifying ®Z with the vector field ¥X" in
Eqgs. (3.32), setting

i,: - 23(22(} Py
X¥= —-¥-26, (3.52)

andrecallingthatg,, = e~ *%g,, andthat (N /e**)|,_, =1,
one finds that all of Eqgs. (3.32) are satisfied and thus that
{¥, Z°, X*} are initial data for an additional, “nontrivial”
Killing field of “g.

Thus the integrability conditions for the solution of the
k th-order perturbed constraints are satisfiable (for arbitrary
“sources”) provided there exist no “nontrivial” Killing
fields of “g. If such Killing fields exist then the source terms
appearing in the constraints must be subjected to further
conditions of the form

(3.50)

J {VPgZ*(source), + (6 — Z°B,) (source) }|,_, =0,
K
(3.53)

for each Z° d/dx° satisfying Eqgs. (3.50) and (3.51). To
simplify the analysis we may simply assume that the back-
ground metric “’g has been chosen to have no “nontrivial”
Killing symmetries (i.e., no Killing fields independent of 3 /
dx*). In this case the integrability conditions (3.49) may
always be satisfied with suitable restrictions upon (¥ *)7
and o and the solutions of the perturbed constraints carried
out to arbitrarily high order.

IV. CONCLUDING REMARKS

In subsequent work we plan to show how one can collect
together the ‘“‘dominant singular terms” from each order of
perturbation theory and sum the resultant truncated series
to determine what is presumably the asymptotic behavior of
the perturbed Einstein space-times near their singular boun-
daries. A special case of this program has already been car-
ried out for vacuum Gowdy metrics on 72X R (which have
two spacelike Killing fields rather than only one as in the
problem treated here).'*'* For the Gowdy problem we
found that the asymptotic behavior of the perturbative solu-
tions was governed by certain “geodesic loops” propagating
in hyperbolic two-space and that the asymptotic behavior of
(say) the Riemann curvature tensor could be evaluated in
terms of computations based upon an associated family of
approximate (and explicitly computable) “geodesic loop
space-times.”

The validity of this geodesic loop approximation for
Gowdy space-times has been rigorously established for the
special case of polarized Gowdy metrics (on 7> X R, S 3% R,
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and S2XS "X R) by Isenberg and the author'® and an infi-
nite-dimensional subfamily of unpolarized Gowdy metrics
that display the indicated asymptotic behavior has been dis-
covered by Mansfield.!” An analogous family of vacuum so-
lutions having only one spacelike Killing field was discussed
by the author Ref. 18. In addition, Mansfield has extended
the perturbation analysis to the Einstein—-Maxwell equations
for electrovacuum space-times of the Gowdy symmetry type
on T*X R."® Chrusciel and the author have made significant
progress towards a proof of the validity of the geodesic loop
approximation for general (i.e., unpolarized) Gowdy met-
rics but their analysis is not yet complete.

It seems likely that the analog of the geodesic loop ap-
proximation, and its implications for the asymptotic behav-
ior of the perturbed generalized Taub-NUT space-times
considered here, can be derived from the results of the pres-
ent paper by the method suggested above. If so, then the
asymptotic properties of an extremely large family of singu-
lar vacuum space-times (each having only one spacelike
Kiliing field) could be determined by straightforward com-
putations. A powerful check on such an approach would
then be provided by the rigorously defined family of singular
solutions discussed in Ref. 18 [just as Mansfield’s family (cf.
Ref. 17) provides a check on the perturbative approach to
the Gowdy problem].

What is more, there is no reason to suppose that the
methods of the present paper are limited to the study of sym-
metric perturbations. As a model problem for the study of
completely general (nonsymmetric) perturbations of these
same (generalized Taub-NUT) backgrounds, the author
has recently derived the perturbative solutions (to all or-
ders) for the nonlinear wave equation on such back-
grounds.'® He has shown that one can sum the leading-order
terms of the full perturbation series for the nonlinear wave
equation to derive what is presumably the asymptotic behav-
ior of the general solution of this equation near a cosmologi-
cal Cauchy horizon of the Taub—-NUT type. He has also
shown that the asymptotic solutions may be naturally classi-
fied into “Lagrangian submanifolds” of an associated
asymptotic phase space. This last result is quite analogous to
the classification of polarized Gowdy solutions into Lagran-
gian submanifolds discussed by Isenberg and the author in
Ref. 16. A project to extend the results of the present paper
to the study of completely general (nonsymmetric) pertur-
bative solutions of Einstein’s equations is currently under-
way.
A further exciting possibility, which was suggested to
the author by Cosgrove, is that, at least for the Gowdy met-
rics problem, one may be able to sum higher-order contribu-
tions to the full perturbation series systematically by apply-
ing something like the “two-timing” method of conventional
applied analysis.?® Cosgrove has already sketched such a
treatment of the closely related problem of studying singu-
larities in the solutions of the stationary axisymmetric prob-
lem near an axis of symmetry. If this method generalizes to
the perturbation problem treated in the present paper it
promises to yield further significant insights into the nature
of the singularities of the perturbative solutions described
herein.
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The present paper, and the references cited herein, have
only touched the surface of the class of general relativistic
problems amenable to the higher-order perturbation meth-
ods we have developed. It seems quite conceivable that the
general solution of Einstein’s equations near a cosmological
singularity is open to study by a further development of these
methods.
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An exact general solution of Einstein’s equations for spherically symmetric distribution of a
perfect fluid in N dimensions is presented from which the whole class of spherically symmetric
solutions may be obtained. As examples, some particular solutions obtainable from a general

solution are presented.

1. INTRODUCTION

In view of the recent emergence of superstring theory as
the most promising theory developed thus far, having the
potential to lead us a step closer toward unification of four
forces, studies in higher dimensions have obtained a new
importance inspiring a host of workers to enter into this field
of study. Already a number of important solutions of Ein-
stein’s equation in higher dimensions have been obtained.
Yoshimura’s' solutions of higher-dimensional Einstein’s
equations in a vacuum and the work of Koikawa and Yoshi-
mura’s® in the presence of matter and Koikawa’s® solution
and a Schwarzschild-like exterior solution* are a few of
them. We have also worked out a solution of Einstein’s equa-
tion in higher dimensions in the presence of matter.’ In the
present paper we present an exact general solution of Ein-
stein’s equations for spherically symmetric perfect fluids in
N dimensions, from which the whole class of spherically
symmetric solutions (both in & as well as four dimensions)
may be obtained. We present some particular solutions in
Sec. I11. Our work is a higher-dimensional generalization of
the work of Berger, Hojman, and Santamarina.®

Il. FIELD EQUATIONS AND THEIR SOLUTION
We consider the line element in the form
ds’ = g2 (x)dt? — dx* — r dQ?, (D)

where dQ? is the line element on a unit (N — 2) sphere.
Einstein’s field equations with cosmological constants
are

R,uv - %g‘u,vR + Ag,uv = T;u/' (2)

For a perfect fluid with spherical symmetry the energy-
momentum tensor is

T‘uv:(p+P)Ulqu_Pg,uv9 (3)

where U* = (1/g)8*, is a unit vector with the flow lines
tangent to it.
It may be readily seen that the change of variable

P=P—A, p=p+A 4)

transforms Eqs. (2) into an equivalent system with A = 0.
Therefore twirls can now be dropped, keeping in mind that
the A #0 case is already included.

The field equations for the metric (1) are given by

(N=2("/r) — [(N=2)(N-=3)2PP1(1 —=F*) = —p,
(5)
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(N—2)(g'r/gr) — [(N—-2)(N-3)/2”](1 —r?) =P,

(6)
g_+w+ (N__3)r_”
g gr r
(N-3)(N—-4) 2
- 1— =
2 (1—-r)=~p (N

and the equation of hydrostatic equilibrium is
(p+P)g/8)+P' =0, (8)
where the primes denote differentiations with respect to x.

Multiplying Eq. (5) by #¥ %/ and integrating over x
one obtains

rr=1-=2m(r)/r-3, (9
where
dm__pr"”*
dr  (N—2) (10)
Using Eqgs. (8) and (9) in (6) we obtain
_ (N=-2)(N—-13)
N3 -2
( m)[ 2
W= dp 1
N2 dr (p+P)
(N—-2)(N-13)
=P . 11
+ > (11)
We now define a function G as
—3
_ (N2 —=2m) (12)

P+ (N—2(N—3)/2°
Equation (11), when expressed in terms of G, takes the form

’SG[G(N—z)(N-3) _'J\,_,]QHP
2 dr

—2
X[G(N—z)(N—3)+rN_,](iq+2rN )

2 dr N-2
+[G(N—22)(N~3)+r~*1][(N_3)rN_l
r(N—2)(N-13) dG

+ —G(N—2)(N—3)]=0.
(13)

This equation can be integrated for p(r) if G(r) is a given
function,

2 dr
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[~~'+ GWN—=2)(N—=3)/2] (dG

22

p(r) =exp

Gl "—GIN—2)(N—3)2]\dr  N—
(N =3)r"""+ r(N—2)(N—3)/2(dG /dr) —

)dr
2

G(N—-2)(N-3)}

y [K_ﬂ {GWW—2)(N=3)/2 47"~

GP{G(N—=2)(N—=3)/2—-r""1}

— —2
Xepr‘ {14 GN=2)(N —=3)/2}[dG /dr + 2r" —%/(N — 2)] dr]dr]’

G{G(N=2)(N—-3)/2—-r""1}

where KX is an integration constant.
The function p(r) can be obtained with the help of
(10):

p(r) = (N 2) [(N 3)rV- 4+de+dG
dr dr
_WN-2)(N-3G | (N-2)(N-3) dG
r 2r dr
(135)

where p(r) is given by (14).
The metric coefficient g can be found by direct integra-
tion of (8) and using (11) and (12),

dp/dr ]
- _9 | &P/4r 4
g (x) g%CXP[ P

Cay
_g‘z’rN ; XP[ f(N ne ¥

To complete the integration we can recover the link between
the metric coefficient » and the original variable x from Eq.
(9,

(16)

= f __ar an
V1 —=2m/r¥ -3

. DERIVATION OF PARTICULAR SOLUTIONS

A. Schwarzschild-like exterior solution

To obtain the Schwarzschild-like vacuum solution,* on
the basis of the above theory, we choose

(14)
I
G(ry= —[27/(N=2)(N=3)](Z" > =2M), (18)
where M is a constant and K = 0.
Under such conditions we have
(N— 3= +r(N—2)(N—3) dG
2 dr
—G(N—-2)(N-3) = (19)
and consequently
plr) = (20)
Equations (14), (19), and (20) then lead to
p(r)=0. 20
Comparing Eqgs. (12) and (18) we obtain
m(r) =
Equation (17) can thus be written as
2 dar
1M (22)
Finally, from Eq. (16),
g(r) =g (1 —2M/r"3). (23)

Equation (23) represents the Schwarzschild-like exterior
solution in higher dimensions.

B. Interior Krori-Borgohain-Das solution

Now we derive an interior Schwarzschild-like solution
in N dimensions recently obtained by us.’ For this we choose
G in the form

J
Gory = — 21 [4T=7/R? — B,(1—#/R?)] (24)
(N—2)(N—3) [4J1 = /R — B{1 — (N—1)/(N —3)R?*}]
!
where 2 2=_di__. (29)
1/R*=2p/(N—1)(N—2) (25) 1— /R

and A,, B,, and R are constants.
Putting K = 0 in the expressions (14) for p(r), it is

found after some calculation that P
o) =N =2) [(N— DBW1—7/R” — (N = 3)4,]
2R? A, — BT — /R
(26)
Also, Eq. (15) gives
=(N—1)(N—-2)/2R™ 27)
Finally Egs. (16) and (17) give
&£(r) =g (4o — BpyJ1—P/R?)? (28)
and
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This has already been derived directly by Krori, Borgohain,
and Das (KBD).?

C. An interior solution

We now consider a particular interior solution, which
immediately leads to a simple equation of state. For this we
‘choose G in the form

G=4r""" (30)

Taking the integration constant X = 0, we obtain from
(14) and (15), the expressions for pressure and density, re-
spectively, as
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(N=3)[(4/2)(N=2)(N—-3) +1]°

) = (31
PO = A /D N — DN =3 -1~/ (N—D(N—3) + HIAN - DN + 2/ =27 D
and
(N—2)(N—3)[A ]
= —(N-2)(N-3 1
p(r) Y 2(N ) ( )+
[ A{(A4/2)(N—-2)(N—13) + 1} ]
24{(A/2}(N—-2)(N—=3) — 1} —{(4/2)(N=2)(N—=3) + 1H{[4A(N - 1)(N—-2) +2]/(N— 2)}
(32)
The pressure and density are positive when
A (1 —=NY(N=2)X(N—=3)>44(N—-2)(N—1) + 4 (33)
and
1+%<N~—2)(N—3)
. —A[1+ (4/2)(N=2)(N=3)]? (34)
[24{(4/2)(N=2)(N=3) — 1} —{(A/2)(N=2)(N=3) + IH[A(N— )(N—2) + 2]/ (N—2)}]
The equation of state is given by p = (¥ — 1)p, where
_H42)(N-2)(N—-3) + 1+ AN —2)AN—=3) ~ AN —-2) —{(4/2)(N=2)(N—3) + ITHAWN - 1)(N-2) + 2} (35)

(N=2)[J4 (N =2)(N=3) — 4~ {(4/D(N=2)(N—3) + IH[AWN - 1) (N -2) +2]/(N-D)}]

It can be seen that for suitable values of the parameter 4,
the conditions (33)-(35) are satisfied and the solution de-
scribes a physical configuration. A possible range for values
of 4, i.e.,, — 1<4< — 0.34 when N =4 (that is, the four-
dimensional case). In this case, the values of ¥ = 1.6 for
A = — 0.4. Finally, Egs. (16) and (17) give us

gZ(,.) =g(2)r—(N—3)~—2/A(N—1) (36)
and
ar
T o Gn

D. A composite solution

The solution obtained in Sec. III C is not free from sin-
gularity at the center and hence such a solution cannot form
the core of a physical structure. Also the condition of vanish-
ing of pressure at the boundary of configuration described by
our solution in Sec. III Cleads to a situation where pressure

J

and density become zero for all values of . Hence such a
solution cannot also be used to describe the outermost layer
of a composite structure. However, such a solution can form
an intermediate layer of a composite system. As an illustra-
tion here we consider a composite sphere with a core of radi-
us r,, described by a solution given by us (KBD) in Sec.
II1 B, an intermediate layer of internal and external radii r,
and r,, respectively, given by our solution in Sec. III C, and
another outer layer of internal and external radii 7, and a,
respectively, described by a KBD-type solution.
Continuity of metric coefficients at » = r, gives us

—(N—-3)/2 - 1/A(N—~1) _

’ =C-DJ1—-F/R] (38

and

'-1=2mR?2. (39)

Also, continuity of pressure at the same internal boundary
gives

(N=3)[A/2)(N=2)(N—-3) +1}°

A124{(4/2) (N—=2)(N=3) =1} = {(4/2)(N = 2) (N = 3) + IH[A(N - 1) (N —2) + 2]/(N—2)}]

_(N=-2) (N-1)DJ1—-rR/R} —(N-3)C
2R} C—-D\1-F#/R?

(40)

Equations (38)-(40) express the parameters C, D, and R,, respectively, of the core, in terms of parameters of the

intermediate shell.

Also at the boundary r = r,, the continuity of metric coefficients and pressure gives us

rz— (N—3)/2 —1/A(N—1) =E—F 1 _ r%/R%
and
- 2
i ~'=2mRj}.
Also,
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(N=3)[(4/2)(N=-2)(N-3) +1]?

A124{(4/2)(N=2)(N=3) = 1} —{(4/2)(N—=2)(N—=3) + IH[4A(N ~ 1) (N —=2) +2]/(N - 2)}]

_@=2) [(N-— 1)F\J1—FA/R2 —(N—3)E]

2R} E—F\(1-72/R?

where E, F, and R, are the counterparts of C, D, and R,,
respectively, in the outermost layer of the composite struc-
ture.

Again, at the outermost boundary of the composite
structure, i.e., at » = a, the continuity of metric coefficients
gives us

[E—FJ1—d/R}]*=1-2M/a""" (44)
and

a¥—'=2MR?2. (45)

The pressure at 7 = a is zero. Hence we obtain

FD\/1—ad*/R5 =[(N—=3)/(N—1)]E. (46)

The mass of the configuration is given by

M=a""'/2R;. (47)
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The generators of Killing vector and tensor geodesic conservation laws are derived. It is shown
that the generator of a Killing vector conservation law coincides with the Killing field itself.
For Killing tensors the generators are not space-time vector fields but rather depend on the
geodesic tangent vector and therefore lie in a jet space of the geodesic equations. By regarding
the metric as a field on the one-jet space of the geodesic equations, the action of the Killing
tensor generators on the metric can be defined in a natural way. It is found that the metric is
not invariant under Killing tensor symmetries. This happens because the Killing tensor
symmetries, unlike the Killing vector symmetries, are divergence symmetries.

I. INTRODUCTION

Killing tensors were for a long time regarded as rather
mysterious objects. Associated with quadratic geodesic con-
stants of the motion, a geometrical interpretation in terms of
symmetries, like that for Killing vectors, was lacking until
recently. Although some authors were aware that Killing
tensor constants of the motion corresponded to symmetries
of the geodesic equations (see, e.g., the papers on separation
of variables by Benenti and Francaviglia' and Kalnins and
Miller? and references therein), the first explicit identifica-
tion of the symmetries corresponding to Killing tensors was
made by Prince and Crampin®* using a projective action
formalism. In this paper we use the standard modern ap-
proach to Lie symmetries given in Olver” to analyze the geo-
desic equations. In that picture little more than elementary
differential geometry is used, leading to a more transparent
view of the geodesic symmetries. It then becomes obvious
that the Killing vector symmetries are point symmetries of
the geodesic equations while the Killing tensor symmetries
are generalized symmetries (Lie-Backlund symmetries),
i.e., they depend on the derivatives of the dependent vari-
ables in a nontrivial way. Furthermore, the Killing vector
symmetries do not depend on the affine parameter. It is this
property together with their point character that makes it
possible to interpret them as space-time symmetries.

In the projective formalism of Prince and Crampin, the
projective action of the Killing tensor symmetry on the met-
ric vanishes. We show that there is a natural way to define an
action of the Killing tensor symmetry on the metric. This
follows since the Killing tensor symmetries, like the Killing
vector symmetries, do not involve the affine parameter.
Therefore the metric can be regarded as a field on the one-jet
space of the geodesic equations, i.e., the space where the
(prolonged) geodesic symmetries live. It then turns out that
the action of the Killing tensor symmetry on the metric does
not vanish, a result that at first sight would seem to contra-
dict the result of Prince and Crampin. The basic reason for
this action not to vanish is that the Killing tensor symmetry,
unlike the Killing vector symmetry, is a divergence symme-
try. However, the action vanishes *“on shell,” i.e., on solu-
tions of the geodesic equations, a fact that can account for
the result of Prince and Crampin.
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1l. THE GEODESIC EQUATIONS AND KILLING
CONSTANTS OF THE MOTION

We shall use Lie’s theory of symmetries of differential
equations in the form given by Olver® (also see Rosquist® for
a discussion in a general relativistic context). The geodesic
equations constitute a system of ordinary differential equa-
tions given by

dx°
di’
where U “=x'? are the components of the geodesic tangent
vector U. The independent variable is A and the four (in four
space-time dimensions) dependent variables are x°. The
spaces of independent and dependent variables are denoted
by & and %, respectively. Point symmetries involve cou-
pled transformations of the independent and dependent vari-
ables, i.e., transformations of the product space £°X % . To
handle transformations of the derivatives up to the nth order
one needs the nth order jet space, &&X U X U X "X U ,,
where %, is the one-dimensional space with coordinate
d *x/dA *. The general form of a point symmetry of the geo-
desic equations is

G=x"*4+T%x"%'“=0, x"=

(1

a . d

v ¢(u+¢ parl (2)
where ¥ and ¢° are functions of 4 and x°. In general, a sym-
metry v cannot be interpreted as a space-time vector field.
Such an interpretation is only possible when ¢ = Cand ¢“isa
function only of x“. For generalized symmetries® ¢ and ¢°
also depend on the derivatives x'%, x"¢, etc. Any symmetry is
equivalent to its evolutionary representative, v = Q * d /9x°,
where

Qﬂs¢a_x’a¢ (3)
is the characteristic of the symmetry.

The geodesic equations can be derived from the Lagran-
gian

L =g, x"x® 4)
The Euler operator is
a a
E,=D - ) (5
*ox' Ox° )
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where D, is the total derivative® given b
g y

dJd e 0 va O
D=t g T o
The sum is formally infinite but the total derivative is only
applied to functions that depend on a finite number of de-
rivatives, so only a finite number of terms are needed in any
given situation. A short calculation yields the Euler-La-

grange equations
E, (L) =8.4G" (N

Now let £° be a Killing vector field and V, the covariant
derivative along the geodesic. Then

+o (6)

vu(gaUa)=§a;bUbUa+§aUa;bUb=0~ (8)

The two terms between the equality signs vanish separately.
This is the usual relativistic calculation showing that £, U “is
a constant of the motion for the geodesic. The corresponding
(but different) calculation using the total derivative is

D/l (§ax,a)
= (Dléa )x’a + é‘a D}.xm = §0,bx’ax,b + §ax,'a
=T Ex X"+ £,x"=£,G°={E, (L), (9

where we have used the Killing equation £, ,, = I'", . £, and
G°=g°E, (L) from Eq. (7). Note that the two terms after
the first equality sign do not vanish separately. The charac-
teristic form of a conservation law is Div P= Q-E(L),
where P is the conserved quantity and Div = D, since £ is
one dimensional. Hence we conclude that £ “ is the charac-
teristic corresponding to the constant of the motion &, x".
The symmetry generator is therefore v = £ * 4 /dx* and co-
incides with the Killing field itself. Thus the Killing vector
fields plays two roles. It generates both a space-time symme-
try and a symmetry of the geodesic equations.

For a geodesic symmetry of the form v = ¢*d/dx°,
where ¢° does not depend on A4, it is possible to define a
natural action on the metric by regarding the metric as a field
on the one-jet space of the geodesic equations according to

ds® = g, x'“x*dA*=2LdA*,

where dA ?is treated as a constant. Thus the metric coincides
with the Lagrangian in this interpretation (up to a numerical
factor). The action of a symmetry on the Lagrangian is given
by pr v(L), where pr v is the (first) prolongation of v,

J

prv=v+¢—ro, (10)
oax'e
where #'" is the first prolongation coefficient given by
¢(1)0=Dd¢n=¢u,bx'b- (11)

The prolonged action on the Lagrangian by v = ¢“ d /dx“ is
then calculated as

prv(L)
= %pr v(gnb )x’ﬂxlb + gabxm pr v(xlb)
= 1P Gape + 2885 )X X" =1(£,8,)xx'%, (12)

where £, is the Lie derivative with respect to v. If ¢¢ are the
components of a Killing vector field, then £, g, = O leading
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to prv(L) = 0. In general, the criterion for a symmetry
v=0Q%d/3x° to be a variational symmetry is prv(L)
= Div B for some function B on some (finite-order) jet
space. Symmetries with B £0 are divergence symmetries.
Thus the Killing vector symmetry is a nondivergence sym-
metry. The action on the metric becomes

pr v(ds®) = (£,8,)dx" dx”, (13)

which shows that pr v(ds°) = 0 for a Killing vector symme-
try.

It is the nondivergence property that makes the Killing
vector symmetries espectally useful for the solution generat-
ing methods of general relativity. The approach there is to
look for invariances of a “decoupled” part of the total La-
grangian (see, e.g., Kramer et a/ 7). By restricting attention
to nondivergence symmetries only the decoupled variables
come into play.

The general criterion for a geodesic symmetry (vari-
ational or nonvariational } is that pr v(G ?) vanishes on shell.
Here pr v stands for the second prolongation of v. For a
symmetry involving derivatives up to the first order, an
equivalent condition is that

pI'V(Ga) — (P(O)ab +P(‘)abD/1)Gb

for some jet space functions P ¢, and P‘"?,. Prince and
Crampin only allowed for a right-hand side proportional to
G ¢, which seems to be overly restrictive.

Iil. KILLING TENSOR SYMMETRIES

A second rank Killing tensor £, is symmetric and satis-
fies € ouy = O (Kramereral”). Then £,,x'x'®is a quadratic
geodesic constant of the motion. To find its characteristic we
apply the total derivative, as in Eq. (9), leading to

D; (£,xx"") = £,%'“E, (L), (14)

where we have used the Killing tensor relation £,
=2l &,4 It follows that the characteristic is
Q= &,°x'". Thus unlike the Killing vector case this sym-
metry depends on the derivative x'“ and therefore it cannot
be interpreted as a space-time vector field. A symmetry is a
point symmetry if the characteristic can be written as
Q%= ¢° — x'“ for some functions ¢ and ¢ of 4 and x°. A
simple calculation shows that a Killing tensor symmetry is a
point symmetry only in the trivial case when £, is propor-
tional to the metric. In that case the symmetry isv = 2d/dA,
reflecting the fact that the geodesic equations do not contain
the affine parameter explicitly. The corresponding con-
served quantity is the length of the tangent vector.

As before we can compute the action of the symmetry on
the metric and on the Lagrangian. The first prolongation
coefficient of v = £ 9, x"* 3 /9x” is given by

¢(1)G=D,{(§abx'b)=§Zycx,bxu:+§abx”b- (15)
The action of the symmetry on the Lagrangian then becomes

prv(L) =T, & X% %' 4+ £,x°x"?, (16)
where we have used the Killing tensor relation
Elabey =207, €.4- It follows that the symmetry is a diver-
gence symmetry or in other words, the action of the Killing
tensor symmetry on the Lagrangian (and the metric) does
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not vanish by contrast to the Killing vector case. From the
general theory we know that pr v(L) = DivB=D; B for
some function B. To find B we note that Eq. (16) can be
written as

prv(L) =£°x"°E, (L) . a7
Therefore the symmetry action vanishes on-shell. It is this
fact that lies behind the result of Prince and Crampin.* Com-
parison with ( 14) shows that the right-hand side of (17) can
be written as Div B, where B is the conserved quantity, i.e.,
B = £,,x'"°x'®, This simple relation is a consequence of the
quadratic nature of the constant of the motion.

IV. CONCLUDING REMARKS

One might ask whether the Killing vector symmetries
are the only variational point symmetries of the form
v = £9x)d/dx° That this is indeed the case can be seen
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from the following argument. It follows from Eq. (1) that
pr V(L) = (£vgab )x,ax’bzgabxmx,b—fz'

Thus vis a variational symmetry if the new Langrangian L is

atotal divergence, i.e., L = D, B for some B. This is the case
if the Euler-Langrange equations of L vanish identically.®
ButE, (L) =8., (x"* + T, ,x"x'?) so E, (L) is identically
zeroonly if g, = £,8,, = 0, so v is indeed a Killing vector
symmetry.
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As a preliminary step in the development of a Hilbert problem (HP) approach to the initial
value problem (IVP) for colliding gravitational plane waves with noncollinear polarizations,
the IVP for colliding gravitational plane waves with collinear polarizations is reformulated in
two different ways as an HP in a complex plane. The solutions of both forms of the HP are
found and each of these agrees with the solution obtained by another method in the previous
paper of this series [1. Hauser and F. J. Ernst, J. Math. Phys. 30, 872 (1989)]. The conditions
imposed on the initial data of the IVP by the vacuum field equations are discussed in detail.
Anticipating the next paper of this series, the generalization of one form of the HP to

noncollinear polarizations is briefly described.

I. INTRODUCTION
A. Objective

This is the second of a series’ of papers on the initial
value problem (IVP) for colliding gravitational plane
waves, i.e., on the search for systematic methods of comput-
ing the outcoming scattered wave when the two incoming
plane waves are prescribed. One method that shows some
promise has been developed by the present authors. It in-
volves replacing the usual formulation of the IVP in terms of
a nonlinear partial differential equation, viz. the Ernst equa-
tion,” by an equivalent 2 X2 matrix homogeneous Hilbert
problem (HHP) in a complex plane. This HHP will be
sketched in Sec. V and will be covered in full detail and gen-
eality in a future paper.

The present paper will be chiefly devoted to a relatively
simple one-dimensional Hilbert problem which is equivalent
to the restriction of our matrix HHP to the case when the
polarizations of the plane waves are collinear. This pursuit of
the collinear case as opposed to an immediate exposition of
the generally applicable matrix HHP has good reason. The
point is that the key ideas of the matrix HHP will be nicely
illustrated by the Hilbert problem (HP) for the collinear
case and we shall thereby be able to introduce many concepts
of value for subsequent papers without having to cope imme-
diately with mathematical difficulties which beset the non-
collinear case. These difficulties are illustrated by the fact
that there is strong evidence that the general solution of the
IVP for the noncollinear case is not expressible in a finite
closed form. Moreover, the practical art of solving the ma-
trix HHP for particular noncollinear cases is still in its in-
fancy.

In contrast, the [VP for the collinear case requires only
that one solve a Cauchy problem for a certain /inear hyper-
bolic partial differential equation and it so happens that the
general solution in a finite closed form is known. The first
complete solution was obtained by Szekeres® by employing
the Green’s formula method of Riemann (not to be confused
with the Riemann—Hilbert problem). Another form of the
general solution for the collinear case was obtained by the
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present authors' by employing a classical method of linear
superposition. In the present paper, yet another form of the
general solution will be obtained by the radically different
method of solving an HP and wiil be shown to be closely
related in an instructive way to the solution in Ref. 1.

To enable us to describe the contents of this paper in
greater detail, some specifics on the IVP for the collinear
case, on several important concepts that will be used
throughout the paper, and on the HP and its solution will
now be given.

B. The IVP

The line element in the space-time region that is both
covered by our chart* and occupied by the scattered wave is,
in the collinear case,

ds’ =ple=*(dx')* + €*¥(dx?)?]
—2p~ Y2 du dv, (1.1)
where, p, ¢, and I" depend only on the coordinates ¥ and v
over a simply connected planar domain
IV: = {(u,v): 0<u < ue,0<v <v,,0<p(u,)}. (1.2)

Each of the constants #, and v, is a real positive number or
. The ignorable coordinates x' and x? are scaled so that
p(0,0) = 1and #(0,0) = 0. The vacuum field equations im-
ply that®

p(uw) =4[s(w) —r(uw)], (1.3)
where r(x) is a monotonic increasing function over

O<u <ugy, s(v) is a monotonic decreasing function over
0<v <y, and
r(0)=—1, s(0)=1,
(1.4)
—1l<rl, —1<g5,<1,
where
ror = lim r(u), so: = lim s(v).

U u, VU,

As was detailed in Ref. 1, the field I'(u,v) is simply ex-
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pressed in terms of definite integrals® once ¥(u,v) is known.
The key problem is to find the solution ¢ of the hyperbo-
lic field equation

200, +pu¥, +po¥u =0, (1.5)

where ¥,: = dy/du, etc., corresponding to the prescribed
initial data

r(u)y S(U), ¢3(u):=¢(u:0)’ ¢2(U):=¢(o,v)'

(1.6)

This is the essence of our IVP.

Some constraints on the initial data that are consistent
with the existence and vanishing of the Ricci tensor are that
the initial data functions (1.6) be of differentiability class C'
and satisfy 9,(0) = #,(0) =0, Egs. (1.4), and

F(u)>0 if O<u, 5(v) <0 if O<y, (1.7)

where #(u): = dr(u)/du, etc. We shall follow the precedent
of Ref. 1 and, except in a part of Sec. IV, impose no constraints
on the initial data other than those just stated. There are,
however, additional constraints which will be detailed in
Sec. IV and which are imposed by the requirements that the
Ricci tensor exist and vanish. By ignoring these constraints,
we are actually treating a broader class of metrics than those
that strictly represent colliding gravitational plane waves.
However, this does not hinder our ability to solve the IVP
and even turns out to be useful, as we shall discuss in Sec. V.

C. Definitions of Dy, v, v3, Y2, 93, and g,

In Ref. 1 we employed r and s to designate functions, as
we have done above, and to designate coordinate variables.”
We shall follow the same dual usage here and depend on
context to distinguish one meaning from the other.

Note that the mapping (u,v) — (#(u),s(v))}is one-to-one,
bicontinuous, and maps 1V as defined by Egs. (1.2) and
(1.3) onto

Dy :={(rs): (1.8)

where r, and s, are defined by Eqgs. (1.4). Henceforth, we
shall almost everywhere employ D;, instead of IV as a do-
main. The reasons for this are that Dy, is easier to visualize
than IV and the use of Dy, leads to simpler expressions.

Definitions: We shall denote by ¥, 75, and ¥, those func-
tions whose domains are Dy, the interval — 1<r < r,, and
the interval s, < <1, respectively, and whose values y(7,s),
75(7), and y,{s) are given by

vr(u),s(v)): = P(u,v),

— 1<r<rys, <s<1,r<s},

valr(w)): = ¢3(u), (1.9)
Yals(V)): = ¢, (v).

From Eqs. (1.4) and (1.6), note that
¥3(r) = p(r1), 7,(s) =y(— Ls). (1.10)

Definitions: We shall denote by g, and g, those functions
whose domains are the open intervals — 1 <o <7, and
sy < 0 < 1, respectively, and whose values are given by

g:(0): —j ar & (0):= f ds 21— yz(s)
a—r U
(1.11)
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where y5(7): = dy,(r)/dr, etc.

We employ the Lebesgue definition of an integral as in
Ref. 1, where the existences and some properties of g;
(j = 3,2) were established.®

D. The spectral potential ¢

The main ingredient of our HP is a function ¢(7,s,7) of a
complex (spectral) parameter 7 as well as of r and 5. The
definition of ¢ in terms of a given y will be given in Sec. II,
where we shall also derive some pertinent properties of ¢.
One of these properties is that ¢(r(u),s(v),7) satisfies the
same hyperbolic equation (1.5) as ¥(u,v). Another proper-
ty is that ¢ is uniquely determined by 7. In particular, the
initial values of ¢ are uniquely determined by the initial data
as follows:

& (r,7): = ¢(r1,7)

_ _ X0 j dr ys(r D7),
—1

741
(1.12)
¢2(S,T)2 = ¢( - I,S;T)
7(2“ 7) f ds' 12(8\ ) 7(s),
where
:(nr):=1(r4+1/(r=n1"3
(1.13)
Y2057 :=[(r = 1)/ (v =513,

¥s( — 1,7) = y,(1,7): =1 and, for fixed r# — 1 and s#1,
we employ those holomorphic branches of y;(r,7) and
¥2(s,7) that have the cuts [ — 1,7] and [s,1], respectively,
on the real axis of the 7 plane and satisfy
¥3(r,0) = y,(5,0): = 1. The initial values of ¢ can also be
determined by using

1 (" (o)
&3(r,7) =—f do—=2—— |
’ TJ-t Nr—o(oc—71)
(1.14)
1 & (o)
G857y =— | do—=22"7"
? TN Jo—s(o—1)

if g; and g, have already been found. Note that for fixed
r# — 1, ¢;(7) = ¢;(r,7) is a holomorphic function of 7
throughout C — [ — 1,r], where C is the extended complex
plane. Likewise, for fixed s#1, ¢,(7) is holomorphic on
— [s,1].

As regards other properties of ¢ that will be obtained in
Sec. II, consider any fixed (r,s) in D;y. Then the following
statements hold for ¢(7) = ¢(r,s,7)°:

¢(7) is holomorphicon C — ([ — L,r]U [s,1]),

&(7) — x2(7)d;5(7) is holomorphic on [ — 1,7], (1.15)
&(7) — y3(7)¢,(7) is holomorphic on [s,1],
and

#(0) =0, [—7d(1)],_, =7 (1.16)

Statements (1.15) and (1.16) will constitute the HP for the
collinear case.
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Again consider any fixed (rs) in D,y and suppose
r# — lors#1 (or both). The remaining properties of ¢(7)
that will be derived in Sec. II concern its boundary values
dt ¢(o) = 3% ¢(r,5,0), which are defined below for all o on
the union of the open intervals — l<o<rands<o<l.

Definitions: Let h, be any complex number such that
ImhA,>0if —1<o<rand Imh, <0 if s<o<1. Then
d *é(o) and d ~¢(o) are defined by'®

8i¢(0)::3imo¢(aj; h,). (1.17)

In Sec. I we shall prove that d * ¢(o) exist and satisfy

a7 (o) — 9~ ¢(0) = 2iw(a)f(0), (1.18)
where
w@): =y -/ (r=o)(s—o) (1.19)
and
f(o,)::{gs(U)/\/l—"f_';, i —l<ocn o
gz(a)/\/—l——a, if s<o<l.

Equation (1.18) will be the basis for an alternative useful
form of the HP for the collinear case.

E. The HP and its solution

The HP and its solution will be covered in Sec. 1I1. We
shall give both here without providing the derivation of the
solution and other proofs.

Assume that we have prescribed initial data and have
used Egs. (1.12) to compute ¢; and ¢,. However, since we
do not yet know 7, we cannot compute ¢ by using its defini-
tion, in terms of 7. So let us lay aside the definition of ¢ in
terms of ¢ and seek an alternative definition, viz. one that
regards ¢ as the solution of a certain HP.

For any fixed (r,s) in Dy, the HP ' is to find a function
@(1) which satisfies statements (1.15) and the equation
&(0/)=0 In Sec. III we shall prove that the solution is
unique and is

d ' Xz("")¢3(7")

$(r) = —=—
-7
2mf ar LEOWGD), (1.21)

where I'; and I', are any positively oriented (simple and
smooth) contours such that

[—-LrCyY, [sl]CTy,
[s1]lcl,, [-LriCIy,,
reC — (FLUT;FUT,Ul),

(1.22)

and I';* and I';” are those open subsets of C which are
bounded and unbounded, respectively, and have I'; as their
common boundary. In descriptive terms, I'," and I';” are
the open regions inside and outside I';, respectively. Typical
choices of '3, I',, and 7 are shown in Fig. 1.

We define y in terms of the above HP solution by the
second of Egs. (1.16), whereupon
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FIG. 1. Hlustrative choices of T',, I';, and 7 for the contour integrals in the
solution of the HP adapted to (4,,8,).

y= ———j dr o (7)ds(r)

~——_f dr' y3 (7)), (7). (1.23)
271 Jr,

In Sec. III we shall prove that Eq. (1.23) solves the IVP for
the collinear case. Insertion of expressions (1.12) into Eq.
(1.23) and interchange of the order of integration over » and
7’ yields a Green’s function form of the solution obtained in
Ref. 1 by other means.'> The same process applied to Eq.
(1.21) would yield a Green’s function form for ¢ (7).

F. A second form of the HP and its solution

If one permits the contours I'; and T, to contract until
they “collapse onto” the cuts [ — 1,7] and [s,1] they en-
close, then one obtains an expression for ¢(7) in terms of
definite integrals on [ — 1,7] and [s,1]. Another way of ar-
riving at this definite integral expression for ¢(r) is by solv-
ing an alternative form of our HP, viz. an HP on

L{rs):= the pair of oriented arcs — 1 to »

and 1 to s on the real axis of C.
(1.24)

Specifically, assume that g; and g, have been computed from
the initial data by using (for exampie) Eqs. (1.11). Then the
HP on L(rs) is to find a ¢(7) which is holomorphic on
C — L(r,s) such that ¢ (o0 ) = 0, which has = ¢(o) existing
such that Eq. (1.18) holds for all ¢ in the open intervals
— l<o<rand s<o< 1 and which satisfies the following
endpoint conditions:

#(7) — x,(7)é5(7) is bounded as 7— — 1 and 77,
(1.25)
&(7) — x3(1)¢,(7) is bounded as 7— 1 and 75,

where ¢, and ¢, are given by Egs. (1.14). The solution will
be proven in Sec. III to be the line integral

do 2LDN9)

¢(1) = (1.26)
T JL(rs o—T
The second of Eqs. (1.16) then yields
?’=—1- do w(o)f(o), (1.27)
T JL(rs)

which is precisely the solution obtained in Ref. 1 by other
means.

G.Ongs;and g,

Section IV will cover properties of g; and g, which are
important for calculations and perhaps for later extensions
to the generalizations of g, and g, which occur in the noncol-
linear case. For example, we shall prove that g; obeys a
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Holder condition of index | on any closed subinterval of its
(open interval) domain and we shall derive new integral
expressions which facilitate computations of g;. Also, we
shall obtain useful implications concerning g; for the
members of a broad subclass of the class of all initial data sets
(1.6) which satisfy all constraints imposed by the existence
and vanishing of the Ricci tensor.

il. THE SPECTRAL POTENTIAL ¢

A. Definitions of the space D,,, the potential v, and the
duality operator *

There are two preliminary topics that we shall cover in
Secs. IT A and 11 B, respectively, before we define ¢. The first
topic is on the potential ¥ and its domain D, which were
introduced in Sec. I C. However, we shall begin Sec. II with-
out presupposing all the concepts and relations that were
mentioned in Sec. I. The only concepts that we assume to be
given at this time are the initial data functions r(u), ¥, (u)
and s(v), ¥, (v).

Premises: The initial data functions r(u), ¥;(u) and
s(v), ¥,(v) are C' over their domains 0<u < 1, and 0<v < v,
respectively, and satisfy 1/5(0) = ¢,(0) =0 and Egs. (1.7)
and (1.4).

Definitions: The set 1V is defined by Egs. (1.2) and
(1.3). The set Dy is defined by Egs. (1.4) and (1.8). The
topologies of IV and Dy, will be the sets of all IVNSand D,y
NS, respectively, such that S'is any set in the usual topology
of R 2. The boundary of Dy, will be

dDy: ={(rs)eDy:r= —1 or s= 1}

Differentiation of any function is defined using only those
sequences of points that lie in the domain of the function.

Definitions: We shall denote by 2 that one-to-one bicon-
tinuous mapping of Dy, onto IV such that

2N uw): = (r(u),s(v)). (2.1)

We assign that atlas to Dy, that consists of all charts 2':Dy,,
— R ? for which

(292N (uw) = (Uw),V(v)) = :(u',0), (2.2)

where Uand Vare any functions with domains O<u < u,and
0<v < vy, respectively, such that U and ¥V are C' and have
positive derivatives throughout their domains.

Note: The ordered pair that consists of D;, and the atlas
defined above is not a C! manifold since the atlas is not maxi-
mal. However, many of the concepts and results of manifold
theory are clearly applicable to this structure and will be
freely used in Sec. II.

Definition: We shall denote by ¥ any real-valued func-
tion whose domain is Dy such that the function ¢: = yoX !
is C', has a continuous mixed second-order partial deriva-
tive, satisfies Eq. (1.5) throughout IV, and satisfies
Y(u,0) = ¢3(u) and ¥(0,v) = ¢, (v).

Definition: The symbol * will denote that duality opera-
tor on one-forms in IV such that

*du=du, *dv= —dv 2.3)

and will also denote a duality operator on one-forms in Dy,
such that

*dr=dr, *ds= —dbs.
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We shall rely on context to avoid confusion between the
above two uses of the asterisk.

Note: It is easy to prove that for any one-forms w, and w,
inIV (orin D)

>0, =0, (*0,)0,= —o,(*®,), (2.4)

where (#w,)w,: = (*w,;) A w,. We omit the wedges in all ex-
terior products and exterior derivatives of differential forms.
Note: Consider any one-form

Alu,w) = du a(u,w) + dv B(u,w)

which is defined and continuous on an open set M in IV.
Here a and 8 need not be C! to construct a useful definition
of dA. It is sufficient to assume that &, and £, exist and are
continuous, whereupon one way of defining the exterior de-
rivative of A is as follows:

dA(uw): =dudv[B, (uv) —a,(up)].

Note that the hyperbolic equation (1.5) is expressible as the
two-form equation

d(p*dy) =0. 2.5)

Without entering into any specifics, we remark that one
can define a two-dimensional tangent vector space and its
dual at each point of Dy, in a manner similar to that used for
differentiable manifolds. Then differential forms in D,y can
be introduced. We shall denote by 2* the pullback operator
corresponding to the chart =. The key fact that we use below
is that for each p-form u in D,y such that the domain of ps is a
set M in the topology of D), there is exactly one p-form A in
1V such that the domain of 4 is Z(M) and u = Z*A.

Definitions: The p-form y is continuous if and only if A is
continuous and du exists if and only if dA exists and

du: = 3*(dA).

Also, an alternative definition for the duality operation on
any one-form y is

= Z*(x4).
It is easily proven that the above concepts are indepen-

dent of the choice of the chart Z. As examples of interest to
us,

S*p =7y, I*(dY) =dy, S*(dsdy) =d*dy
all exist and are continuous on the domain Dy, . Also,

3*(d*) = d?y exists and vanishes on D, . Application of
2*to Eq. (2.5) yields

d(p*dy) =0, where p(r,s):=1(s—r) (2.6)

and where we note that p is assigned the dual role of denoting
that function with domain IV for which
p(u,p) =1{s(v) — r(u)] and that function with domain
Dy, for which p(r,s) = {(s — r). The intended meaning of P
will be clear from the context in which it appears.

Equation (2.6) requires a cautionary addendum. Our
premises on r(x) and s(v) imply that y is continuous, that
¥,: = 0y/dr exists and is continuous at all (r,s) in D, such
that s# 1, and that y,; exists and is continuous at all (r,s) in
D,, — dD,,. Consider, for example, y,. From Eqs. (1.4),
(1.7), and the relation y{r(u),s(v)) = ¥(u,v),

v (r(u),s()) = ¢, (u,v)/F(u)
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ifu>0,ie.,ifr(u) > — 1. However, since #(0) may be zero,
y,.(r(#),s(v)) may not existat u =0, i.e., at r(0) = — 1. In
fact, as we demonstrated in Ref. 1, the vacuum field equations
imply that H0)=5(0)=0 and that v,.(r.s) is unbounded as
r——1and y (r;s) is unbounded as s—1."

Therefore, although dy exists and is continuous at all
points of Dy, one must note that the identity mapping of D,
onto Dy, is not generally a chart in our C* atlas and that

dy(rs) =dry,(rs) +dsy,(rs)

generally applies only to (7,5) in Dy — 3Dy, . The same res-
ervation holds for

Ldrds[2(s—1)y,—7.+7.] =0,
which is the restriction of Eq. (2.6) to Dy, — dDyy,.

(2.7

B. Definitions of x, D, D, ,, D,, and DY)

Our second preliminary topic before we define ¢ con-
cerns a family of complex-valued solutions y of

d(p*dy) =0 (2.8)

such that y is a function of r times a function of s and
(r,8)eD;y . The reader can verify that a solution of this kind
is given by

x (s, 7)i = x3(rm)x2(s7), (2.9)
where 7 is a complex separation parameter and can be any
pointin C — { — 1,1}. For any fixed (r,s) in D,y definitions
(1.13) of y; and y, imply that the domain of
x(7) = y(rs,7) in the 7 plane is

Dy =C— ([ —Lr]U[s1]) (2.10)
and that y(7) is holomorphic on D, ;, . The function y thus
has the domain

D: ={(rs,1):(r,s)€Dy 7D, ,, }, 2.11)
and for any fixed 7 in C — { — 1,1} the domain of y in the
(7,5) plane (i.e., the 7 section of D) is

D, := {(r,s)eDIv:TED(,,s)}- (2.12)

(-1,1) 1)

D, o®

(0,9)

pw L. .

(_1» —1)

FIG. 2. The subregions D,, D§», and D?’ of D;, whenr, =1,5,= — 1,
and 7 = 0, where — 1 <o < 1. The vertices of the triangular region D, are
(= LD, (L1),and (—1,~1).

It is useful to have a mental image of D, . This is supplied by
the following easily verifiable statements.

(i) The set D, = Dy if 7= w0, Im 70, or if 7 is real
and 7] > 1.

(ii) If r = gis real and o] < 1, then D, is the rectangu-
lar region consisting of all (rs) in D,y such that
— I<r<o<s<l1. The set D, is illustrated in Fig. 2 for the
case when 7, = 1and s, = — 1 (which are the values chosen
for r, and 5, in almost every paper on colliding gravitational
plane waves). Recall that — 1 <7,<1 and — 1<s,< 1 and
that — 1<r <7, and s, <5< 1 are the ranges of  and s.

Note the triangular regions D (> and D *’ which are
also subsets of Dy, and appear in Fig. 2. The significances of
these regions will now be explained. The boundary values
d* y; (o) of the holomorphic functions y; (7) (j=3,2) are
defined exactly as d *¢(o) were defined in Eq. (1.17).
[Simply replace ¢(o + h,) by y,(0+ h,) in that defini-
tion. ] From Eqgs. (1.13), we obtain

d*ys(0) = FiNv(1+0)/(r—0) and 3 *y,(0) =J(1 —0)/(s—0), if —1<o<r,

(2.13)

dtys(0)=J(1+0)/(c—r) and 3 *y,(0) = TH (1 —0)/(o—5), if s<o<],

where all square roots are positive and (7,s) is any fixed point
in Dy, such that r# — 1 and/or s 1. (Recall that r < s in
Dy .) From Eqgs. (2.9) and (2.13), we further obtain

d *y(o) = Fiw(o), (2.14)

where w(o) > 0 is defined by Eq. (1.19) for all o such that
—l<o<rors<o<l.

Now let us consider the domains of d * y (o) in the (r,5)
plane when o'is a fixed real number such that — 1 <o <r,0r
So <0< 1.Oneseesthatd *y(o) and d ~y (o) both have the
domain D ¥’ UD®, where
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—

D ={(rs)eDy: — l<o<r<s<i},
(2.15)

D®:={(rs)eDy: — I<r<s<o<1}.
As a final note concerning d* y (o), observe from Egs.
(1.19) and (2.14) that d * y (o) as well as y () are annihi-
lated by the operator dp*d.

Since d (p*dy (7)) = Oand since D, is simply connected,
there s a scalar field whose domain is D, and whose gradient
is p*dy (7). In fact, the reader can verify that

prdy(r) = —d[(r—2)y(1)], (2.16)
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where
p(r,s):=;(s—r), z(rs): =i(s+n). (2.17)
It is useful to note that in a neighborhood of 7 = «,
(r—2)x(r) =7+ 0(r71). (2.18)

Note: Although the points (r,s,7) = (r,s, + 1) are notin the
domain D of y, observe that y( — 1,5,7) = y,(s,7) and is
(for fixed s) holomorphic at r = — 1in thesense that it has a
holomorphic extension which covers r= — 1. In the same
sense, y(r,1,7) = y,(r,7) is (for fixed r) holomorphic at
7=1and y( — 1,1,7) = 1 is holomorphicat r= — 1 and
7= 1. Similar remarks apply to the functions ¥ and ¢ that
will be defined below.

C. Definitions of ¥ and ¢

We shall be considering the complex-valued functions
x> ¥, and ¢ which each have the domain D. In this subsection
we shall let y(7), ¥(7), and ¢(7) denote those functions
that each have the domain D, such that
x (T {(r,s)y: = y(rs7), V() (r,s): =Y (rs7), and
o(7)(r,s): = ¢(r,s,7). This notational device wilt not be
used in the later parts of Sec. II.

Theorem: There exists a complex-valued function ¥
with' domain D such that for any given 7in C — { — 1,1},
d¥ (1) exists, is continuous'* on D_, and satisfies

¥(7) = (7 = )7y (1) (r — 2 — pe)dy (2.19)
and

Y(—1,1,7) =0 (2.20)

Proof: From Egs. (2.4), (2.6}, and (2.8),

d [x(r)(p*dy) — Vlp*dy(7))] =0

on D_. Substituting from Eq. (2.16) into the above, we ob-
tain
d [x(7)(p*dy) + vd ((1 — 2)x(7))]
=d [y(7)(p*dy) — (7 — 2)y(T)dy] =
from which we deduce the existence of a complex-valued

function F, with domain D, such that dF, exists, is contin-
uous, and satisfies

dF, = (7 — D)7 'x(1) (7 — z — p*)dy. (2.21)
From Eqgs. (2.18) and (2.21), dF, is holomorphic in a neigh-
borhood of 7 = » and

dr

dF, = + O(r72).

Therefore, we can fix the arbitrary additive function of 7 in
F_by specifying that F, ( — 1,1) = 0. Now let ¥ denote that
function whose domain is D and satisfies W(7) = F,, where-
upon the theorem follows.

Corollary: The function is holomorphic in a neighbor-
hood of 7= « and in this neighborhood

V(r) =y/7+ O(r™2). 2.22)

Also, d 2 (r) exists and vanishes and d *d¥ () exists and is
continuous (throughout D, ).

Proof: The corollary follows from Eq. (2.19), Eq.
(2.18), and the facts that dy, dy(7), and d(*dy) exist and
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are continuous, while d*y and d{p*dy) exist and vanish
throughout D,.
Definition:

b= —y¥. (2.23)

Theorem: (i) The function ¢ is uniquely determined by
y and ¢(7) is holomorphic in a neighborhood of 7= oo,
where it satisfies Eqs_. (1.16).

(ii) The differential d¢(r) exists and is continuous,
d?@(t) exists and vanishes, and d *d@(7) exists and is con-
tinuous.'*

(iii) The function ¢(7) satisfies

(—1L1,7)=0
and

(r—z+p*)dd(r) —dz (1) = —dy. (2.25)
Proof: Parts (i) and (ii) of the above theorem follow directly
from definition (2.23) and the preceding theorem and corol-
lary. Equation (2.24) is implied by Eq. (2.20).

Next, Egs. (1.13), (2.4), (2.9), and (2.17) imply

(P =D r—z4ps)(r—z—p*) = [y(1)]7?
whereupon Eq. (2.19) is seen to be equivalent to

(2.24)

Y (r—z+px)d¥(r) = (2.26)
Furthermore, Eq. (2.16) is equivalent to
(r—z+p*)dy(7r) =dz y(7). (2.27)

Equation (2.25) now derives from Egs. (2.23), (2.26), and

(2.27). Q.ED.
Corollary:
d(p+d¢) = (2.28)

Proof: Take the exterior derivative of both sides of Eq.
(2.25).

D. Holomorphy properties of ¢

To compute ¢(r,s,7) for 7in C — { — 1,1} and (#,5) in
D_, we can integrate Eq. (2.19) along any segmentally
smooth path which lies entirely in D, and which has
( — 1,1) as its initial point and(7,s) as its final point. Then
o(rs, 1) = — y(r,s,7)V(rs,7). In particular, let us use the
following two paths, which are each composed of a pair of
straight line segments on or parallel to the axes of Dy, :

(—1,1)—»(",1)—)(7,5'), (_1,1)_’(—'1’5)"’("’5‘)-

The two integrations are straightforward and yield the two
expressions

¢(r,s,7') = XZ(S,T)¢3(I‘,T) + §2(rysy‘r)a
(2.29)
o (r,s,7) = x5 (1, 7)o (8,7) + &5(rs,7),
where ¢; and ¢, are given by Egs. (1.12) and
£, (rsr): = XZ(S 7) f db y»(b,)y, (1b),
(2.30)
&(rs, )= — X’—(rif da y;(a,7)7,(a.s).
7+ 1 —1

From Egs. (2.30) the expressions for ¢, and ¢, in Egs.
(1.12), and the definitions of y, and y, in Egs. (1.13), the
following theorem is evident.
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Theorem: (i)
¢3( - 1’7-) = ¢2(19T) =§3( - I,S,T) =§2(r51’7') =0.

(ii) For fixed r# — 1, ¢5(»,7) and &;(r,s,7) are holomor-
phic on the subset C — [ — 1,7] of the 7 plane. For fixed
s#1, ¢,(s,7) and &,(r,s,7) are holomorphic on C — [s,1].

Corollary: Conditions (1.15) hold.

Proof: Use the preceding theorem and Egs. (2.29).

It is a striking and easily proven statement that for given
@5 and ¢,, the holomorphy conditions (1.15) taken together
with the condition ¢ (7,s,0 ) = 0 uniquely determine ¢ and,
therefore, uniquely determine y. This will be the basis for our
HP.

E. The boundary values 9* (o)

In this subsection we shall be using definitions (1.17) of
d*¢(o). We shall also be using some theorems on general-
ized Abel transforms which we proved in Ref. 1.%

Let us begin by recalling the definitions:

v3(N:=vr1), r(s):=y(—1s),

(2.31)

&(r,7): = d(r,1,7), &,(5,7):=¢( — 1,5,7).

From its definition, ¢,(r,7) is that integral of Eq. (2.25)
along the path s =1 in D, such that ¢;( — 1,7) = 0. Like-
wise, @,(s,7) is that integral of Eq. (2.25) along the path
r = — 1 such that ¢,(1,7) = 0. In other words, as one can
see with the aid of Egs. (2.3) and (2.17), defining equations
for ¢, and ¢, are as follows:

(17— r)des(r) — %dr¢3(7') = —dy;,, ¢:(—1,7)=0,
(2.32)

(r—5)d¢y(7) —Lds g, (7) = —dy,, &,(1,7) =0.

In fact, explicit expressions for the integrals of Egs. (2.32)
have already been given by Egs. (1.12). Our current inter-
ests are the alternative expressions for ¢; and ¢, which are
given by Egs. (1.14).

Theorem: Equations (1.14) hold.

Proof: 1t is sufficient to prove the first of Eqgs. (1.14),
since the proof of the second equation is similar. For
— 1<r<r,and 7eC — [ — 1,r] and for real o such that
— 1 <r<o<r,, the first of Eqs. (2.32) yields

d [\/U—r¢3(r,7-)] =,/a-_rd¢3(r,7-) _ dr¢3(r’7')

o—r
—(o—7) dés(r,r)  dys(r) .
Vo—r o—r

Upon integrating the above over 7 in the interval [ — 1,01,
we obtain

fa dr (7 _ g3(cr)’ for 7eC— [ — 1,01,
-1 Jo—r o-—7T
where g,(0o) is defined by Eq. (1.11).

Now we refer 1o the discussion of {generalized) Abel
transforms® in Ref. 1. The Abel transform of 75(7) is g1 (o)
as given by Eq. (1.11). Similarly, the Abel transform of
¢3(r,7') isg;(0)/ (o — 7) as given by Eq. (2.33). A theorem
in Ref. 1 on the inversion of the Abel transform (1.11) yields

(2.33)
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r

do &)
-1 Jr—o
The same theorem applied to Eq. (2.33) yields the first of
Egs. (1.14). Note that the integral in Eq. (1.14) exists since
according to a theorem in Ref. 1, g;(o)/yr — o is an inte-
grable function of o over [ — 1,7] and since (o0 — 7) ' is
bounded and continuous on [ — 1,r].

Lemma: For any given point (#s) in D;, such that
r# — lors#1, d*¢,(0) and 3* ¢,(0) exist and

d"¢3(0) — " ¢3(0)

vs{r) =i
m

_ lzfgz(o)/frf, if —l<o<n (2.34)
0, if s<o<l
and
3 *¢,(0) — 3 ¢, ()
0, if —l<o<r,
B {Zigz(a)/\/a——s, if sco<l. (2.39)

Proof: 1t is sufficient to prove Eq. (2.34). In Ref. 1 we proved
that g;(o) obeys a Holder condition on every closed subin-
terval of its domain — 1 <o <#, Therefore, for given

r> — 1, g;(0)/r — o obeys a Holder condition on every
closed subinterval of the open interval — 1 <o <r. There-
fore, from a theorem of Plemelj,’” the first of Egs. (1.14)
implies that d*¢,(o) exist and satisfy Eq. (2.34) if
—l<oxr

Ifs<o<l,ie, —1<r<s<o<l,thend;(r,7)is holo-
morphic at 7=o0. Hence, d *é;(r,0) =39 " ¢5(r,0) if
s <o < 1. This completes the proof of Eq. (2.34).

Theorem: For any given point (7,5} in D, such that
r# —1 or s#1, 3*¢(0) =3*¢(rs0) exist and Egs.
(1.18)—(1.20) hold.

Proof: The theorem follows straightforward from the
preceding lemma, Eqs. (2.13), Egs. (2.29), and the theorem
that follows Egs. (2.30). Use the first of Egs. (2.29) to prove
the theorem for values of o in the interval — 1 <o <r and
use the second of Eqs. (2.29) for s<o < 1. We leave the
details of the proof to the reader.

II. THE HP FOR THE COLLINEAR CASE
A. Definition of the HP adapted to (b3, ¢2)

We shall now set aside the definitions of ¥ and ¢ which
were given in Sec. II and define them instead as the results of
solving a certain HP. The equivalences of the definitions in
Sec. II and the definitions that we shall give below will be
proven in Sec. III C.

Assume that the initial data functions r(u), s(v), ¥ (u),
and ¥, (v) have been given and satisfy the premises stated
after Eqgs. (1.6). Also, assume that ¢,(7,7) and ¢,(s,7) have
been computed from the given initial data by using Egs.
(1.12) or any other form of the integrals of Egs. (2.32).

Definitions: The HP "' adapted to (¢, ¢,) is the search
for a function ¢ with domain D such that the following -
plane conditions are satisfied by ¢ (r,s,7) for any given (7,s)
in Dy, [where we suppress (7,s) below]:
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é(7) — x2(7)$3(7) is holomorphic on C — [s,1],
@(1) — ¥5(7)¢,(7) is holomorphicon C— [ — 1,7],
¢(x)=0.
The field y is defined in terms of the solution ¢ by
y:=[_T¢(T)]T=w (3~1)
By using the facts that y;(7) and ¢,(7) are holomor-
phicon C — [ — 1,r] and y,(7) and ¢,(r) are holomorphic
on C — [s,11, one can see that the first pair of conditions and
in the above definition is equivalent to the triad of conditions

(1.15) that were used in the informal statement of the HP in
Sec. I E.

B. Solution of the HP

Theorem: A solution ¢ of the HP exists, is unique, and
has the following value for any given (7,s,7) in D:

B(r,5,7) = 10(r,5,T) + ,0(r5,7), (3.2)
where
Do) = — L [ ar X277
217’ s T’ - T
(3.3)

blrs) = ——— | ar LEDEHET)
27i Jr, 7 -7
and I';, T',, and 7 satisfy conditions (1.22) as in Fig. 1. Fur-
thermore,

y(rs) = 3y(ns) + ,7(rs), (3.4)
where
y(ns):= —L, f dr’ v, (s,7)ds(r,1'),
2mi Jr,
(3.5)
2y(r,s):= '__I—J‘ dT’X3(r’T’)¢2(S,TI)-
271 Jr,

Proof: The proof will be given in two parts. (i) Assume
that a solution ¢ of the HP exists. Then the first two condi-
tions of the definition in Sec. III A of the HP imply, for any
given (#,5,7) in D,

LJ gr 807 = 1275 (1)
2miJr,

7 —T

2
¥ —r

+ LJ‘ dr ¢(T ) _X3(T )¢2(T ) =0
2mi r,
where we are suppressing (7,s). The above equation is equiv-
alent to

L f ar BT 4 (1) +.9(n) =0, (3.6)
T

27ri -

where ;¢ and ,¢ are defined by Eqs. (3.3) and I is any posi-
tively oriented contour such that

({ —1Lr]U[s,1HCrt, rel™.

The third condition of the HP implies that the integral over
I in Eq. (3.6) equals — ¢(7), which yields Eq. (3.2). The
application of Eq. (3.1) to Egs. (3.2) and (3.3) then yields
Eqgs. (3.4) and (3.5). We have thus proven that if a solution
¢ of the HP exists, it is given by Eqs. (3.2) and (3.3) and the
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corresponding ¥ is given by Eqgs. (3.4) and (3.5). This, of
course, implies the uniqueness of the solution.

(ii) We shall next establish the existence of a solution by
showing that ¢ as defined by Eqs. (3.2) and (3.3) satisfies all
the conditions of the HP. The arguments (r,s) will be sup-
pressed in the proof. Since y,( 0 )¢3( ) =0,

dr Y27 ) s () .

r—r

(P (7) =%

Tl Jr,+ I,

Upon adding the two sides of the above equation to the cor-
responding sides of Eq. (3.2) and using Egs. (3.3), we ob-
tain

O(1) — 2T P5(7) = &E,(7),

where

3.7)

&, (7): :__Lf dar X273 (1) — y3 (7)), (7) .
2 2mi Jr,

i

By the conventional method of deforming T, to accommo-
date any given 7 in C — [s,1] so that reI";~, £,(7) can be
holomorphically extended to the domain C - [s,1]. There-
fore, ¢ satisfies the first condition of the HP.

The second condition of the HP is proven by a similar
method (which need not be detailed here) and the third
condition follows directly from Eqgs. (3.2) and (3.3). This
completes our account of the proof.

Note: In Sec. 11 we proved that the ¢ and y defined there
satisfy Eq. (3.1) and all the conditions of the HP. Therefore,
we could have used the known existence theorem on the
solution of any hyperbolic equation such as Eq. (1.5) to
prove the existence of a solution of the HP. However, we
opted for the existence proof given above since it illustrates
the complex plane methods which constitute an important
part of our formalism.

Corollary: The solution ¢ of the HP and the correspond-
ing y satisfy

¢(r’1’7')=¢3(r’7-), ’)’(ryl)=7’3(r),

¢(— Ls,7) = @,(s5,7), v( — 1,5) = p,(s).

Prooﬁ Set s=1 in Egs. (3.3) and (3.5) and use the
relations y,(1,7) = 1, ¢,(2,7) =0, and

[ - T¢3(r,7-)]1'= w — ’}/3("),
which derives from Eq. (1.12) and the relations
X3(r,0) =1and 3( — 1) =0. Then set r= — 1 in Egs.
(3.3) and (3.5) and use the relations y,(— 1,7) =1,
¢3( - lsT) = 09 and

[— T¢,(57) ], = o = 72(8),
which derives from Eq. (1.12) and the relations
X2(s,00) = 1and y,(1) = 0. We thus obtain
9 (rL7) =¢3(r1), 5¥(nl) =73(n),

B(—1,5,7) = ¢,(57), Ly(—1,8) = p,(s),
B(r1,7) =7(r1) = 3¢( = Ls,7) = 3;( — 1,5) = 0.
Substitution of (3.9) into Egs. (3.2) and (3.4) yields Egs.
(3.8).

Corollary: For any given 7 in C — { — 1,1}, the func-
tions [of (7,5)]

(3.8)

3.9)
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0(n), d[;6(n)], d»d[;¢(n)]
exist and are continuous on D_. The functions

;¥ dGy), dx=d(y)
exist and are continuous on D,y and d *(;¥) exists and van-
ishes on Dy, .

Proof: The proof employs Egs. (3.3) and (3.5) as well as
the definitions of continuity and exterior differentiation of
differential forms in the space Dy, given in Sec. IT A.

C. Relation of the HP to the IVP

We shall next give a theorem and two corollaries which
establish that the solution of the HP solves the IVP. The z
and p that appear in the following theorem are defined by
Egs. (2.17).

Theorem: The ;¢ and ;y as defined by Eqs. (3.3) and
(3.5) satisfy |

(= L1L,1)=0
and, on the domain D_,
(r—z+p0)d [,$(] —dz[;$(1] = —d [;7]. (.11)

Proof: Equation (3.10) is implied by Egs. (3.8). As re-
gards Eq. (3.11), it is sufficient to supply a proof for j = 3.
From the definition of y,(s,7) in Eq. (1.13),

(3.10)

(7 —8)dy,(5,7) —Lds y,(s,7) =0.
Upon combining the above equation with Eq. (2.32), we
obtain, with the aid of Eq. (2.17) and the relations
*dds(r,7) = d@,(r,r) and #dy,(s,7) = — dy,(s,7),
(7—z—px)d[y,(1T)d5(7)]

—dz[y,(T)@5(7)] = — x2(M)dys.

Application of the above to ¢ (7) as given by Eq. (3.3) and
the use of the expression for ;¥ in Egs. (3.5) yields

(7 =2+ p0)d [$(1)] — dalp(n)] = =51 [ g L= LEDSD) ~ D,
r,

27i

Corollary: Forj=3andj=2,

d[p*d(;¢)] =0, d[p*d(;y)]=0. (3.12)

Proof: Take the exterior derivative of both sides of Eq.
(3.11) to obtain the first of Egs. (3.12). Then apply the
operator p* to both sides of Eq. (3.11) and take the exterior
derivative of the result. The second of Eqs. (3.12) is then
obtained after using Egs. (2.4) and the easily proven relation
*dz= —dp.

Corollary: The solution ¢ of the HP and the correspond-
ing y satisfy Egs. (2.6), (2.24), (2.25), and (2.28).

Proof: Sum Egs. (3.10)-(3.12) over j and use Egs.
(3.2) and (3.4).

Let us see where we stand. In Sec. IT A we defined yasa
function whose domain is D;y such that ¢¥(u,v):=y-
(r(u),s(v)) satisfies the hyperbolic Eq. (1.5) and the initial
value conditions ¥(u,0) = ¥;(«) and ¢(0,0) = ¥, (v). In
Sec. II C we defined ¢ in terms of the given ¥ by Egs. (2.19),
(2.20), and (2.23) or, equivalently, by Egs. (2.24) and
(2.25). Finally, in Secs. II C and II D we proved that this ¢
satisfies Eq. (3.1) and all of the defining conditions of the HP.
[See part (i) of the second theorem in Sec. II C, the theorem
and its corollary in Sec. II D, and the paragraph following
the definition of the HP in Sec. IIT A.]

Conversely, Egs. (3.8) and the last corollary that we
proved above establish that the ¢ and y defined by the HP
satisfy all the defining equations of the ¢ and y of Sec. II.
Thus the ¢ and vy defined by the HP are identical with the ¢
and y which were defined in Sec. II. Furthermore, from the
theorem in Sec. III B, the solution of the IVP for the collinear
case exists, is unique, and is Y(u,v) = Y{r(u),s(v)), whereyis
given by Eq. (1.23).

D. The HP adapted to ( g3, 92)

Here we shall assume that g, and g, have been computed
from the initial data by using Eqs. (1.11). It is not necessary
to compute ¢, and ¢, in order to use the HP defined below. It
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= —d[;y]. Q.ED.

T -7

is only necessary to know that ¢, and ¢, are given in terms of
g, and g, by Egs. (1.14). Equation (1.17) and Sec. II B
should be consulted for the definition of the various symbols
that appear in the following definition.

Definitions: The HP adapted to (g,8,) is the search for a
function ¢ with domain D such that the following r-plane
conditions are satisfied by ¢(r,s,7) for any given (r,s) in D}y,
[where we suppress (7,5) below]:

(i) The function ¢(7) is holomorphic on D, , .

(ii) Ifr# — 1ors# 1 (orboth), d* ¢ (o) exist and Egs.
(1.18) hold for all o in the open intervals — 1 <o <7 and
s<o<l.

(iii) The endpoint conditions (1.25) hold.

(iv) The value of ¢( 0 ) =0.

Finally, y is defined in terms of ¢ by Eq. (3.1).

Theorem: There is not more than one solution of the HP
adapted to (g3.8,)-

Proof: Let & = ¢' — ¢, where ¢ and ¢’ are any solutions
of the HP. For any given (r,s) in Dy, condition (ii) of the
HP implies that

dT&(o)exist, d*E&(0) =3 &(o) (3.13)

for all o such that — 1 <o <rors<o<]. According to a
known theorem, a function £(7) that satisfies condition (i)
of the HP and Eq. (3.13) has an extension [which we shall
also denote by £(7)} that is holomorphic throughout
C—{—1,7,1,5}, i.e.,, holomorphic throughout C except
perhaps for poles or isolated essential singularitiesat — 1, r,
1, ors.
Next, note that

§(r) = [¢'(1) — x2(1)B: (1) ] — [$(7) — x2(T)$s(7) ]

= [¢'(7) — x3() (1) ] — [P(7) — x3(T)a(7) ],
Therefore, condition (iii) of the HP taken together with Eq.
(3.13) implies that £(7) remainsboundedas7— — 1,r,1, or
s through any sequence of points in C — { — 1,r,1,s}. There-
fore, £(7) has no singularities at — 1, 7, 1, and s and is,
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according to Liouville’s theorem, constant in value through-
out C. Hence ¢'(7) = ¢(7) throughout D, , . Q.E.D.

Lemma: Alternative expressions for the functions ;¢
and ,¢ that were defined by Egs. (3.3) are

r

s (rs,7) = L[ o 8lD060) |
TJ-1 (c—T1)Nr—o
(3.14)

i SdU gZ(U)X})(rya') .

1 (g—1)o—s

Proof: We shall only supply a proof of the first of Egs.
(3.14). Substitution from the first of Egs. (1.14) into the
first of Egs. (3.3) yields

3¢(r’sv7.)

2¢(r5517') =

_ 1 f dr,f’ do 8 ()1, (57) ’
2% Jr, -t (o—T)T —TWr—o
(3.15)

where we recall that [ — 1,r]CI';" and rel';". Now,
¥2(8,7) is holomorphic on C — [s,1] and is, therefore, holo-
morphic on T';UI';". Hence, we obtain the first of Eqgs.
(3.14) after interchanging (as is permissible here) the order
of integrations in Eq. (3.15) and applying the Cauchy
theorem to the integral over 7'.

Theorem: The solution of the HP adapted to ( g5, g,)
exists and is equal to the solution of the HP adapted to
(#3,8,). In other words, it exists and is given by Egs. (3.2)
and (3.3) or, equivalently, by Egs. (3.2) and (3.14).

Proof: We prove the theorem by showing that ¢ as de-
Jfined by Eqs. (3.2) and (3.14) satisfies conditions (i)-(iv)
of the HP adapted to ( g, &-).

We proved in Sec. III B that ¢ as defined by Eqs. (3.2)
and (3.3) satisfies the conditions of the HP adapted to
(¢5,6,). These conditions trivially imply conditions (i),
(iii), and (iv) of the HP adapted to ( g3, g,). Therefore, it
remains only to prove that ¢ as defined by Egs. (3.2) and
(3.3) also satisfies condition (ii) of the HP adapted to
(838

In Ref. 1 we proved that g; (o) obeysa Holder condition
on any given closed subinterval of its open interval domain.
Now, for fixed (7,5) in Dyy such that r# — 1 and s#1,

Y280)/Nr—o, yi(ro)/Jo—s

are C! functions of o over any given closed subintervals of
the open intervals — 1 <o <r and s<0o <1, respectively.
Therefore, the products

&Y /Nr—o, gyi(rno)/No—s

obey Holder conditions on any given closed subintervals of
the intervals — 1 <o <r and s <o < 1, respectively, where-
upon a theorem of Plemelj declares that ¢(7) as defined by
Egs. (3.2) and (3.14) has existing boundary values = ¢(0o)
which satisfy'®

d*¢(o) —3d " ¢(0)
_ [Zig3(a)X2(s,0')/\/r— , iIf —l<o<r,
2ig, () ys(ro)/No—s, if s<o<l

The above equation is equivalent to Eq. (1.18), as can be
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seen from Eqs. (1.19) and (1.20). Therefore, condition (ii)
of the HP adapted to ( g,, g,) is satisfied.

Corollary: Here ¢ and y are also given by Eqgs. (1.26)
and (1.27).

Proof: Use Egs. (1.19), (1.20), (3.2), and (3.14).

Note: The solution of the HP adapted to ( g,, g,) could
have been derived without using the information supplied by
Sec. ITI B. Specifically, the same theorem of Plemelj'’ that
we used to prove the preceding theorem directly tells us that
Eq. (1.26) satisfies conditions (i), (ii), and (iv) of the HP
adapted to ( g3, g,). It remains only to prove that condition
(iii) [i.e., the endpoint conditions (1.25)] is also satisfied by
Eq. (1.26): This can be done by a direct method that makes
no use of any results that we proved in Sec. III B. We leave
the construction of this direct method to the interested read-
er.

IV. PROPERTIES OF THE INITIAL DATA FUNCTIONS
AND OF g3 AND g-

A. Constraints on the initial data due to the vacuum
condition

The only premises that have been granted so far con-
cerning the initial data are those given after Egs. (1.6) in
Sec. I B. As we stated at the end of Sec. I B these premises do
not include all constraints imposed on the initial data by the
requirement that the Ricci tensor exist and vanish through-
out the space-time.

The topic of constraints on the initial data was covered
in Ref. 1 for the noncollinear as well as the collinear cases.
We shall here summarize those conclusions in Ref. 1 that
pertain to the collinear case. We shall assume that the metri-
cal functions p, ¥, and I that occur in the line element (1.1)
satisfy the following conditions throughout their common
domain IV:

pis C4, ¢, T are C',

¥, I, €xist and are continuous. (4.1)

When discussing the vacuum field equations in Ref. 1, we
also assumed that ¢ is C2. However, a reexamination of our
work in Ref. 1 shows that the set of conditions (4.1) is suffi-
cient for the existence of the Ricci tensor throughout the
domain of the chart employed in Ref. 1 and is sufficient to
deduce the conclusions given below.

Recall that the ignorable coordinates x', x* are scaled to
make

p(0,0) =1, ¥(0,0)=0 (4.2)

and that the initial data functions are related to p and ¢ as
follows:

r(w) =1-2p(u,0), ts(u) =1¢(u0),

5(v) =2p(00) — 1, ¥, (v) = ¥(Op). @3
The premises (4.1) and Egs. (4.2) and (4.3) imply'®

Us(u), ¥,(v) are C',  #,(0) = ¢,(0) =0, (4.4)
and

r(u),s(v) areC?, r(0)= —1, s(0)=1. 4.5)

Furthermore, we proved in Ref. 1 that the vacuum field
equations over that space-time region occupied by the two
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plane waves and the two null hypersurfaces that are the
fronts of these waves prior to their collision imply

F(0) =5(0) =0,
§(v) <0 if O<v<vy,

F(u)>0 if Ocu<uy,
(4.6)
and
lim,_o{F(u) —2[1 — r(u) )1 [¥,(u) 1*}/i(u) exists,
(4.7)

lim, o {5(v) + 201 4+ s(0) 1 [#:(v) )*}/5(v) exists.
Conversely, if one assumes that the initial data functions are
given and satisfy the constraining conditions (4.4)-(4.7),
then the vacuum field equations over the space-time region
that is occupied by the scattered wave have unique solutions
p, ¥, and T which satisfy conditions (4.1)—(4.3). The solu-
tions p and ¢ are given by Egs. (1.3) and (1.27), respective-
ly, and the solution T is given in Ref. 1.6

Observe that conditions (4.4)—(4.7) imply that

#(0) =4[#,(0)]%, 3(0) = —4[$,(0) ], (4.8)
which imply in turn that #(0) >0 and §(0) <0. We shall refer
to Egs. (4.8) later.

Conditions (4.4)—-(4.7) are formulated in terms of a
particular choice of null coordinates « and v. However, if u
and v are subjected to any C? transformations

u —u' with domain 0<u < 4, and range 0<%’ < 1},
v- v’ with domain O0<v < v, and range 0V’ <y

such that du'/du and dv'/dv are positive, then conditions
(4.4)~(4.7) remain true after replacing u, v, u,, vy r(u),
s(v), s (u),and ¥, (V) by ', v, ul, vh, ¥ (u'), s'(V), ¥ (¢'),
and ¢} (v'), respectively, where (of course)

s’(ul) = S(U),

Ui (u') = s(u), Y5 (V') =,(v).

ru') =r(u),

Moreover, the numbers r; and s, that were defined in Eqs.
(1.4) and the functions y; and ¥, that were defined by Egs.
(1.9) are unchanged by the transformation (u,v) - (u',0").
The above statements are easy to prove, as is the statement
that the group generated by all such transformations is the
group of all null coordinate transformations under which
conditions (4.5) and (4.6) persist and 7, and s, are un-
changed. Application of any element of this group does not
change ¥, and 7, and leaves conditions (4.4)—(4.7) true if
they are initially true.

The following theorem supplies another group of trans-
formations under which conditions (4.4)—(4.7) persist.

Theorem: Let a; and «a, be any real-valued functions
with domains — 1<7 <7, and s, <s<1, respectively, such
that @, and a, are C' and a,( — 1) = a,(1) = 0. Then if
statements (4.4)—(4.7) are true, they remain true after the
substitutions

Y3 (u) -5 (u) + ay(r(u)),
12 () - 1, (V) + ay(s(v)),

[Note: If #(0) = O, then one can replace the premise that a,
is C' by the lighter premise that &,(r) exists, is continuous
over — 1l <r<ry and is bounded in at least one interval

r(u)—r(u),

s(v) -»s(v).
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— l<r< — 1 + € such that €>0. A like statement holds
for a, if §(0) =0.]
Proof: Use the relations

2 layfr(w)] = Hw)ésfr(w)),
du

4 L ayls(v))] = $(0)etnls(v))
dv

whereupon the proof is straightforward.

B. Special r(v) and s(v)

In this subsection we shall focus attention on any
choices of 7(u) and s(v) that satisfy the following definition.
Definition: The functions 7(u#) and s(v) will be called
special if they satisfy conditions (4.5) and (4.6), the condi-

tions
= lim [
v—=0

1 —s(v)

— 5(v)

l+r(u)

=0, 4.9
::aO r(u ) ( )

and the conditions that

m3(0):=£i£r(1) my(u), mz(O):=1iz13 m,(v) (4.10)
exist and have the values

m;(0)#£0, m,(0)#0, (4.11)
where

my(u): = Fu)[1 4 r(u)1/r(u)?,

my(v): = —S5()[1 —s(v)]/5(v)? (4.12)

for 0 < u <u, and 0 < v < v, respectively.

Examples: The reader will discover by trial that any
choices of r(u) and s(v) that satisfy conditions (4.5) and
(4.6) and are deemed palatable for constructing specific col-
liding gravitational plane-wave solutions are special in the
sense defined above. Examples of special r(u) families are
given by

r(u) =2u"—1, where n>2, uy: =1,

r(u) = [2 exp( —i")] — 1, where n>0,uy: = 0.
u

Similar examples that are C?, but are not C*, are easily con-
structed. A family of 7(u#) choices that satisfy conditions
(4.5) and (4.6), but are not special is given by

u b 2
r(u)=2(n+1)(n+2)f dbf daa"(sini) _1,
(o] (4] a
where n>0and u,: = 1.
Theorem: If (1) and s(v) are special, then
0<m; (0)<1(j=32). (4.13)

Furthermore, there exist real €; and €, such that 0 < €, < u,,
0 <€, < v,y and

Hu)>0, if Ocu<e;,, —35()>0, ifO<v<e,. (4.14)

Proof: From Eqgs. (4.9), (4.10), and (4.12), m;(u) and
m,(v) are C' over 0<u < u, and 0<v < vy, respectively,
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d [1+4+ru)
A LA St S R ,
a’u [ Fu) ms(u)
1-—s(v)
l"— 3
— $(v) a2 ()

and the values of the above derivativesat u = Oand v = O are
given by

1 — m,(0) = lim [l—t’i‘ﬁ
u-0 | ur(u)
(4.15)
1 — m,(0) = lim [.1;‘(_”)_ ‘
v—0 | — us(v)

Conditions (4.5) and (4.6) imply that the expressions in
brackets in Eqgs. (4.15) are positive. Therefore, 1>m; (0).

Now, suppose m,(0) <0. Then there would exist real €
such that 0 < € < upand m;(u) <0 when 0<u < €. Definition
(4.12) of my(u) would then imply that #(u) <O when
0 < u < €: This would contradict the conditions #(0) = Oand
#(u) >0 when u > 0. Therefore, m,(0)>0. A similar proof
yields m2,(0) >0.

We have proven above that 0<m; (0)<1. Conclusions
(4.13) of the theorem now follow from (4.11). The proof of
conclusions (4.14) of the theorem is straightforward and left
for the reader, as is the proof of the following corollary,
which should be compared with Egs. (4.8).

Corollary: If r(u) and s(v) are special, then #(0) >0 and

— $(0)<0.

A stronger result is given by the following corollary.

Corollary: If r(u) and s(v) are special, then there exists
at least one pair of real-valued functions ¥,(u) and ¥,(v)
with domains 0<u < u, and O0<v < v, respectively, such that
r(u), s(v), ¥5(u), and ¥, (v) obey conditions (4.4)—(4.7).

Proof: Let €, and ¢, be defined by conclusions (4.14) of
the preceding theorem. Let

bau): = [;g da27(a)/T1 —r(a)], for O<u<e,,
T (u — &5+ Difs(ey), for €;<u <ug,
and similarly construct ¥,(v). The rest of the proof is
straightforward.
Definitions: Let
=J(1+nr/72, q¢=J(1—5)/2,
=V +7)72, qo:=+(1—5,)/2, (4.16)

plu):=+[1+r(w))/2, q(u):=J[1—s(u)]/2.

For any given ¢, and ¥,, let 5; and 3, denote those functions
whose domains are 0<p < p, and 0<q < g,, respectively, and
whose values are given by

B:s(p):=vs(r), Balq):=y,(s). (4.17)
Equivalently,

Balp(w)): =3 (u), Bslq(v)): = ¢,(v). (4.18)

Observe that Egs. (4.16) and (2.17) yield

p=1—-p —q°, z=p"—q" (4.19)

Note that p and ¢ are identical with # and v when
r(u) = 2u?> — 1and s(v) = 1 — 2v%, but this is not generally
true here.

From definitions (4.17), B;(p) and f3,(q) are contin-
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uous over 0<p <p, and 0<q < go, respectively. Moreover,
By(p): = dB,(p)/dp and 3,(¢): = dB,(q)/dq exist and are
continuous over 0 < p < p,and 0 < g < g, respectively. How-
ever, for general r(u), s(v), ¥5(u), and ¥,(v), the deriva-
tives 3, (p) and B,(q) may not be “well behaved” as p—0
and ¢—0.

Theorem: Suppose r(#) and s(v) are special and sup-
pose r(u), s(v), ¥5(u), and ¥, (v) satisfy conditions (4.4)—
(4.7). Then [B,(p)]? and [B,(g)]* are continuous over
0<p < p, and 0<q < g,, respectively, and

[B,(0)]2 = 2m,(0). (4.20)

Equivalently, the set of limit points of ﬂ, as its argument
approaches the origin is

{\2m; (©), — y2m; (03 }.{{2m, (03} or { - 2m,®}.

Proof: Consider, for example, j = 3. Observe that Egs.
(4.16) and (4.18) imply that

(14 7(u) @3 (0) 1/ (u)? = § [ Bslp ()]

Therefore, by multiplying the expression in curly brackets in
the first of conditions (4.7) by [1 + r(4)1/F(u)? and by
using Egs. (4.9) and (4.12), we obtain

— 1 = ) 1Bl (w)))?

and deduce that the above expression is continuous over
0<u < u, and vanishes at ¥ = 0. The theorem for j = 3 then
follows from the relation r(0) = — 1. A similar proof is
used for the case j = 2.

m,(u)

C.Ong;and g;

We next cover some properties of the functions g, and g,
which were defined by Egs. (1.11) and have played impor-
tant roles both in this paper and in Ref. 1. The first theorem
is general. It assumes nothing more than the premises on the
initial data which are stated following Egs. (1.6).

Theorem: The function g;(co) obeys a Holder condi-
tion'” of index } on any given closed subinterval of its (open
interval) domain.'®

Proof: We need to give a proof only for j = 3 since the
proof for j = 2 is similar. Let [a,b] be any closed subinterval
of the domain — 1 <o <r;of g;(o). Let

cc=a-—(a+1)
and let o and ¢’ be any points on [@,b] such that ¢’ > 0. Thus

—l<cec<ago<co<b<r,. (4.21)
From Eq. (1.11),
8:(a’) — g (o) =1,(0,0') — [,(0,0') — L;(o,0'), (4.22)
where
AL
I,(0,0'): =J dr 220 (4.23)
4 Vo' —r
Iz(a,o’):=f dr;'g(r)[ 1 ] (4.24)
: Ja— r \fa —r
I(00): -J- dry3(r)[ 1 ]
—r \fa’ —r
(4.25)
Since 7, is continuous on the closed interval [c,b],
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M, (a,b): = max{|y5(1)|: e<r<b}
exists and is finite and positive. From Eq. (4.23),

|1,(0,0) | <2M, (a,b)Jo’ = 0.
From Egs. (4.21) and (4.24),

(0,0 |<2M(ab) [Vo—c +Jo —o—Jo —c ]
Q2M,(a,b)Wo — o . (4.27)

For all non-negative real numbers x and y such that x> y,

Vx — Jy<fx —p.

Therefore, from Eq. (4.25),

[:(o0') <o — o dr VA
-t (lo—r) (o0 —r)

@ =,
a+1

(4.26)

(4.28)

where

C

M,(a): = dr|y;(nr)|

-1
and where we have used the inequalities

o—rxlla+ 1) —r>i(a+1).

[ The integral M, (a) exists and is finite. Integrals of this type
were discussed in Ref. 1.] From Egs. (4.22) and (4.26)-
(4.28), there exists a positive real number M (a,b) such that

Ig3(a’) — g3(a)|<M(a,b)o’ — 0. Q.E.D.

The premise in the following corollary contradicts con-
ditions (4.6) and (4.7) since these vacuum conditions im-
ply, as we proved in Ref. 1, that #,(r) and ¥,(s) are un-
bounded as ¥— — 1 and s— 1, respectively. However, the
theorem in Sec. IV A shows that functions that satisfy the
premise of the corollary have at least one use. (In the
theorem of Sec. IV A, these functions were denoted by «;.)

Corollary: Suppose ¥,(r) and ¥,(s) are C' over
— 1<r<r, and s,<s<1, respectively. Then g,(o) and
&-{0) have continuous extensions onto — 1<o <7, and
s < o<1, respectively, and these extensions obey Holder
conditions of index } on any given closed subinterval of their
respective domains. [If 73(r) and 7,(s) are C' over
— 1<r<ry and s5,<5< 1, respectively, then g5 (o) and g,(0)
have continuous extensions onto — 1<o<r, and s,<0<],
respectively, and these extensions obey Holder conditions of
index } on their respective domains. |

The proof of the above corollary is a modified form of
the proof of the preceding theorem and is left for the reader.

Finally, we consider alternative forms of the integals
{1.11) for g;{o) and g,(o). Upon introducing the new vari-
ables of integration

x=\J(e—r/A+0), y=JG—-0)/(1—-0),
one obtains

1
g:(a) =20yl + 0| dx¥lo— (1 +o)x%),
(0]
, (4.29)
g(0) =241 —Uf dy v5lo + (1 — o0)p?).
o]
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Let us next employ the variables p and ¢ defined by Egs.
(4.16) and the functions B;( p) and 5,(g) defined by Egs.
(4.17). Equations (1.11) then become

1 /2 . 1/2 .
g3(0)=-‘/€J; d9,33[(1_{2_0) sme],
(4.30)

/2
g:(0) = —%L dé B, [(l—g—g)m sin6],

after introducing a new variable of integration 8. Equations
(4.30) are especially useful for computing g; and g, when r(u)
and s(v) are special, as defined in Sec. IV B, and r(u), s(v),
Y5 (1), and y,(v) satisfy conditions (4.4)-(4.7). The reason
for this can be seen from Eq. (4.20) and the theorem that
contains this equation. Specifically, if the premises of the
theorem hold, then the integrals in Eqs. (4.30) are proper
Riemann integrals and

g(— 1) = (7/242)B,(0)
: = limit point of g;(o) as o— — 1,
g(1) = — (7/242)B,(0)
: = limit point of g,(g) as o—1,
where [Bj(O) ]? is given by Egs. (4.20) and (4.12).

(4.31)

V. PERSPECTIVES
A. The HHP adapted to (3, 72)

If one no longer assumes that the polarizations of the
plane waves are collinear, then the line element (1.1) in the
scattered wave region is replaced by*

ds®> = pS,, dx“dx® —2p~ 2" du dv, (5.1)

wherea, b = 1, 2; the symmetric matrix S'is positive definite;
det S = 1;and p, S, and I depend only on u and v. We select
the ignorable coordinates x', x* so that p(0,0) =1 and
S5(0,0) = I. As in the collinear case, the solution of the vacu-
um field equation for p(u,v) is given by Eq. (1.3) such that
Egs. (4.5) and (4.6) hold for the functions r(u) and s(v).
Also, the solution for I" (u,v) is expressed in terms of definite
integrals with known integrands once S(u,v) is known.® The
key problem is to find the solution .S of the 2 X2 matrix
nonlinear hyperbolic equation'®

d(pSoy+dS) =0,

(0,,0,,05: = the usual representation of

the Pauli spin matrices) (5.2)
corresponding to the prescribed initial data
r{u), s(v), §{%,0), S(0,v). (5.3)

In the collinear case, x! and x? can further be chosen so that
S(u,v) is diagonal at all («,v) in IV, whereupon one defines
Y by

S =exp( — 20,1).
Equation (5.2) then reduces to the linear equation (2.5) for
the function 3.

The basic ingredient of our HHP for the general caseis a
2 X 2 matrix spectral potential & (r,s,7) which has the same
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domain D as the spectral potential ¢(7,5,7) defined in Sec.
II C. In fact, for the collinear case, Z (,5,7) is given by*°

P =€ TPty (5.4)
where

PE= (I o)y + 1 + o)y, (5.5)
and where we recall that ¢: = — y'¥, as discussed in Sec.

II C. The definition of & for the general case and the deriva-
tions of Eq. (5.4) and of various properties of & will be
given in a future paper of this series. Here we shall merely
summarize those few properties of & that we need to de-
scribe the HHP.

We start by noting that the initial values

Prryi=P(rl,1), P,(s7):=P(— 1,57) (5.6)

are computed from the initial data functions (5.3) by inte-
grating two separate 2 X 2 matrix ordinary differential equa-
tions

d.@3+r30'2-@3=0, d-@z—.'rza'z.@z:() (5.7)

which are linear, homogeneous, and of the first order. The
matrix coefficients I'; in Egs. (5.7) are constructed in a sim-
ple way from the initial data functions and their differentials.
Here Z; has exactly the same domain and holomorphy
properties in the 7 plane as the function ¢;, which is given by
Egs. (1.12) and is discussed in Sec. I1 D. For example, in the
T plane,

& ,(r,7) is holomorphic on C— [ — 1,¢],

#,(s,7) is holomorphic on C— [s,1]. (5.8)
Also,

Zi(—-1Lr)=2Z,(l,r) =1 (5.9)
throughout C.

As regards Z (r,s,7) = & (7), we have the following
properties in the 7 plane for any given (7,s) in D;y:

P(1)[#4(r)]™" is holomorphic on C— [s,1],

(5.10)
Z(T)[Z,(r)]7" is holomorphic on C— [ — 1,r].

Moreover,

P(w)=1I (5.11)
and
I—p(u)S(u,w)

=Re{27[1 - Z(r(u),s(v),7)]0,}, - ., (5.12)

Definition: The HHP adapted to (& 5, 7 ,) is the search
for a 2 X 2 matrix function Z with domain D such that for
any given (7, s) in D}y, conditions (5.10) and (5.11) hold.
Once Z is found, then S is given by Eq. (5.12).

Our next paper will cover the above HHP in detail.
There is a close parallel here with the HP adapted to (¢, ¢,)
defined in Sec. III A. In fact, as we shall demonstrate in the
next paper, the HP adapted to (#;, ¢,) is equivalent to the
HHP adapted to (Z,,%7,) when the polarizations of the
plane waves are collinear. There is another form of the HHP
that similarly generalizes the HP adapted to (g5,8,) as dis-
cused in Sec. ITI D, but we shall reserve that topic for a later
paper.
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We stress that there is no closed form of the solution of
the HHP for arbitrary (#,, Z,). However, we have con-
structed a linear integral equation of the Cauchy type which
will be given in our next paper and which is equivalent to the
HHP adapted to (#,, &,). We are hopeful of eventually
reducing the IVP in the noncollinear case to that of solving a
linear Fredholm equation of the second kind. Integral equa-
tions of this type should be effective for discovering proper-
ties of colliding gravitational plane waves.

The HHP adapted to (Z 5,7 ,) is also a useful starting
point in the study of methods of generating new colliding
gravitational plane-wave solutions from already known so-
lutions by employing a group of transformations similar to
one that the present authors®' used to construct stationary
axisymmetric gravitational fields and that Ernst ez al.?* used
to construct colliding gravitational plane waves. We shall be
developing this theme in subsequent papers.

B. On solutions that violate the colliding wave
conditions

In Secs. I-111, we did not employ all the constraints on
the initial data which are imposed by the vacuum field equa-
tions. Specifically, we ignored the conditions
#(0) = 5(0) = 0 and the existence statements (4.7). In Ref.
1 we derived a generalization of (4.7) which is applicable to
the noncollinear as well as the collinear case.”® The two exis-
tence statements in this generalization of (4.7), taken to-
gether with the conditions that r(u) and s(v) are C? and
satisfy #(0) = $(0) = 0, will be called (as in Ref. 1) the col-
liding wave conditions.

In the next paper of this series we shall continue our
policy of not excluding initial data functions which fail to
satisfy all or some of the colliding wave conditions. There are
two good reasons for this policy. One is that spectral poten-
tials corresponding to initial data functions that violate col-
liding wave conditions often enter directly into the construc-
tion of families of spectral potentials which are consistent
with the colliding wave conditions. For example, consider
the spectral potential (5.4) for the general collinear case.
The matrix function 2§, which is given by Eq. (5.5) and
appears as a function in Eq. (5.4), is the spectral potential
corresponding to the Kasner metric of index 0. For this met-
ric, S =1, i.e., ¥ = 0 throughout region 1V, which implies
¥, = 0 and ¥, = 0. The reader can easily verify that the exis-
tence conditions (4.7) are not satisfied if 9, = 0, ¢/, = 0, and
#(0) =35(0) =0.

The second reason for covering initial data functions
that do not satisfy all or some of the colliding wave condi-
tions is that we shall have occasion to consider families of
initial data functions, say

r(u), s(v), $ (4,0), S (0v),

where n is a real parameter set; where the colliding wave
conditions are satisfied only for a certain value n, of the
parameter set; where the corresponding spectral potential
Z ™ is a uniformly continuous function of # (with respect
to any compact subset of D); and where it is straightforward
to determine Z " when n#n,, but difficult to do so when
n = n,. One can then find &Z ™ by first computing Z "
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for n+ nyand then letting n — ng. We shall have the opportu-
nity to witness this theme in future papers.
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In two space-time dimensions there are quantum fields ¢ obeying Og = 0, which nevertheless
have nonvanishing higher truncated »-point functions. Such fields show up if one wants to
adapt the theorem of Greenberg and Robinson to 1 + 1 space-time dimensions. Using the Jost—
Lehmann-Dyson representation, it is shown that if either (a) ¢(p) = O for spacelike momenta
or (b) W‘p + o (P) decreases at least like exp( — p?), then the field @ is the sum of two local
fields 4 and B, where 4 is a generalized free field and B satisfies 0B = 0.

I. INTRODUCTION

Let @(x) be a relativistic quantum field in n + 1 space-
time dimensions. If n>2 and if we assume @(p) =0 for p? <0
(spacelike p), then @(x) is necessarily a generalized free
field, i.e.,

[@:(x)@, ()] - = (L [@:(x).0, (1) ] _Q),
for Bose fields, respectively,

[:).,N] .+ =(Q][@: (x)p; (1], D),
for Fermi fields.

This theorem proven by Greenberg' and Robinson? re-
mains true in 1 4 1 space-time dimensions, only if we ex-
clude fields of mass zero. The reason is well known: In two
dimensions there are fields obeying Dg, (x) = 0 that are not
free fields in the above sense. The best known example are
the Wick products of j, =j, +j,, resp. j_ = j, — j,, where
Ju (x) is a free conserved current (see Ref. 3). In the follow-
ing we shall show that the two-dimensional version of the
theorem holds true up to a field B(x), which fulfilis
OB(x) =0.

Ii. RESULTS

Theorem; Let ¢; (x) be the components of a Wightman
field in 1 + 1 space-time dimensions.
_ (@ g (p)=0for —M}<p’< —M3i<0or (b)if
W, . ‘p.(p)exp(apz)ef’(]Rz), a>0 for all components
@;, then @ can be written as ¢(x) = A(x) + B(x) and we
have (i) A(x) is a generalized free field, i.e.,

[4:(x).4,(0) ] 5, =D [4:(x).4;(1) ] (5,8
(ii) B(x) =0,

(iii) [Ai(x)’Bj 67 ] (¥ = (€, [A,»()C),Bj 62} ] (%) Q).

Remarks:

(1) Of course B(x) can be a free field too. (2) For the
proof we do not have to assume that ¢ transforms covariant-
ly under the Lorentz group. Therefore the theorem is valid
also for fields ¢ with infinitely many components. But if ¢
transforms finitely covariantly then it suffices to assume
@{p) = 0 for two open sets contained in the right resp. left
spacelike cone. (3) From our previous work® we expect that
the assumption (b) can be weakened to

(b)Y W_ . (pexp(ayp’)es (RY), a>0,

2337 J. Math. Phys. 30 (10), October 1989

0022-2488/89/102337-03$02.50

but we did not succeed to prove it. Nevertheless the assump-
tion (b) is weaker than the original assumption made by
Greenberg and Borchers—namely, W, . (p) =0 for
p>M>

1il. PROOF OF THE THEOREM

Depending on the statistics of the field ¢ either the com-
mutator [@;(x),@;(¥) ] — (Bose field) or the anticommuta-
tor [@;(x),p;(¥)]. (Fermi field) vanishes for spacelike
distances because of locality. The proof of the theorem will
be given in four lemmas. In Lemma 1 we analyze the support
of [@(p,),¢(p,) Q2. Lemma 2 characterizes the commuta-
tor. In Lemma 3 we show that the support of @ is restricted
to V,UV_. This fact will be used in Lemma 4 to decom-
pose @ according to the theorem.

For an arbitrary vector ¥ we consider

Fp.g):= (V[0 (0/2— 9.4, (p/2 + ) ] Q).
From the spectrum condition we know f‘(p,q) =0ifpa¥,.

As a first step we show the following lemma.
Lemma 1: Forall ¥, = (1 — P, )V we have

supp FC{p, = p,>0} x{go = ¢,}
U{Po = "P1>0}X{QO = — 41}

ie., F(p,g) =0unless peL , = {p;p? = 0,p,> 0} and ¢ paral-
lel to p.
The proofs for the cases (a) and (b) differ; however, in
both cases we use the Jost-Lehmann-Dyson representation.
Proof: Case (a) F (p,9) is the Fourier transform of
(Y[p(x —&72),¢(x + £ /2)]1Q). Forfixed pthedistribution

2

G, (£): = Jﬂ ¢ F(p,q)
2T

vanishesif € 2 < 0 and we can use the JLD representation (see
Ref. 4).

G . d* — igk
G,(g.0): = ?G,,(g)cos(a\/?)e a

is a solution of the equation (d7
-3d2 —-d4)G, (,0) =0, symmetric in . For =0
we have G, (¢,0) = F(p,q) and (3, G, ) (¢,0) = 0. From our
assumption (a) and for pe¥V, it follows that. G, (g,0) =0

and therefore f’(p,q) =0 as has already been shown by

wave
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Greenberg' and Robinson.” For peL . we get by the same
methods

supp G, (+,0) C{Ap:AcR}Up/2
+V,U—-p2-V,

for all 0. The Cauchy data of G, (¢,0)in the plane g, = O are
concentrated on the line ¢, =0, i.e.,

_ N
Gp (0.9,,0) = E 8(k)(q|)fk(U) s
k=0

N
(3,,G,)(0,g,,0) = Za‘k’(ql)gk(a)-

4 P

If we express G (¢,0) by its Cauchy data we realize immedi-
ately that G ( q,O) =F(p,q) as a function of ¢ is finite covar-
jant with respect to Lorentz transformations. Therefore
supp F(p,-) is given by (i) {go=¢;} if po=p,>0, (ii)
{go= —q,}ifpo= —p,>0.

Case (b): In this case we use the same strategy as ex-
plained in our previous paper.® Therefore we shall be very
sketchy and refer the reader to Ref. 3 for the details.

F (p,q) can be written as

F(P,Q) = (¥, "‘7-71' (p/2 — Q)‘;Jj (p/2 + q)41)
() Y,.0: (072 + @, (/2 — )Q)

=F (pg) (+)F_(p9)

and for the supports with respect to ¢ we have for fixed
pET/_,_:

suppF, (p,")C —p/2+ 7V,

supp F_(p, ) Cp/2 =V,
From assumption (b) W¢’+ o (p)exp(ap®)eS (R?) for
some a > 0 and because of the Cauchy-Schwarz inequality
we have

F, (pgrexpl(a/2)(p/2 + 9)*]e 5" (RY)
resp.

F_(p.grexp[(a/2)(p/2 — ¢)*]e5" (RY).
Therefore F(p,q)cosh(oyq®) exists as a distribution in

S (R X D' (R) with respect to (p,q,0). For fixed p the
Fourier transform with respect to g

2 e B
G,(0.£) = f iz”i F(p.q)cosh(on/qh) e

is a solution of the wave equation
(32 + 3%, — 3%)G,(0,£) = 0, symmetric in 0. Because of
locality we get for 0 = 0 G, (0,£) = 0if £ < 0. Asgeirsson’s
lemma implies G, (0,§) =0 if £ < — 0* and because for
fixed p and o the support of F(p,q)cosh(a\/_7 ) is contained
in —p/2+V,Up/2 — V. we can use Araki’s extension®
of JLD toshow G, (a’,g‘ ) for all £ ? < 0. From our assumption
(b) it follows that F (2,9)exp((a/4)q%) defines a tempered
distribution and can be written as

F(p,q)exp(%qz)

1 = ( 02)-
= exp| — — }F(p,q)cosh( Ydo .
=) o L g

Therefore its Fourier transform
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d*q - (a ) .
H = | —= F(p, — &g
L (€) f 3 (p,9)exp 2 g’ e

=——|G (a,§)exp( — -ai)da

\/1—73

satisfies locality, i.e., H, (£) = 0if £? <O0.
Furthermore as long as peV/, ,

F(p.g)exp((a/4)glexp( + vg0)e#" (RY)
for some ¥ > 0 and therefore H, (£) vanishes because it is
analytic in &,.

Now we consider pel,, ie,
Po= — p,>0. For p, = p,> 0 we have

F(p.g)exp((a/4)glexp( + vg_)eS' (R*)

forsomey >0, whereg_ =g, — q,, ¢4, = g, + g, and there-
fore  H,(£) is analytic in £,  because
gé=Mg, &_+q_£.}). Because of locality this implies

bo=p>0 or

H, (&) =0aslongas &_ 70 and we have the representation
(for fixed p)
N
H,(&)= 3 PNV (EL),
k=0

therefore F(p,q)exp((a/4)4?) is a polynomial in q. and be-
cause of the support properties we  have
supp F(p, ) C{q_ =0} if p_=0. Starting from
Po= —p;>0 we get supp F(p,g)Clg, =0} if p, =0.
This proves Lemma 1.

Lemma 2: For the commutator [@;(x—§/2),
@;(x+£/2)] we have (a) O, [@p(x—£/2), p(x+ &/
2)]=0, (b) [p(x—£72), px+£/2)]
=AY+ C (x,.,8) +C_(x_,£), where C_,C_ are the
nontrivial parts, and A is the VEV of the commutator. (c)
For the Fourier transforms C (p.g) we have
C.(pg) =8, )C,(p_,q), supp C - c{q, =0}
and C_(p.g) =6(p_)C_(p..0), supp C_(p.,,)
clg_ =0}k

Proof: (a) [@:(p/2—q).,9;(p/2+ ¢q)]Q2=0 unless
p>=0 and because of positivity this implies
P[@:(p/2—q), §;(p/2+ ¢q)]Q=0. This proves (a) be-
cause of the Reeh-Schlieder theorem. (b) From
O, =9 — 9% =}d. 9.  itfollows

[p(x—&/72),p(x+£/2)]
=(Q[e(x—§/2),p(x+§/2)]0) + C,(x,,8)
+ C_(x_,6) with (Q,C, (x,,5)Q)=0.

This proves (b), and (¢) is animmediate consequence of (b)
and Lemma 1.

Lemma 3: (a) For fe. (R?) and for all momenta r with
#0 we have

le(/).@(N] = (D, lp(f).p(r)]9).
(b) supp gC V. UV_.

Proof: (a) Because of Lemma 2,
[@(p/2 — 9),p(p/2 4+ q) ]

—(Qep/2 —),p(p/2 + 1)

=8p.)C, (p_) +8(p_)C_(p,.
0

Il
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unless p, =0 and ¢, =0 or p_ =0 and ¢_ =0. But if
p, =0, g,=0 or p_=0, ¢g_=0 then = (p/
2 4+ ¢)?=0. This proves (a). (b) Take f,ge* (R?) and
suppgC{p* <0} then [@(f).@p(g)]=0 because
(Qle(f), (@) ]1Q) vanishes. Therefore @(g)e(fy)
< @(f1)Q=0 because of the spectrum condition. This
proves (b).

Remark: The support properties of @ suggest to write @
as a sum of two fields 4 and B such that
@(x) =A.(x) + B.(x) and B, (p) =0 if p*> J¢, respec-
tively, 4, (p) = 0 if p* <€/2. Normally such a decomposi-
tion will destroy locality, but because of the commutation
relations given in Lemma 3(a) locality will be preserved.

With the help of the above three lemmas we can finally
prove the theorem namely by use of the following lemma.

Lemma 4: The field ¢(x) can be writtenas g =4 + B
with (i) A(x) is a generalized free field, i.e.,

[4:(x),4,(»)] =(Q,[4:(x),4,(») ]Q).
(ii) B(x) =0,
(iii) [4,(x),B;(»)] = (2[4:(x),B;(») ]Q).

Proof: As indicated above we write in momentum space
@) =x. (") P(p)

+ [1=x()19(p) = 4. (p) + B.(p),
where 0<y, (5) = y(s/€)eC~, 0<y'(5)eZ ([43]) and
0, $<3

X = {1, if >3
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Because of Lemma 3 we have the following commutation
relations:

[4.(x),4.(») ] = (Q[4.(x),4.(») ]€Y),
[4c(x),B.(»)] =(Q,[4.(x),B.(») ] D),
and
[B:(x),B.(»)] — (Q,[B.(x),B.(») ]Q)
=C ((x+y)/2x ~y)+ C_((x +9)/2,x ~y)
independent of € and given by
= [p(x)p(1] — (L [@(x).0(»)]Q).

Therefore A, and B, define fields which fulfill locality. As €
goes zero the limits of the various commutators exist and
therefore the limiting fields 4(x) and B(x) exist too. Be-
cause of positivity OB(x)€) must be zero. This proves
Lemma 4.

'0. W. Greenberg, “Heisenberg fields which vanish on domains of momen-
tum space,” J. Math. Phys. 3, 859 (1962).
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*K. Baumann, “On the two-point functions of interacting Wightman
fields,” J. Math. Phys. 27, 828 (1986).
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tions de Dispersion et Particules Elémentaires, edited by C. De Witt and R.
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The choice of the class E’ of generalized functions on space-time in which to formulate general
relativistic quantum field theory (QFT) is discussed. A first step is to isolate a set of conditions
on E’ that allows a formulation of QFT in otherwise the same way as the original proposal by
Wightman [Ark. Fys. 28, 129 (1965) ], where E is the class of tempered distributions. It is
stressed that the formulation of QFT in which E ‘' equals the class of Fourier hyperfunctions on
space-time meets the following requirements: (A) Fourier hyperfunctions generalize tempered
distributions thus allowing more singular fields as suggested by concrete models; (B) Fourier
hyperfunction quantum fields are localizable both in space-time and in energy-momentum
space thus allowing the physically indispensable standard interpretation of Poincaré
covariance, local commutativity, and localization of energy-momentum spectrum; and (C) in
Fourier hyperfunction quantum field theory almost all the basic structural results of
“standard” QFT (existence of a PCT operator, spin-statistics theorems, existence of a
scattering operator, etc.) hold. Finally, a short introduction to that part of Fourier

hyperfunction theory needed in this context is given.

I. INTRODUCTION
A. Some motivation

A formulation of general relativistic quantum field the-
ory (QFT) always has to start with a decision about the
choice of the test-function space. For well known reasons the
traditional choice for the test-function space E is

E=2R'N=F(R*) ® V, (1.1)

where V is a finite-dimensional vector space and . (RY) is
the Schwartz space of all C * functions on space-time R* that
decay together with all their derivatives faster than any
(polynomial) ~' (see Refs. 1-3).

Since the early days of QFT, for various reasons, there
has been some discussion on this choice in the literature.
Later we will discuss some of these proposals. The main rea-
son for considering other test-function spaces are indications
coming from model constructions that one has to admit (A)
that there are more singular than tempered fields, respective-
ly, stronger growth properties of the fields in energy-mo-
mentum space. This requirement is fulfilled by a test-func-
tion space E if the elements of E are ‘“‘smoother” in
coordinate space and decay more rapidly in energy-momen-
tum space than those in . (R*). If one has a choice for the
test-function space E that meets requirements (A) one
usually gets into trouble with (B) an unambiguous and clear
motion of localization in coordinate and momentum space,
and accordingly not much is then known about (C) the per-
manence of the basic structural results known in QFT for
tempered fields (more details follow later).

In this paper we want to show that there is a test-func-
tion space E that satisfies all three requirements (A)-(C).
This test-function space

E = é’(D“,V) (1.2)
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is defined and described in Sec. II. Elements of its topologi-
cal dual E' are called “Fourier hyperfunctions.”

The suggestion to use a Fourier hyperfunction in quan-
tum field theory has been made by Nagamachi and Mugi-
bayashi in a series of papers.*”” This first suggestion is, at
least for nonexperts in (Fourier) hyperfunctions, not always
very transparent and clear, thus hiding in part its main
achievements.

Accordingly one goal of this paper is to give a short but
clear and complete introduction to QFT in terms of Fourier
hyperfunctions. In particular, we present a more transparent
(for nonexperts in hyperfunctions) account of the highly
nontrivial fact that QFT in terms of Fourier hyperfunctions
can deal very well in a “good physical understanding” with
the localization problem in coordinate and momentum
space [point (B) above] though the underlying space of test
functions contains no elements of compact support, neither
in coordinate nor in momentum space.

An important hint in favor of QFT in terms of Fourier
hyperfunctions comes from the construction of concrete
models. This has been discussed in more detail by Wight-
man.®

B. Quantum fields and their dependence on the test-
function space

We begin by recalling the defining assumptions of gen-
eral quantum field theory. For reasons that will become evi-
dent later we present here a variation of the set of assump-
tions proposed by Garding and Wightman. In order to stress
our point of view that the choice of the space of test functions
is at one’s disposal according to the problems at hand we
start by isolating a list of conditions on a space E of functions
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on space-time in order that E be “admissible” as a test-func-
tion space of a relativistic quantum field theory.
(H,) The test-function space E:
(a) The test-function space E is a locally convex topo-
logical vector space of functions on space-time R*.
(i) E admits the Fourier transformation . as an iso-
morphism of topological vector spaces.
(ii) For continuous linear functionals on E and on
E = FE the notion of support is available.
(b) On E and on E continuous involutions f—f* are
defined satisfying ( Ff)* = .% ( f*), for all f€E.
(¢) The vector space E has a Z, grading and is accord-
ingly decomposed into subspaces of “even” and *“‘odd” ele-
ments:

E=E, o E,.

(d) The universal covering group G = iSL(2,C) of the
Poincaré group acts on E by continuous linear maps a,:
E - E, geG, such that, for all feE and all geG,

(i) @, ()* =a, (S,

(ii) g—a, ( f) is a differentiable map G- E,

(iii) a, preserves the grading.

(H,) Fields over E or fields with test-function space E: A
field A over such a vector space E with state space #°, do-
main &, and cyclic unit vector ®,, is specified in the follow-
ing way.

(a) The state space is a (separable) complex Hilbert
space .

(b) The domain & is a dense subspace of 7 containing
the cyclic vector ®,,.

(¢) The field A is a linear map form E into the algebra
L(2,2) of linear operators & — & such that the following
conditions hold.

(i) For all &%, f—(D,A( f)¥) is a continuous
linear map E—C.

(ii) For each feF, the adjoint operator A( f)* of the
densely defined operator A( f) in & is an extension of
A(f*):

A(Sf*)CA(S)H*~

(iii) The linear span

D 5= lin span{®o,A( £, ) --A(f; )P f,€E,

n=12..}

is dense in 7.

(H,) Poincaré covariance: A field (4,77,9 ,®,) over E
is said to be Poincaré covariant if and only if there is a unitary
continuous representation ¥ of G = iSL(2,C) on the Hilbert
space 57 such that, for all geG and all feE,

Ug92 =9,

U@ A(SHU)* =A(a, f).

(H,) Energy-momentum spectrum X: The energy-mo-
mentum spectrum 2 of the theory equals the spectrum o (P)
of the infinitesimal generator P= ( P°,P',P%P3) of the
time—space translations in the representation U, i.e.,

U(a,l) =%, acR*.

It is contained in the closed “forward light cone”

V., ={(¢"0)eR*| ¢°>|a|, q<R’}
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and contains the origin, i.e.,, 06X C V.
(H,) Locality (local commutativity): The restrictions
A, of A to E,,, a = 0,1, satisfy, for all a, f<{0,1},

supp{4,,45) C K,
where

K={(x,y)eR*XR|y —xeV =V, U (—V,)}
and where {4, Az ): E, XE; > L(Z,9) is defined by

(Aa, AB)(faafB) =Aa(fa )Ag(f}a)
— Oug Aﬁ(fB)Aa(fa)’

with oz€{1, — 1}, usually 0,5 = ( — ).
(Hs) Uniqueness of the vacuum state: The subspace 77,
of all translation invariant states in 57, i.c.,

o= {¥e?|U(a,1)¥ = V¥, for all acR*},

is one dimensional and is generated by the cyclic unit vector
d,

%0 = C(DO

Conditions (H,)-(Hs) characterize a relativistic quantum
field A over E.

Remark 1.1:

(a) For well known reasons the original choice for the
test-function space E was E = . (R*, V), where V is some
finite-dimensional vector space depending on the “type of
fields” under discussion. Here the type of a field is specified
by its transformation properties with respect to G, i.e., by a,,
geG. Clearly this test-function space satisfies condition
(H,).

(b) Notice that by an appropriate choice of the test-
function space E (together with the action « of G on E and
the involution *) the general case of a finite number of sca-
lar, vector, tensor, and/or spinor fields as well as the case of
non-Hermitian fields is covered by our formulation.

(c) Sometimes the spectral assumption (H;) is
strengthened by the requirement that the point p = O be iso-
lated in 2.

(d) The realization of the locality condition (H,) [and
the spectral condition (H;)] depends on the test-function
space E. If E contains functions on space-time with compact
support this is understood in the obvious way. Otherwise an
appropriate interpretation of this condition has to be given.

In any case, (H,) says that the bilinear functional

(£8)—(¥,(4,, 45) (f2)P)
on E X E has its “support” in K for any ¥, 9.

The value of o,z€{1, — 1} has to be specified according
to the type of fields in agreement with the “spin and statis-
tics” theorem.

(e) It is mainly part (ii) of condition (a) in the charac-
terization (H,) of an “admissible” test-function space that
prevents an easy and/or obvious choice of E besides the tra-
ditional one [ (1.1)].

Clearly one was well aware already at the beginning of
general QFT that the choice of the underlying space of test
functions is not only a technical assumption but also has
implications of physical relevance.

(1) The allowed growth properties for a field and its
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singular behavior depend on the test-function space [i.e.,
point (A)].

(2) Accordingly the class of interactions that can be
controlled depends on the test-function space (distinction
between “‘renormalizable” and “nonrenormalizable” inter-
actions).

(3) The concrete realization of the locality and spectral
condition depends on the test-function space.

For further details on points (1) and (2) we refer the
reader to Refs. 8 and 9. Point (3) will be discussed in consid-
erable detail in a later section. The localization problem in
connection with the choice of the test-function space is also
discussed in Sec. 15.5 of Ref. 3.

As a last but important point we want to recall that for
the usual choice (1.1) of the test-function space E there are
still no ““nontrivial” models of relativistic quantum fields on
physical space-time.

These are some reasons for considering QFT over test-
function spaces other than the traditional one. Further rea-
sons are presented in Refs. 8 and 9. Accordingly several at-
tempts have been made in this direction, which we want to
review briefly. Before doing this, however, we want to stress
that any interesting modification of the test-function space £
should still allow us to deduce all the structural results of
QFT or at least most of them in order to meet requirement
C).

These structural results of QFT we have in mind here
are (1) the existence of a PCT operator, (2) the connection
between spin and statistics, (3) the existence of a scattering
operator, and some further important but more technical
results: (4) the cluster property, (5) analyticity results, (6)
the global nature of local commutativity, (7) the general
form of the two-point function, (8) the Borchers class of a
field, (9) the Jost—Schroer theorem, (10) Euclidean refor-
mulation, and (11) dispersion relations. The proofs of these
results as given in the literature'~ usually seem to rely on the
assumption of “temperedness” in an essential way. Never-
theless it is possible to prove some of these results also for
various test-function spaces other than E = % (R*, V) as our

review will show.
For the test-function space (1.2) for Fourier hyperfunc-

tions we will prove the results (1), (2), and (4)—(9). The
remaining points (3), (10), and (11) will be discussed in the
last section.

The main sources of difficulties in proving these state-
ments are (i) that there are no test functions of compact
support and (ii) that continuous linear functionals on
J (D%, ¥) we have a “support at infinity.”

C. A short review

In 1967, Jaffe!® seems to have been the first to consider
the choice of test-function spaces for relativistic quantum
fields systematically. In order to be able to realize the locality
condition in the traditional way he determined a class of
function spaces E; on energy-momentum space R* such that
(i) Z(R*) C E, C £ (R*), and (ii) ¥ E,, i.e., the space
of Fourier transforms of elements in £, contains (enough)
functions of compact support.
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Somewhat later (1969) Iofa and Fainberg'' proposed
using a test-function space E; = E, (R*) of entire functions
that are polynomially decreasing in any strip |Im z;| <4,
&> 0. Since such a space does not contain any function on
space-time of compact support the localization of the fields is
not possible in the usual sense. Accordingly they are called
nonlocalizable fields. Clearly the locality condition (H,)
also cannot be formulated in a natural way for such fields.
Nevertheless several structural properties [(4) and (5)]
could be proved and some others [ (1) and (2)] were indi-
cated in such a theory.

In 1971, Constantinescu observed? that localizability of
the fields in the above sense and locality of the fields accord-
ing to (H,) are different notions. He explained this on the
level of two-point functions. However, this is not sufficient
for the locality of the whole theory. Constantinescu pro-
posed an inductive limit space £ (R} ) of C * functions on
energy-momentum space such that D (RY)
C E. C Z(R*) and ¥ E_ consists of test functions / holo-
morphic in some strip |Im z;| <8, § = 8( f) > 0. He proves
some structural properties of QFT and discusses some oth-
ers.

Finally there is a series of papers by Liicke concerning
the choice of the test-function space and the corresponding
realization of the locality condition (H,) as well as the struc-
tural properties (1)-(10). A recent source of information
about this and further references is Ref. 13.

Liicke proposes to take the Gel’'fand spaces #*(R*),
0<s < w0, on space-time, defined and studied in Chap. IV of
Ref. 14 as test-function spaces for QFT. If s> 1, then
#*(R*) contains enough C * functions of compact support;
hence localization in the usual sense is possible and thus the
usual realization of the locality condition (H,). If, however,
s<1, then the space #*(R*) consists of holomorphic func-
tions (entire functions for 0<s < 1) and hence localizability
is lost for such test functions. In this case fields are again
called nonlocalizable fields.

The locality condition (H,) is accordingly replaced by
the assumption that the fields are “essentially local” which
means that “sufficiently many” matrix elements of the
(anti-) commutator of the field operators [4(x,),4(x,}] ,
are locally continuous on K with respect to #*(R*)."* Since
permutation symmetry of the Wightman functions can be
proved for essentially local fields,'® some of the structural
properties follow also for this class of fields over #*(R*),
s<1.B

However, on one side it can be shown that there is no
clear and unambiguous notion of support for Fe.” S(RYY,
0<s < 1." On the other side we think it to be important that
in QFT a sensitive mathematical formulation of the locality
condition (H,) has to realize the idea that the (anti-) com-
mutator of the field operators has its “support” only inside
K. Therefore we think that our point (B) above is really
indispensable and accordingly explain this point for the test-
function space (1.2) in some detail. In particular, we will
explain that the notion of support for Fourier hyperfunc-
tions (Sec. II D) used in its realization is a straightforward
generalization of the notion of support for distributions and
thus provides a genuine realization of the locality condition.
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II. FOURIER HYPERFUNCTIONS
A. Introduction

This section introduces the notions and explains the re-
sults from Fourier hyperfunction theory that we are going to
use. For proofs we clearly have to refer to the literature.*'”-'#

Recall that the main original motivation for introducing
distributions came from the theory of linear partial differen-
tial operators with constant coefficients.'® Similarly hyper-
functions have proved to be an appropriate frame for the
theory of linear partial differential operators with real ana-
lytic coefficients and those that have “regular singulari-
ties.” 2°

Hyperfunctions are finite sums of boundary values of
certain analytic functions.?! Thus hyperfunctions generalize
distributions. They admit the same basic operations (differ-
entiation, integration, and convolution) as distributions.
Just as distributions do, they have a “good notion” of local-
ization (which agrees with the known localization properties
of distribution if applied to them).

In contrast to distributions, hyperfunctions admit a ca-
nonical definition of a product (at least in the simplest case)
and this may turn out to be of great importance in applica-
tions to QFT.

However, in general, hyperfunctions do not admit a ca-
nonical definition of Fourier transform as an isomorphism.
Some “growth restrictions at infinity” are needed for this. A
way to achieve this is to compactify the underlying space R".
The radial compactification D" of R" has proved to be very
useful here. It is defined in a natural way as follows: Let
S "~ 'bethe (n — 1)-dimensional sphere at infinity, which is
homeomorphic to the unit sphere $”~' = {xeR"| |x| = 1}
by the mapping x—x_ , where the point x_ €S 7~ ' lies on
the ray connecting the origin with the point xe$ "~ '. The set
R"” U S~ ' equipped with its “natural topology” (a funda-
mental system of the neighborhood of x  is given by all open
cones of arbitrary vertex generated by an arbitrary open
neighborhoods of x, in.$"~!) is denoted by D"."”

A natural extension of hyperfunctions on R" to D" leads
to Fourier hyperfunctions. It turns out that Fourier hyper-
functions have all the properties of hyperfunctions and, in

addition, the Fourier transformation is an isomorphism for

them.

The realization of the idea that hyperfunctions on R”"
(and on D") are finite sums of boundary values of analytic
functions is immediate for the case of one variable (n = 1).
For n>2 variables, however, we have to meet serious compli-
cations as a result of the considerably more complicated the-
ory of analytic functions of more than one variable. New
phenomena of analytic continuation cause the main compli-
cation in introducing an appropriate notion of boundary val-
ue in the 732 variable case. The first approach for a “good”
notion of boundary values of holomorphic functions of sev-
eral variables is due to Sato.?? He introduced this notion by
considering sheaves of germs of analytic functions and their
relative cohomology.”® Later it was realized how to intro-
duce a hyperfunction without using cohomology theo-
ry.2*?" According to Sec. I it is clear in QFT we prefer this
second approach adapted to Fourier hyperfunctions in
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which Fourier hyperfunctions are defined as continuous lin-
ear functionals on some space of functions.

B. The test-function space for Fourier hyperfunctions
The spaces of test functions we are going to use later are
E=0(D" N=4(D") ¢ ¥, (2.1)

with some finite-dimensional vector space ¥ and an induc-
tive limit space of functions on D" for n = 4, which we de-
scribe now. By reasons that will become obvious soon we
introduce and study the spaces

Z(K), K C D"closed. (2.2)

Let {U,, meN} be a fundamental sequence of neighbor-
hoods of K in Q" = D" + /R". Thenlet #7(U,, ) be the Ban-
ach space of functions fanalyticon U,, N C" and continuous
on U, N C"such that

is finite. The space 4 (K) is now defined as the inductive
limit of the Banach spaces Z#7'(U,,):
& (K) = ind lim amu,,).

”n-— oo

sup lf(z)le""’" (2.3)

U, N

(2.4)

The following propositions collect some properties of the
space & (K) of a rapidly decreasing analytic function on K
that are used in QFT.

Proposition 2.1: (a) & (K) is a DFS space (a dual Fré-
chet~Schwartz space). )

(b) £ (D") is nuclear and barreled.

(c) ®"0(D) is dense in J(D") and ® "g (D)

= Z(D").

"And, as a consequence, we have the following proposi-
tion.

Proposition 2.2: Let Mbe a separately continuous #-lin-
ear form on ﬁ(D”')" = (D7) X+ XZ(D™). Then the
following conditions hold.

(a) M: £ (D™)"-Cis jointly continuous.

(b) There is a unique continuous linear form F on
& (D™") such that, for all

fied (D™),

M(fl""9fn) =F(fl ® " ® fn)

For the proofs of these results we refer to Refs. 4 and 5.
Note that the ‘‘kernel theorem” for this space [part (b) of
Proposition 2.2] can be proved in an elementary way by
using the explicit characterization of the topological dual
& (D™), obtained in Sec. I C.

The following proposition is concerned with the Fourier
transformation.

Proposition 2.3: The Fourier transformation % is well
defined on £ (D") by

(ZFf)(p)=Qm) " f " *f(x)dx, (2.5)

where # is an isomorphism of the topological vector space
& (D) with inverse

(Ff)(x)=(2r) " f e P*f( pydp. (2.6)
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Proof: Clearly it suffices to consider the case n = 1. Here

f€Z (D) means 67U, )=7,, for some m, where U,

=D +i( - 1/m,1/m). Thenforallk =p + igeCN U, .,
we obtain, from (2.5),

(FLYIKC, | fllm-
Now, if bis real, |b | <1/2m, then the function £, defined by
f5(2) = f(z + ib), belongs to & ,,, and satisfies
"fb”2m<Cm Hf“m’ bE[ - 1/2m’1/2m]

By analyticity, decay properties, and Cauchy’s theorem one
proves

(Ffp) (k) =e ¥ D(Ff)(k),

so that the above estimates imply, for all [b [<1/2m,
[e“(FFYRNKC LN fllms

hence F fed,,, ., and

I S lam+ 1 <Cull L

This proves & : J (D")— g (D") to be a well defined contin-
uous linear map. 4

Clearly the map Z has the same properties. And as
usual one proves that Z .7 isthe identity on & (D"). Hence
Z is an isomorphism.

C. Fourier hyperfunctions

In our approach a Fourier hyperfunction on D" is by
definition an element of the topological dual Z (D")’ of the
space ¢ (D"). In order to give an explicit characterization of
&Z (D")’ and to relate this notion of Fourier hyperfunctions
with its heuristic definition in Sec. I A as a finite sum of
boundary values of holomorphic functions let us introduce
the sheaf 7 of slowly increasing holomorphic functions on Q".

For an open subset 2 C Q" denote by & (Q) the set of
all analytic functions Fon 2 N C" such that, for every € >0
and every compact set K C ,

| Fllge = sup e~ | F(z)]

zekK N C"

(2.7)

is finite. Here & () is called the (C-vector) space of slowly
increasing analytic functions on Q.

If Q' is another open set contained in §) we obviously
have a well defined restriction map

paa: O(Q)-F8(Q), poaF)=Fq, Fed (),
(2.8)
such that

Paa ‘Paa =pPa-q and poq =id,
for all open sets 3 C Q' C 0.

Thus with these restriction maps {Z(Q)|Q C Q"
open} is a presheaf on Q". This presheaf actually is a sheaf
since furthermore the following localization properties are
satisfied.

(L) If an open set Q) is covered by open sets Q,,
Q = U,Q,, and if all the restrictions Flq, of a function
Fed () vanish then the function F itself vanishes.

(L,) If any collection {2, } of open sets in Q” is given
together with a collection of functions F, £ (£}, ) satisfying
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Fa|Qa na, = Fﬁma N Qg
for all a and B, then there exists a function Fe (U, )
such that Fi, = F,, for all a.

For j=1,..,, n, let us introduce the open subsets W,
= {z€Q"|Im z, #0}. The intersection

W= N W,
j=1 7
of all these sets consists of 2" open connected components
separated by the “real points.” Then
A n
Wk = n I’I/]
j=1
Jk
includes the real points in the & th variable.
In an obvious way we can.consider
AN
k=1
as a subspace of & ( W). Thus the factor space

55’:%’(10"):2(%/( s 2(%)

k=1

(2.9)

consists of equivalence classes [F) of functions fe& (W)
where two functions F and F’ define the same class if and
only if

FI_F= Z Fk’ erz(ﬁ/k).
k=1
The topological dual of ¢ (D") is now characterized in terms
of this factor space as follows.
Proposition 2.4: The topological dual of £ (D") and the
factor space (2.9) are isomorphic:

R (D") =0 (D).
This isomorphism and its inverse are given explicitly by the

following formulas: For ueZ (D")’, define a function & on W
by

(2.10)

>
n = 4=z

Ay =ph), h () =[] ——r,

- zeW,
=1 21rz(tj —z)

(2.11)

then ficZ (W) and thus [i]eZ. Conversely every equiv-
alence class { F ]eZ defines an element u, » € (D")’ by

e () =f f F(Zine 22) f(Zym 2,)
r r,

Xdz,---dznsf F(z)[(z)dz, (2.12)

r,er

where Fed ( W) is any representative of [ F' ] and where the
paths I'\,...,I", are chosen according to feZ (U, ) for some
m such that

r,x---r, C U, N WN C" for instance,

=T +T,

It = {zjlzj = tx+ib,,— o0<x< w0}

with sufficiently small §,, > 0.

Proof * The first part clearly relies on properties of the
collection of functions 4,, z W. Those that are relevant here
are contained in the following elementary lemma.
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Lemma 2.5: (a) For every zeW N C", there is
mg = my(z) such that s, belongs to £7'(U,,) and

||, <const e"/8(z), &(z) = dist(z,R"),
for all m>my,.

{b) For every 2’6 W M C" there is a polycircle
j=1,.,n}
around z° such that Z C W and there are functions A i P
-d(D"),j=1,.,n such that, for all zeZ,

Z ={z=(z}.r2,)| |z, — 2| <1},

hz — hzu = i (Zj —Z?)AJ(Z),

j=1
with
Ai(2)-4A;(2% in (D)
Now take any ‘ueé’ (D")". Part {a) of the lemma implies
immediately that z—u(h,) is a well defined function on

W N C" and, according to part (b), this function has com-
plex derivatives; hence /i is analytic on W N C".

for z—2°.

J

Suppose a compact subset K C Wand a number € >0to
be given. Then 8 =dist(K N C", R") >0. There is m,
= my(K) such that €> 1/m, and dist(U,, N C", KN C*)
<672, for all m>m,, Then, for fixed m>m,, the collection of
functions A,, zeK N C", belongs to £7'(U,,) and the esti-
mate of part {a) yields

| Allke<C supp [|h.lle™ " < oo;
zeK N C"
hence f is slowly increasing and therefore ,&EZ’ (w).

The growth restriction (2.7) for a function Fed (W)
implies that the integral in Eq. (2.12) is well defined for all
fe@ (D™); more precisely, for every meN, there is C,,

= C,, (F) such that, for all fe&™(U,,), this integral is
bounded in absolute value by

Coll fllm-
A function er? (W,) is, in particular, analytic in z,&C.
Hence if we rewrite the integral in (2.12) in the form

f (J F (25 2050 2, 0/(2000 2000y z,,)dzk)dz]---dzk_, dz,,, -dz,
r, r,

we see that this integral vanishes according to Cauchy’s
theorem and the growth restriction on ¥ and /.

Therefore all elements F’ in the equivalence class [ F ]
of Fe? ( W) define the same continuous linear functional on
J(D"), that is, by (2.12), #(D") is mapped linearly into
a (D"

Another application of Cauchy’s theorem together with
the growth restrictions on F and f shows, by appropriate
choice of the integration path: If p - ,(f) =0, for all
fed (D), then

FeS Z(W,),

k=1
ie., [ F] = 0. Hence the mapping (2.12) #(D") - & (D")’
is injective.

Since A, () is a modified Cauchy kernel with appropri-
ate decay properties, one knows, for all feZ (D") in a suit-

. able complex neighborhood of D",

f Ak, dz=1(").
I, x-xr,,

If peZ (D")’ is applied to this equation one deduces

i (Y=p(Sf);
hence the mapping (2.12) is an inverse of the mapping
(2.11} and the proposition follows.

Via the isomorphism of Proposition 2.4 the heuristic
definition of a Fourier hyperfunction as a finite sum of
boundary values of slowly increasing holomorphic functions
is easily given a precise meaning: The 2” connected compo-
nents of W can be described as

W(a,,... a,) ={2€Q"a; Imz >0, j=1,.,n},
a;e{1, — 1}

Now define, for a = (a,,..., a, )e{l, — 1},
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[
ola) = f[ a;,

j=1
and then, for Fed (W),
F,=0(a)F on W(a) and F, = 0 elsewhere.

The boundary value of Fed (W) with respect to the cone
W{a) is then defined by

Swa (FY=[F, ] (2.13)
Clearly it follows that

ac{l, — 1}"
and hence, by Proposition 2.4, x is the corresponding finite
sum of boundary values of ieZ ( W).

Next we establish the traditional view of boundary val-
ues as limits [in & (D")'] of slowly increasing functions. To
this end we define, for 0<6; <1/m, a path T,(a;é,),
a;e{1, — 1}, in the complex z; plane by

T (a,8)={z=a;x; + ia;6;| — 0 <x;< =},
so that
I'(a,6) =T (a;,6,) X XTI, (a,5,)
c U, N Wa).
Then, for all fe/7(U,,) and all Fe& (W),

j F(2)f(2)dz = I(a,5)
r(a.b)
is independent of 8, 0 <8; <1/m, and thus equals the limit
6,-0,j = 1,..., n, of this integral denoted by
( F,(x, + ia0,..., x,, + ia,0),
Sflx, +ia)0,.., x, +ia,0)),

where the duality & (D")’, 7 (D") is used. If we sum over all
a<(1, — 1}", we obtain
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I(a,8) =f

r(

F(z)f(z)dz.
ae{l, — 1}" &
Thus, by Proposition 2.4, every ueZ (D")’ is a finite sum of
boundary values of slowly increasing functions.

D. Support of Fourier hyperfunctions

If K C D"is any closed subset, then relations (2.3) and
(2.4) easily imply that @ (D") is contained in & (K). For a
Fourier hyperfunction ¢ on D", denote by C( &) the class of
all closed subsets K C D” such that there is a continuous
extension u, of u to 7 (K):

1€l (K)', Bgiopm =M (2.15)
Any such subset KeC( u) is called a “carrier” of the Fourier
hyperfunction 4. In contrast to a general analytic functional

a Fourier hyperfunction u has a smallest carrier, called the
support of u:

n K

KeC( p)

This definition really works since one can prove® the
following proposition.

Proposition 2.6: If K ,K,€C( u), then K, N K,eC( u).

This result is by no means trivial. We give some hints.
Having K;€C( 1) means that there are p; = e (K;)’
satisfying (2.15). Also, we have to define an extension to
(K, N K;). Given fe& (K, N K,) there exist by the Mit-
tag-Leffler theorem for rapidly decreasing functions® f;
€ (K;) such that

supp u = (2.16)

f=fi—-f, on K NK, (2.17)
Now define a function g:
w(f) =p(f) —pa(f). (2.18)

The right-hand side of Eq. (2.18) is independent of the spe-
cial choice of the decomposition (2.17). Hence p is well de-
fined, and obviously u is linear. One can prove continuity of
1 by some general arguments.®

According to definition (2.16) the topological dual of
& (K), K C D" closed, is the set of Fourier hyperfunctions
on D" with support contained in K. With this interpretation
in mind the space of Fourier hyperfunctions on an open subset
V of D" is naturally defined as the factor space of the space of
all Fourier hyperfunctions on D" with respect to the sub-
space of those Fourier hyperfunctions having support in the
complement V*=D"— ¥V of V:

RVy=6D"/E V). (2.19)
It is known from the following proposition'’ that Z (V) is
isomorphic to

RN =8 VY/G(V V)

Proposition 2.7:Let K = U?_ | K, be the union of pcom-
pact sets in D". Suppose u€& (K)'; then thereare u,€4 (K )’
such thatp =2¢_ | u,.

Proof: Since the mapping & (K) -1I{_ , £ (K;), name-
ly, f»{fix ¥~ 1, is injective and of closed range, the map-
ping I, Z(K,)' »(K)', namely, { .}/, ~Z_, p;,
is accordingly surjective.

If ¥V and W are open subsets in D” with ¥ contained in
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V, then we have g(V°e) C ¢(W*) and thus we get a re-
striction map

pwy: Z(V)=0(D")Y/E (VY >R(W)
=J(D") /(W)
in a canonical way.

For our purposes it turns out to be important to have the
following resuit.

Theorem 2.8: The assignment of the factor spaces % ( V)
with open subsets ¥ of D" according to (2.19) together with
the canonical restriction maps pyy: Z(V)->Z (W) for
open subsets W C Faccording to (2.20) is a flabby sheaf on
D", called the sheaf &2 of Fourier hyperfunctions on D",

This means in particular that Fourier hyperfunctions
have the following localization properties (L,) and (L,):

(2.20)

(Lpifv=uUV,, V,CD'open, ueZ(V),

theny, =0, forall V,,implies u =0; (2.21)
(Ly)if ¥V, C D" open and

ifp,eZ(V,) satisfies poy_n v, =g, 0 v,

then there is ueZ% (V), such that u,, = p,. (2.22)

Furthermore, since Z is flabby, any Fourier hyperfunc-
tion &, on any open subset ¥ C D" is the restriction of a
Fourier hyperfunction ued (D) to V: , = 1.

Because of the localization properties of a sheaf the no-
tion of support of a Fourier hyperfunction pe& (D")’ can also
be defined as the smallest closed subset K C D" such that
Bige = 0. From (2.19) and (2.20) it is obvious that this no-
tion of support agrees with the notion introduced previously
in (2.15) and (2.16).

Proof of Theorem 2.8: First we assume V= U, V,_,
ueZ (V). Let zed (D)’ be a representative of u. Then

Pyor(B)=pyy Py (B) =pyy(p)=0
implies suppz N V, =, for all ael, and hence supp &
N V=&, which implies 4 = 0. Thus (L,) is proved.

To prove (L,) we begin with the case of just two open
sets ¥V, and V,. Letji €& (¥,.)’ be representatives of 42, for
a = 1,2. The support of u, — u, is contained in

VU7, — (VNV,) = (TSNP U(V,NT5);
thus Proposition 2.7 gives a decomposition

By — =V, =W,

ved (VENTY,), %ed(V\NV5)'

Let

H=p—V,=[; — T’254(?107/2)'-
Then we have u,;,, = p,, because supp(u —p, )NV, =<.

In the general case (L,) is proved by using some topo-
logical argument (see Theorem 4.17 of Ref. 6).

The existence of the representative ied (D")' of
HEZ (V) implies the flabbiness of 7.

Remark 2. 1: The restriction of a Fourier hyperfunction
to R” gives a hyperfunction. Since the sheaf & of a Fourier

hyperfunction is flabby any hyperfunction on R" can be ex-
tended to D" as a Fourier hyperfunction. This extension,
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however, is not unique since there are Fourier hyperfunc-
tions with support at “infinity” (supportCS"~").%®

Remark 2.2: For any feZ (D") we have flR,,ej’” (R")
by definition, and this injection of £ (D") into #(R") is
continuous. Hence Fourier hyperfunctions generalize tem-
pered distributions. Thus for a tempered distribution we
have defined the notion of support in the sense of Fourier
hyperfunctions also. We now show that this notion of sup-
port agrees with that in the sense of distributions.

Suppose that the support of 7 in the sense of distribu-
tions is contained in some closed set KCR™ Let {U,, } be a
fundamental system of neighborhoods of K in Q”, the closure
of K in D" then for any U, there exists a C *- function y
such that supp yCU,NR" and y=1 on K. Since
y e (R for fed7(U, ) and T-y(D) = T(D), for a
Qe (R"), T defines an element of J (K)'. Hence the sup-
port of T'in the sense of Fourier hyperfunctions is contained
in K,

Now consider the tempered distribution 7 as a Fourier
hyperfunction and suppose that this Fourier hyperfunction
has its support in a closed set K of D", that is, Ted ( Xy Let
PeC g (R") with supp @CK < then @l (K) and T(D)
= 0. This shows that the support of T in the sense of distri-
butions is contained in K.

Remark 2.3: Let n = n, + n,. Note that D" =AD" X D™,
but

QnmRn — Rn — (Qn, Xan)mRn
and
g(D") = 7 (D" XD™).

Let K, (j = 1,2) be closed sets in R", K be the closure of K

in DY and K, XK, be the closure of K, X K, in D". Then we
have

G(DCI(K,XK,)COK,XK)).
Thus we have
& (D) DI (K, XK,)' DI (K, XK,)',

i.e, the elements of & (K, xXK,)' can be considered to be
Fourier hyperfunctions.

E. Fourier, Fourier-Laplace transformation, and edge of
the wedge theorem for (Fourier) hyperfunctions

According to Proposition 2.3 the Fourier transforma-
tion is an isomorphism of & (D”). Hence by duality we have
the Fourier transform as an isomorphism for Fourier hyper-
functions:

(Fu)(f)=ulFf),
for all fed(D"), ped(D"). (2.23)

As in distribution theory, if appropriate support properties
are available, the Fourier transformation has an extension to
complex arguments to yield the “Fourier-Laplace transfor-
mation.”

Proposition 2.9 (Paley—Wiener theorem for Fourier hy-
perfunctions): Let I" be a closed and strictly convex cone in
R" with its wvertex at the origin such that
I'C{xeR"|x-e>0}U{0} for some unit vector ecR". Let
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' = {£ |x- &> 0, for all xT'} be the polar set of I" and let 2 be
a Fourier hyperfunction on D",

(a) If supp u CT = closure of T" in D*, then the Four-
ier—Laplace transform of u,

(ZLp)(§) =ple), e, = (2m) "%, (2.24)

is well defined for {eR" + il and is a holomorphic function
of its argument satisfying the following growth condition:
For every relatively compact open cone I‘OCIO“ and every
0 <e<€,(Ty) thereisaconstant C = C(€,I,) such that, for
all £eR™ + iy,

|(f'u)(§)l<ces\ke§| + x(Im 4’)’

where

(2.25)

Xe(n) = sup {elx| — x-n}.

(b) Conversely if a holomorphic function Fon R" + i
satisfies the above growth condition then it is the Fourier—
Laplace transform of a Fourier hyperfunction  on D" with
support in T.

This is proved in Ref. 17. And as for distributions there
isan immediate connection with the Fourier transformation.

Corollary 2.10: If uc& (T)', then the Fourier-Laplace
transform .# is holomorphic in R” + i’ and its boundary
value with respect to the open cone I" equals the Fourier
transform of u:

S5p(Lu)y=Fp. (2.26)

The proof is obvious from Proposition 2.9 and the defi-
nitions.

Finally we will use the edge of the wedge theorem for
hyperfunctions as proved in Ref. 29 which generalizes Ep-
stein’s version of this result for distributions.

Proposition 2.11: Let T’ and T, be two open convex
cones in R". For any open set U in R" and its complex neigh-
borhood ¥ there exists a complex neighborhood W of Usuch
that WC V and the following holds: If the boundary values
6, (Fy) and 6p (F,) of two functions F; holomorphic in
VAT(T)), T(T;) =R"+ T}, j= 1,2, agree on U in the
sense of hyperfunctions then there exists a function F holo-
morphic in WNT (ch(I",UT,)) such that

F=F on WNI(I;), j=1.2,
where ch 4 denotes the convex hull of a subset 4 in R".

An immediate consequence is the following corollary.

Corollary 3.11: Let T" be some open convex cone in R”
and F some holomorphic function on the tube 7(I') = R”
+ iT. If the boundary value &, (F) of Fin the sense of hy-

perfunctions vanishes in some open nonempty subset UC R”
then the function Fitself vanishes.

lll. QFT IN TERMS OF FOURIER HYPERFUNCTIONS
A. The test-function space
A QFT over a test-function space
E=0(D4“W), dimV< o, 3.1

as introduced in Sec. II, is called a Fourier hyperfunction
quantum field theory (FHQFT). If a QFT is formulated
over a test-function space F such that the space g (DY) is
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densely and continuously embedded into F we call such a
theory a special FHQFT since then continuous linear func-
tionals on F are special Fourier hyperfunctions.

However, according to Sec. I, a function space E has to
meet several requirements in order to be “admissible” as a
test-function space of a QFT. So we show here that
E=20( D* V) indeed is “admissible.” For convenience we
do this explicitly only for E = & (D*), e.g., dim V' = 1.

Since

£(D%) =ind lim £7(U,,)

with a fundamental sequence of neighborhoods U,, of D* in
Q* = D* + iR* such that U™ is invariant under complex
conjugation z—Z, a continuous involution f—f" on & (D*)
is well defined by i

@)= f(z),
since on each 47(U,,) we have || f°||,, = || f | -
The action of the group G = iSL(2,C) on £ (D*) is de-
fined as usual by

(3.2)

(o) (2) =f(A(a) " (z—a)), (3.3)
where acR*, 4eSL(2,C), A(4)€L ', , and thus
a, (f)=a,(f) (3.4)

follows easily. The differentiability of the map G- & (DY,

g—a,(f),
for each fixed fe& (D*), is proved in Sec. V where it is actu-
ally used to prove the cluster property.

According to Sec. II the function space & (D*) admits
the Fourier transformation as an isomorphism. Further-
more, for elements in & (D*"), n = 1,2,..., a “good” notion
of support is available, expressing the intuitive meaning of
support in this mathematical frame. Hence we get an ade-
quate formulation of the locality condition (H,) if the no-
tion of support is understood in the sense of Fourier hyper-
functions:

Suppyur (4,-45) CK = closure of K in D®. (3.5)

With these specifications of the test-function space a scalar
relativistic quantum field in terms of Fourier hyperfunctions
is a field over

E= {(?(D“)’*’ag’ gGGElSL(z,C)}
satisfying (H,)-(H,).

B. HFQFT in terms of its n-point functions

In this subsection we briefly recall the description of a
field in terms of the sequence of its n-point functions' and
indicate, where necessary, the differences with respect to the
“standard” approach as a result of the particularities of the
test-function space E = & (D).

Given a scalar field 4 over E = J (D*) satisfying (H,)
and (H,) we can consider the sequence of separately contin-
uous n-linear functionalson E" = E X - -+ X E (ntimes) de-
fined by

(.fl;:f;; ) —'(¢0)A(ﬁ ) o 'A(f;; )(DO)’
where @, denotes the cyclic unit vector. By Proposition 2.2
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these functionals uniquely determine Fourier hyperfunc-
tions %", = # ;e (D*")’ such that

W, (fi®ef,) =(P,A( /1) A(L£,)Py), (3.6)
forall e (D*)andalln=12,...

The sequence

V= WA=, LW ALYN.} (3.7)

of these n-point functions % of the field 4 is a state on the
complete tensor algebra,

E= ; E(n) (locally convex direct sum),
- n=20

E(0)=C, E(n)=2(D*) =8"0(D%, n>l,
(3.8)

that is a continuous linear functional on E, which is normal-
ized according to

¥ (1) =1, 1={1,00,..}
and non-negative according to
¥ (ff)>0, for all feE, 3.9)

where the involution * on E'is given by canonical extension
of the involution on E and the product is the usual product of
tensor algebras. Conversely according to the well known re-
construction theorem'~> such a state %~ on E determines
uniquely up to unitary equivalence a field 4 over E = (D)
satisfying (H,) and (3.6). )

If the field A4 is covariant in the sense of condition (H,)
then the associated state %~ = %™ on E is easily seen to be
invariant under the action

a, = neoaf", af’=1,
of G=iSL(2,C) on E.

Conversely if a state " on E is invariant under the
action (3.10) of G it determines as above a field A over E and
a continuous unitary representation U of G satisfying (H,)
and (H,).

Next we translate the locality condition (H,) into prop-
erties of the n-point functions %, . This condition says

suppur (®,[4(-),4()1,¥)CK, for all d,ye,,

where [4(f),4(8)], = A(f)A(g) — 0A(g)A(f), for all
fgeE, 0= (— 1)%, a =0or 1, thatis, weassume 4 = 4,in
(H,). Hence if we introduce, for 0<j<»n and n =0,1,2,...,
Fourier hyperfunctions %, ;€4 (D*" * )’ by

W i (X15eeesXjs XYy X | 1 geesXy)

(3.10)

= 2 (XX X P Xy (e X )
(3.11)

we easily see that by definition of &, the locality condition
(H,) is equivalent to

- UW,: +2 (xl""’xj’y)x’ j+ 1 a"':xn ),

(3.12)

or WHJE@(I_(,,J ), for all O0<j<n and all n = 0,1,2,..., where
K, is the closure of K, ; = RYX K XR*" = in D*" + 2.
In Sec. V the “cluster property” is proved to be equiva-
lent to condition (Hs) (uniqueness of the vacuum state $,).
Thus we are left with expressing the spectral condition
(H,) in terms of properties of the n-point functions. How-

suppur #~ n,jCEn,i
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ever, in HFQFT this is considerably more complicated than
for the tempered field since also in energy-momentum space
there are no test functions of compact support. Hence this
point needs some additional arguments.

Suppose that (Hy)—(H,) are satisfied. Then according
to Proposition 2.2 there are continuous linear maps

®,: E(n) 3, E(n) = J(D*)
satisfying, for all f,eE(1) = & (D*),
D, (fi® - ®f,)=A(f) A(f,)D,

n=12,....
(3.13)
The covariance of the field under G =iSL(2,C) implies in

particular the following transformation law for these maps
@, under translations:

Uany®,(f,)=P,(f.o)
Soa (XppesX,) =1, (61 — @,x, — a).

The consequences of these transformation properties on the
Fourier hyperfunctions @, with values in the Hilbert space
F7 are most conveniently analyzed if in its Fourier trans-
form P, the following variables are introduced:

(3.14)

(g15995) =X;l(pl""’pn)’ 9k = z Pjs
=k

Z, =0, 1. (319

Denote by P the generator of the translations U(a), i.e.,
U(a) =e""‘°=fe"“kE(dk). (3.16)

The spectrum = = o(P) of the operator P is given by the
support of the projection-valued measure E:

3 =g(P) =supp E. (3.17)
For any continuous bounded function 4 we know
h(P) =fh(k)E(dk) =jda h(a)U(a) (3.18)

to be a bounded operator.

The transformation property (3.14) can now be ex-
pressed in the following way: For every feE(1)=0 (DY),
everygeE(n — 1) = ¢ (D*"~ ), and every function / in the
multiplicator space of E(1), one has

h(P)Z,(fog)=Z,(hfog). (3.19)

This equation can be used to extend Z, in its first argument
/. For every meN, define functions p,, and ¢,, by

3
Pm(q) = ]] cosh (i) and ¢,,(q) =p,. ()" "

i
m

i=0
(3.20)
It follows, for m = 1,2,...,
¥, (D), and |p, (q)|<Ced™.
So we can rewrite Eq. (3.19) as
Z,(feg) = (pn fIPZ,(§, o), (3.21)

and thus f—Z,( f®g) can be extended to all those f for
which (p,,"f)(P) is a bounded operator on 77, i.e., for
which

suplp,, ()@ |<C|f] s =Csupe"|f(g)] < o
qes geX
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is finite. This is in particular the case for all continuous func-
tions f of compact support K in R*:

| flms<Ckns|flwxns = Cikns sup | fg)] < .
KNz

Hence we have proved the first part of the following proposi-
tion.

Proposition 3.1: (a) The vector-valued Fourier hyper-
functions Z, of Eq. (3.15) can be extended to continuous
linear maps

Co(RY) X O (D*"~ Dy 57,
thatis, Z, isa Radon measure in ¢, and a Fourier hyperfunc-
tion in

Gayesns N =23,...

(b) For every geE(n — 1) the measure h—»Z,, (heg)is
slowly increasing and has its support 3, (g) contained in 2.

(¢) The energy-momentum spectrum X of the theory is
given by

2=c1({o}u U zn), S = U (3.22)

n=1 geE(n—1)

2,(8),

where cl(A4) denotes the closure of 4 in R”.
To complete the proof note that by Eq. (3.21)
Z,(h®g) extends to all functions

heF=indlim F,,

where F,, is the Banach space of continuous functions on R”
such that |4 |,, s is finite. Hence this measure is slowly in-
creasing and has its support 2, contained in 2.

Finally part (c) follows from the fact that

{®,}, {Z,(fo8)| fEE(1), geE(n— 1), n=12,..}

is a total set of vectors in the representation space 5% of the
unitary representation U.

The connection of the vector-valued Fourier hyperfunc-
tions Z, with the n-point functions of the theory is described
by the following proposition.

_ Proposition 3.3: (a) Define Fourier hyperfunctions
W, ,n=23,.by

Wn—l(f) =(q)0’2n(¢’m ®f)):
FEE(n —1) = 6(D*" D),

where meN is arbitrary; then the Fourier transform %, of
the n-point function %~ satisfies

. w Xn @ryeern) = 8@ W, _ | (Gayeesl)-

(3.23)

(3.24)

(b) These Fourier hyperfunctions W, _, allow the fol-

lowing decompositions:
(Zi(fi® 8f)Z (1@ 8f))
=W, (fie8f_18ffi 0f..8 " 8f),
(3.25)
for all f,eZ (D*), Igi<n—1,n=23,....
Proof: (a) Define W,_, by Eq. (3.23) with m=1.
Then for arbitrary meN we use Eq. (3.21) to get
Z,(h8f) = (pn¥)(PVZ, (4, 8f),

and thus, since the cyclic unit vector @, is translation invar-
iant and
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(Pt (0) =1,
(®oZ, (1 8f)) = (P ¥)) (0) (Do, Z,, (¥, ®F))

= (P Z, (Y 8 )).
Hence the definition (3.23) is independent of meN.
Similarly we have, for all f,e& (D*), according to Egs.
(3.6), (3.15), and (3.21),

Yo xa(Si8 0 8f,)

= (@oZ,(fi8 " &f,))

= (pm .f‘l)(o)(q)O’zn ('pm ® ®fn ))

=HOW,_ (fi® - 8f,),
and this proves Eq. (3.24). Finally part (b) follows by
straightforward calculations directly from the definitions.

Remark 3.1: Together with Proposition 3.1, Eq. (3.25)
says that the Fourier hyperfunctions W, _, can always be
considered in one of its variables as slowly increasing Radon
measure with support in 2. In particular we have, for all
heE(1),geE(n—1),n=1,2,...,

W, _ (g ehheg) =(Z,(heg).Z,(heg)) (3.26)
exhibiting positivity properties of these measures.

Finally we derive support properties of the Fourier hy-
perfunctions W,,_: 1, B =2,3,..., in all variables.

Denote by X the closure of X in D* and introduce for
Jj=1,..,n — 1the closed set

U ={(q1rq,_, )e[D*]" ”]qje_i}.
Then Eq. (3.25) and Proposition 3.1 imply

supp W,_,CT, (3.27)
that is,
W""”ijo’ (3.27’)

for ¥, =U¢=[D*]"~" —T, andj=1.2,.,n — 1.
The localization property (L,) of the sheaf of Fourier
hyperfunctions on energy-momentum space implies
W“— HU 'Y, =0
or
n—1 c n—1
supp W, _, C( U V;) =NT=3"""
j=1 j=1
Here we consider that W, _, is defined on [D*]" . Since
O(E"")DO (2" 1), wehavesupp W, _,C 3", if we
consider that it is defined on D*" ~ !’ (see Remark 2.3). By
Proposition 3.2 this proves the following corollary.
Corollary 3.3: In a relativistic quantum field theory over
E=/(D*) [only (H,)-(H,) have to be assumed] the
Fourier transform %, of the n-point function %, has its
support contained in the closure of

(3.28)

|

I

2 7=0

j=1

(Z pj’ z pj""9pn—l +pn’pn) ez(n— ”]

=2 = j=3

[(pl...,p,, )eR*"

in D*",

Therefore also in HFQFT a field 4 can be characterized
in the usual way in terms of its n-point functions %#~, = #
if the relevant support conditions (in coordinate and energy-
momentum space) are interpreted in the sense of hyperfunc-
tions. From (2.26) we have supp Z, C2"or supp Z, C =".
The support properties of the Fourier transforms %, of the
n-point function #°, together with the Paley-Wiener
theorem for Fourier hyperfunctions (Proposition 2.8) allow
us to derive the basic analyticity properties of the Wightman
functions as easily as for tempered fields.!”

Theorem 3.4: The n-point functions %, of a relativistic
quantum field over E = & (D*) [only (H,)~(H,) have tobe
assumed] are bounQaw values of L * (C)-invariant holo-
morphic functions #,.

A~ A
(2) ¥ i1 (Zo21senzy,) = W2y — 20,2, — 2450,
zZ,—2z, )’

(3.29)

where f‘\V,, is holomorphic and L * (C) invariant on the ex-
tended tube
F =

n

U AF 3

AeL * (C)

and F}r=TW")

is the forward tube. R

(b) The restriction of W, to & is the Fourier-La-
place transform of the Fourier hyperfunction # defined in
Proposition 3.2. As an identity for Fourier hyperfunctions
we have, for fixed y,eV,,

W 1 (XX ppeennX )

= lim ﬁ’n (x; —xg + i€PyyenX, — X, _, +i€p,).
€~ +0
(3.30)

C. Characterization of locality, existence of PCT
operator, and global nature of local commutativity

Thelocality condition (3.11) and (3.12) says that the n-
point functions

Y/ (X15000X 15X 4 190e09X )
and
— (= DY, 2 (XX VX 15eiXy)

agree as Fourier hyperfunctions in particular on the subset

w2 ={X XX, X, JERM T D (x, — x)? <0 (1)),

(x—»)?<0, (x; —x)?<0, (x; —p)><0, j=1,.,n},

which is open in R*(" + 2,

By Jost’s characterization of the real points of the extended tube %, , | (see Ref. 2) it follows from Theorem 3.4 that

1,
(XpyeeesBsXoX) 4 y5eeesX )
2350 J. Math. Phys,, Vol. 30, No. 10, October 1989

+2 consists of real points of analyticity of the associated Wightman functions %7, , , (x,...%,0,X; | 1,..,x, ) and %7, , ,
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However, if two analytic functions agree, in the sense of Fourier hyperfunctions, on an open set of real points of
analyticity they do so as analytic functions (Corollary 2.11). This implies now that we can argue as in the case of tempered

fields and arrive at the following theorem.

Theorem 3.5: Consider the Wightman functions ¥ , of a relativistic quantum field over E = & (D*) [satisfying only
(H,)-(H,)] as given by Theorem 3.4. Then the locality condition (H,) holds if and only if the %", are analytic in

S, = {(zl""»zn )l(zfr(z)
and are permutation symmetric there:

A A

Wo(zyys2,)) = # 0 2oy seeesZaimy ) B =2,3,....

- zﬂ'( 13 ""’zﬂ(n)

—z#(n—l))e-?-;_19

for some permutation 7 of (1,...,n)},

Remark 3.2: Without giving further details it should be clear from the above discussion on analyticity results that the PCT

theorem'~? continues to hold in HFQFT.

Later we will have to use the following technical result that relies in an essential way on the analyticity properties of the

Wightman functions.

Proposition 3.6: If A= (A,,.,4y) is a relativistic quantum field over E=Z(D%¥V), dim V=M, then
4, (f)®,=0, forall fe& (D*) and some joe{1,...,M}, implies 4, = O (P, denotes the cyclic vacuum vector).
Proof: Since A is supposed to be local, the components {4, }— of 4 are local relative to each other, that is,

supp[4,(*),4;()],,CK, i,j=1,..M.

At all points (xy,...,X,X;  15-..,X,, ) such that

(x2 = XpgeensX — xk,xk+l — XyeosX,, — X, _ ) = (§l""’§n)

is a Jost point we have, by repeated application of the locality condition as an identity for Fourier hyperfunctions,

W, (§1sbn) = (Poud;, (1) A4, (x4)4,, (X)Ajk+ (X i1) 4 (x,)P)

= j: (QO’Ah (xl) R .Aj,, (x,, )Aj(, (x)¢0) = O.

Thus Theorem 3.4 implies that the Wightman functions ﬁ’,,e (T ’ ) vanish on the open subset J, of R*". Hence by
Corollary 2.11 W, vanishes identically. Therefore again by Theorem 3.4 the boundary value

(cbo,Ajl (xl) o .Ajk (xk )Aj“ ('x)Ajk_H (xk+ 1 ) ' .Aj,, ('xn )q)O)

vanishes identically. And this holds for all j.€{1,...,M}, all
1<k<n,andalln=1,2,....

Thus 4, ( f) vanishes for all feZ (D*) on the minimal
domain &, and we are done, since by cyclicity of ®, the
minimal domain is dense in the Hilbert space.

Remark 3.3: The proof of the “global nature of local
commutativity” (Chap. 4.1 of Ref. 1) for tempered fields
relies on analyticity properties of the Wightman functions
and on arguments about analytic completion for special tube
domains. The basic analyticity properties are provided by
Theorem 3.4. The proofs of Theorem 3.5, Proposition 3.6,
and Theorem 6.1 show that also in HFQFT the appropriate
tools are available to imitate the proof given for tempered
fields. Hence we conclude the following.

Theorem 3.7: Let A be a relativistic quantum field over
E=0(D%V), dim V< w,satisfying (H,)-(Hs) but the
locality condition (H,) only in the weaker form

supp{d,,4;) CM,
with some closed subset M C R*x R* satisfying
KCM and M #D.
Then A satisfies supp{4,,,4;) CK, ie., A satisfies the local-
ity condition(H,).
IV. CLUSTER PROPERTY

The proof of the cluster property as given by Jost and
Hepp® applies whenever the minimal domain &, of the
field, spanned by
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|
{@od(£,) AL, Do\ f,€E, n=12,..},

is invariant under the infinitesimal generators of
G =iSL(2,C) in the given representation U [see (H,)]. By
the definition of the minimal domain and the action of U(g),
£€G, on it this follows immediately from the invariance of
the underlying space E of test functions under the infinitesi-
mal generators of the action a of G on E according to (H,).
We give an explicit proof of this latter invariance for the test-
function space E = & (D*) of rapidly decreasing holomor-
phic functions on D* and prepare it by a sequence of lemmas.
The technical details are given only for the more complicat-
ed case of the subgroup SL(2,C) of G. The corresponding
proof for the subgroup of translations is left as an exercise.

Let ¢ A, be a function on R with values in the space of
n X n matrices such that

(i) A,=1I=identity matrix,
(i) A, =1+12+o0(t), for |t]-0,

4.1
with some nX#n matrix X, “-D
ie., t—A, is differentiable at ¢t =0.

For xeR" we introduce
y»=Ax—x and y=3x (4.2)
and get immediately, with some constant CeR , ,
o=l =oxl, |yl<|t|Clxl. (4.3)
Now let U, be a neighborhood of D”, e.g.,
U, ={x+ iyeQ”| |Im y| < 1/m}.
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Take some fixed fe&7 = £7(U,), and apply Taylor’s
theorem for fixed x and |7 | - 0:

fIAX) —flx) = 3 43, flx)
i=1
+ 3y ) (x+6y,),
k=1
’ (4.4)
where y is the jth component of y, and 8, = 6, (x) some real
number between 0 and 1. The terms on the right-hand side of
this equation will be controlled by some lemmas.
Lemma 4.1: For fe/ 7 and B = (B,,...8 ,)EZ", , we
have dgfed " for all m' > m.
Progf: For m' > m there is 8 > 0 such that the polycircles
C(z2)=C,X--XC,, C={f]| |§—z|=6},
|Im z|<1/m’,
are contained in {£ | |Im ¢ | < 1/m}. Hence, for §eC(z) and
m’ > m, we know
j2l/m’ — |£ |/m<8/m'.
By Cauchy’s integral formula, dg f (2) is easily dominated
according to

|9pf(2)| = (2m) "

f AOTL & —2) ' —*ide,
C(2)

i=1
<K || fllme 1V,
and thus
a =S
19 Sl = _sup
Lemma 4.2: For fixed geZ 7 and all m’ > n.,

™ |3p f(2)| <K\|If || nde® ™

(1/¢) y’g converges for |t | »0in &7 to y’g.

Proof: By (4.3), given €> 0, there is § > 0 such that, for
allxandallO<|f| <&,

[y — tvl<ele] |x].
Hence, for all m'>m and all O0<|z| <8, we have, for
j=1,..,n,
(1/2) y'g — gl

= sup [(1/)y} — y/|g(x)]e™™

[Im xj<1/m

< sup elx|[|g]l e V™ = ellg]|n C-

Im x|<1/m’
This implies the statement of the lemma.
Lemma 4.3: For fixed geZ " and all m’' > m,

(1/6)y} yigl- + 6,(-)y,)~0in &7 as |t | -0.

Proof: Choose 8§ = (1 — m/m’)/C, where the positive
constant C'is given by (4.3). Then we have by (4.3), for all
0<|t] <6,

16, (x)y, 1<y |<]x],
and thus

|x 4+ 6.y, >1x|(1 — |t |C).
Furthermore, for all 0 < |t | <5/2,
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m' m 2 \m' m

is known. This implies, for 0 < |z | <6/2,
|(1/z)yl;yfg(x 4 0;(')y,)|<C2|t| lxlz“gume— [x+ @(x)p|/m
<11 C gl e 6t = €t

and

I (1/0p pket + 6, ) )|m

<|I|C2”gum " sup |x|2e|x|[1/m'—(1—C|l|)/m]

mx|<1/m

<l gl Coms

for all 0 < |t | < 8/2, follows easily.

Proposition 4.4: The space & (D") is invariant under the
infinitesimal generators of the induced action of (4.1) on
& (D"), that is, for fixed fe# (D"), one has

lim {f(A) ~f(}=3f i O, (45
where
GNHx = 3 (3.

=1

Proof: Since ¢ (D") is the inductive limit of the Banach
spaces 7' = ¢ 7(D") for m— oo it suffices to show that, for
fixed feZT, there is some m’ > m such that the above limit
relation holds in &™. According to Eq. (4.4),

A/D{fIAx) — i)} — (EF)(x)
=Y (%y’; —y’) df(x)
i=1

+ k}‘, iyi'yi‘(a,-akf)(x+6,y,).
k=1t

Lemmas 4.1 and 4.2 imply that the first term of the right-
hand side tends to zero in &™ for |t |»O0forallm’>m + 1.
Similarly the second term converges to zeroin & for |t | -0
foraill m’' > m + 2by Lemmas 4.1 and 4.3. This proves (4.5).

Corollary 4.5: A test-function space of the form
E = £(D* V) with action a of G = iSL(2,C) on E specified
by Eq. (3.3) is invariant under the infinitesimal generators
of this action; i.e., E is invariant under the generators of the
translations and the generators of the Lorentz transforma-
tions on E.

Proof: If t— A, is a one-parameter subgroup of the Lie
group SL(2,C), we take, in Proposition 4.4,

A, =AA_), R,
where A is the canonical homomorphism from SL(2,C)

ontoL ' _.Since?—S(A4 _,) is easily seen to be differentiable
(compare Sec. III A), Proposition 4.4 implies that

lim (l/t){a(o,A,) f—f}

|t] -0
= |}i|To (/{84 _ (A, —f()}

exists in E and thus proves the invariance of this test-func-
tion space under the generators of the “Lorentz transforma-
tions” on E. The case of translations is even simpler. Consid-
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er the translation group in direction
ecRY, le] =1t @, ,/(x) =f(x—te), teR.

If we identify y, = — te and y = — e we have, instead of
(4.3),

y,—ty=0 and |y, |=|t|, (4.3)

and thus the proof of Proposition 4.4 simplifies considerably.
Finally this implies the invariance of E under the generators
of the translations on E.

Theorem 4.6: In a relativistic quantum field theory over
a test-function space E = & (D% V), where the point p = Ois
isolated in the energy momentum spectrum 2, the following
identity holds for arbitrary but fixed @, a> <0 [only (H,)—
(H,) are assumed]:

w-lim U(1a,1) = Q,=E{0}), (4.6)
A=

where Q, is the projection operator onto the subspace of
translation invariant states.

Hence the theory has a unique vacuum state {i.e., condi-
tion (H) holds] if and only if the cluster property

WG auf)- W (YW (f), for -,

forallg, fcE, (4.7)

is satisfied.

Proof: Corollary 4.5 assures that all assumptions for the
“Jost—Hepp proof ” of this statement®® are satisfied. Thus
we are finished.

V. CONNECTION BETWEEN SPIN AND STATISTICS

There is a set of results in QFT usually referred to as the
spin-statistics theorem by which the form of the commuta-
tion relation for the field (used in the formulation of the
locality condition) is related to the type of field (spinor or
tensor).'

The main results in this respect are the theorem of
Burgoyne, Liiders, and Zumino on one side and the theorem
of Dell’Antonio on the other side. The proof of the result
mentioned first relies on properties of the Lorentz group and
its representations and on analyticity properties of the
Wightman functions [analyticity and L * (C) covariance in
the extended tubes, existence of Jost points, and the fact that

— 1,€L *(C)]. Since these properties are also available in
HFQFT (see Sec. III) the theorem of Burgoyne, Liiders,
and Zumino still holds in HFQFT. Dell’Antonio’s theorem
reads in its HFQFT version as follows:

Theroem 5.1: If a relativistic quantum field
A= (A,,..,A4;) over E= £ (D', V), dim V = M, satisfies

supp[4, (x),4*(y)] _CK (5.1)
and

supp[4, (x).4;(y )]+ CK,
then either 4, = 0 or 4, = Q.

The same conclusion holds if in (5.1) and (5.2) the
signs + and — are exchanged.

Compared to the situation in “standard” QFT this re-
sult is considerably harder to prove in HFQFT.

The starting point for a proof is the following elemen-

(5.2)
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tary identity which holds for all test functions f,ge& (D*)
and all A0:
14, ()4, (82) Do
+ (A (8)*4, ()P0, U(Aa) A4, ( f)*4;( f) Do)
= (4, (81)P0sd; ( f)*[4;( )4k (81) ] + Do)
+ (A, (8) Do, [ A4 (81),4; (f)*] A, () Dy)
=I, +11,,
where

U(4a)4;(8)U(Aa) "' = 4,(8:)s 81 = 8ras
with some spacelike vector ¢ = (0,a), a° = 1.

If test functions fand g of compact support were avail-
able one could choose A sufficiently large so that the func-
tions f and g; would have spacelike separated supports.
Then the assumptions (5.1) and (5.2) would easily imply
that the right-hand side of Eq. (5.3) vanishes, and by the
cluster property one would easily conclude the proof. In our
case of HFQFT the control over the rhs of Eq. (5.3) needs
considerably more preparation relating geometrical facts
about a product of Minkowski spaces with the topology of
the underlying test-function space ¢ (ID*) as well as the pre-
cise formulation of the “locality conditions” (5.1) and
(5.2).

Denote by V. the closed forward light cone
{E3.6)eRYE%>|E | and by V=V UV_,¥V_= — V, the
closed light cone.

_ The set K of (5.1) and (5.2) decomposes into
K =K*UK ~, where

K* ={z=(xy)eR*XR¥|x —yeV_ }.

The following lemma establishes some facts about the
separation of the set X from “spacelike” points. It is proved
in the Appendix.

Lemma 5.2: For a= (0,a)eR* a’=1,
& = (0,a)eR* X R* — K. Then the following hold.

(a) The dist(K,A@) = A /2, A>0, is attained at

Aa* =A({(F La),( + 1,3a))ek.

(b) Denote by e* =a* — a; then z-e* >0, for all
zeK 7, and z-e™ >0, for all zeK ~. Hence, for all zeK * ,

|z—Ad|»|z—Aa* |.

(c) Given §,> 0, define 1, = 4,(5,) by

Ao=[16la=|/(2lax| = 1)18, |a*| =43/
then, for all A>A, and all zeK,

|z — Ad|>€|2l + 8, + A /4,

(5.3)

denote

where €, ' = 8[a*| = 43.

Lemma 5.3: There exist a positive constant L, and a
symmetric neighborhood U = — Uof K (the closure of K in
D?®) in D® + /R® such that

dist(UNC*,A8) >4 /4, for all A>L,

Proof: Let B(z,r) be the open ball of radius r and center
zeR®. For 0 < ¢, 0 < 8, introduce the real neighborhood

K = UKB(z,e|z| +6)
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of K and then the complex neighborhood
W, s = {zeC¥|Re zeK, 5, |Imz| <8}

If we choose now 0 < <€, and §,<26 and apply part (c) of
Lemma 5.2 we see easily that |z — Aa|>A /4 holds for all
zeW,_ 5 and all A>44(5,). _
By definition of D® there exists a neighborhood Uof K in
D® + iR® such that UUC® = W_; holds.
Lemma 5.4: For any fed (D®), define £, for A0 by
fi(z) =fz+ Aa), zeD®,
where @ is defined in Lemma 5.2. Then
fi~0, for A-ow in &(K).

Proof: The space & (K) is defined to be the inductive
limit of a sequence of Banach spaces Z7'(U,, ), meN, where
{U,, |meN} is a fundamental system of neighborhoods of K
in Q% = D® + /R® hence we have to show that, for some m,

fi~»0 for A in OX1U,).

Since feZ7 (D®) there exist positive numbers § and C such
that

| f(z)|<Ce™ % in {z] |Im z|<6}.

With this 6 > 0,do the construction of Lemma 5.3 to obtain a
neighborhood Uof K in Q® such that

UNCcEc{z| |Im z| <6},
and, for sufficiently large A,
dist(UNC}Aa) >4 /4.
Then there is MeN such that, for all m>M,
U,CU and mb>4.
Next observe that
z—AaeUNC?  implies |z|>4 /4,
since then £=A4a —zeUNC® and z=Aa — ¢, thus, by
Lemma 5.3,
|z| >dist(UNCE,Aa) >4 /4,

ifA>L,.
Now fix m>M and choose A>L,. Then the following
chain of inequalities holds:

1 felln = _sup_|i @)l

<C sup e——¢5|z(e|z—/{&|/m

z— AgeU,NC*

<C sup e~ (6 — 1/m)|z| +/l/m<ce—6ﬂ./8.

|z|>A /4
Thus we conclude the proof of Lemma 5.4.
Proof of Theorem 5.1: Since |4, (g,) Dol = (|4, (&) Dol|
is known, the first term I, in Eq. (5.3) is dominated by
(T <[l 4i (@) Pol 14, (S * [4;(f)sAi (82) ]+ Dol
Assumption (5.2) means that for any ®,¥eZ the func-
tional

hyXhy—=(4;( fIP,[ A, (h),4,;(h;)] . Y)
belongs to & (K)". Since & (K) is barreled it follows that
hyXhy—||4;(Y*[ A (B),A4;(B) ] LYl
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= el - (NP, [ A (B4 (h2) ] LY

is a continuous seminorm on this space. By Lemma 5.4 we
know f X g, -0 for 1 w0 in Z(K), for every f,ge (D*).
This implies I, —0 for A — . Similarly assumption (5.1),
barreledness of & (X), and Lemma 5.4 are used to conclude
I, -0forA— .

Thus the right-hand side of Eq. (5.3) has a vanishing
limit for A — . By the cluster property (Theorem 4.6) the
second term on the left-hand side of Eq. (5.3) has the limit

14 (&) ol |l}4; (£ Do)%,
for A— . Hence ||4;( f)A,(g,)Py||* also has a limit for
A— oo and this limit is

— 4k (@) Do [|4; (£ ) Do |*.
We conclude |4, (8)Py||*[|4,( f)Po||> =0 and obtain ei-
ther
A (@) Pe=0 or A,(f)P,=0, forall g, fed (D).

If, for instance, 4;(-)®, =0, then, by Proposition 3.6,
A; = 0 follows.

VI. SOME CHARACTERIZATIONS OF TRIVIAL
QUANTUM FIELDS

A. Characterization of generalized free fields

Our first result here assures us that the well known char-
acterization of generalized free fields in terms of commuta-
tor properties for the field operators still holds in HFQFT.

Theorem 6.1: For a relativistic quantum field 4 over
E = £(D*) with cyclic vacuum vector ®, the following
conditions are equivalent:

[A(f),A(@)ICW,(feg—gef)],

for all f,geE, (6.1)
[4(),A(2) 1Py =W,(frg—gaf)P,
for all f,geE. (6.2)

Proof: (a) We only have to show that condition (6.2)
implies (6.1). And by cyclicity of the vacuum state this fol-
lows from
W, imi2(f1® - 8f, 8f0g0g 8 88,)

— W, im2(fi®8f, 828 88 8 8g,)

=W,({ /g )W, . (fi® 8f, 88 ® 88,),
(6.3)

for all fig.f.g;,€E and n,m =0,1,2,..., with [ fig] =f®g
—geof. By Theorem 3.4 the hyperfunctions Wy,
N = 2,3,..., are boundary values of analytic functions W .
So we study the analytic functions W* on tubes T(I", )
defined by

A
W+ (Z,, W2, W, W, ) = Wn +m+2 (Zn WZ,W,W,, )
A A
- Wz(zyw)wn +m (Zn swm ),

r,= {(§m§ﬂ7,ﬂm)1§j+1 _§j€V+’ j<n—1,

§~‘ §,,EV+, U/ §EV+: M — 77€V+’
N+ — njEV+, Jj<m — 1} (6.4)
and
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V(2 2w,) =W, +m+2 (20 W2 W)
—W,w,2)W 0, 1 (Zaot),
=608 1 — §€V,, j<n—1,
—nt eV, n—¢EeV,, 9 —EV,,

Miv1 — MEV,, j<m — 1}. (6.5)

(b) By Theorem 3.4 these analytic functions @’f have
boundary values W* =6 W* (resp. W™ =§._ W) in
the sense of hyperfunctions. By locality (H,) and our as-
sumption (6.2) these boundary values agree on the open
subset U of R¥"+m+2)

U={('En’x’y’.Ym)l(x_yj)2<0,
(.V“yj)2<0; Jj= 1,...,m}.

Hence by the edge of the wedge theorem for hyperfunctions
(Proposition 2.10) there exist a complex neighborhood V of
U and a function

Wed (VNT(ch(T, UT_))

such that (6.6)
W=Wt on VNT(T,).
(c) Observe now that the complex cone
Lo= {(én’g’ﬂ’ﬂm)|§j+l — &€V, j<n—1,
XE— 6.6V,
n=4¢ 1 —nev,,
XNy — M€V, j<m—1} (6.7)

is contained in the convex hull ch(I', UT"_) of ', UT"_.
To prove this, suppose (£,,5,1,7.. )€, to be given.
Then there are §;€V, such that §, + {5 — §eV

§—6,=861+136; and 7, —n=_+1
Write £, = (£,,£ ;) and define
§+ = (§n+’§ +’7?+97?1+ 922:n+)

= (én’gn + gl’gl + ;3 + gmgl + §2 + §3 + gn’ﬂ:n)
and
=T,

=8 +16m + 185 — &0

Then § *eI', and
(£nsMm) = (§ 7 + & 7)/2ech(T UL ).

{d) By (6.6) and (6.7) we conclude that W+ and W~
are analytically continued with respect to the variables (z,w)
to Im(z — w) = 0. Therefore W * (x,,x, y,y,,) can be con-
sidered to be hyperfunctions in the variables x,,, y,,, with real
analytic parameters x, y. And these hyperfunctions are
boundary values of functions W * (x, y;z,,w,,) analytic in
the tube T(I),

F={(§n’?2m)|§j+l —§jEV+’ j<m—1, £,€V,,

meVy, M0 —n€V,, j<m—1},
hence

W (x, VZnsWy, ) = W (x, ViZpsW,,) — VAV‘(x, ViZo W)
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is analytic in 7°(I").

(e) If U, is some open bounded nonempty set in R*4
there exists an open set U, in R*" such that all
(%, Y,Ym )€U, X U, satisfy

(x—y)*<0 and (y—y,)?<0, for j=1,.,m.
For all (x, y)eU, consider the boundary values
W (X, 3%, ¥m) = 60 W (X, Y32, ,W,)

in R** X U, in the sense of hyperfunctions. As we have shown
above in (b) all the boundary values vanish
(R*"X U, X U,CU), Hence by Corollary 2.11 all the
analyti/c\ functions W(x, y;...) on T(I"), x, yeU,, vanish,
Since # (x,y;...) is real analytic in x, y, this function vanish-
es identically.

By definitions (6.4) and (6.5) this proves Eq. (6.3) and
thus we have the theorem.

A relativistic quantum field 4 over < (D?) that satisfies
condition (6.1) or (6.2) is called a generalized free field over
& (D*). Such fields have been studied in some detail by Ro-
berts.’! Clearly as in the case of tempered fields relation
(6.1) determines easily all z-point functions of the theory.
The relevant formulas are given in the following corollary.

Corollary 6.2: If a relativistic quantum field 4 over
E = J (D) has a vanishing one-point function W, and sat-
isfies (6.1) or (6.2) its n-point functions are

Woui1 =0, for n=0,1,2,..,

(6.8)
W,, =W =@"W,, for n=12,.,
where W3, are recursively defined by
Wg(n+1)(ﬁ® ®fzn+2)
2n+2 R
= Y W (fiefIW,(fie ®fie 8f,, )
i=2
(6.9)

B. Jost-Schroer theorem

According to Theorem 6.1 and Corollary 6.2 the four-
point function can be used to decide whether a field over
E = ¢ (D*) is a generalized free field or not. In the case of
tempered fields Jost and Schroer®? have observed that this
result can be used to determine a scalar relativistic quantum
field completely if its two-point function is known to have a
special form (that of a free scalar field). For hyperfunction
quantum fields this characterization continues to hold if we
add a technical assumption on the support of the four-point
function.

Theorem 6.3 (Jost-Schroer theorem for HFQFT): If
the two-point function W, of a relativistic quantum field 4
over E = ¢ (D*) with cyclic vacuum ®, equals that of a free
field of mass m >0 and if the four-point function has no
“pathological support” (see Remark 6.1) in energy momen-
tum space, then A is a free field of mass m.

Remark 6.1: According to the results of Sec. 111 B,

g-Wiheff2g) (6.10)
is a well defined Fourier hyperfunction with support in 3

(the closure of £ in D*) for arbitrary hed (D*) and
Sfi€Z (R*). Then we say that W, has no “pathological sup-
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port” if the support of the Fourier hyperfunction (6.10) has
no connected component contained in .S? .

Remark 6.2: This technical assumption is actually
known to be satisfied in some cases. If the theory is formulat-
ed over a certain slightly bigger test-function space £, D E
or if the four-point function has a continuous extension to
this space then this support property can be shown to hold.
A concrete example of such a space E| is described in Ref. 7.

Proof of Theorem 6.3: (a) By assumption we have, for
all feE,

4 (T + m?)f )|

= e85 (p),(—p* +m?V?| fUp)P) =0
Hence the field B defined by B = (O + m?)4 satisfies
B( f)®,, for all feF. Since the local field B clearly is relative-

1y local to the field 4 Proposition 3.6 implies B = 0, that is
the field A4 solves the linear differential equation

(O+m>HA(x)d =0, for P,
and this implies, for the Fourier transform AD of AD,
suppZ‘DCf_Im, (6.11)
where H,, is the mass hyperboloid
H,=H;7UH., HZ={(pyp)|po= +Vp*+m?},

and H,, denotes its closure in D*.

For such a field one obtains more refined support prop-
erties for the Fourier hyperfunction Z, introduced by Eqgs.
(3.13) and (3.15):

supp Z,C (pgz{p}x T*(p)),

T*(pp=H N (p—H,)

=[HiN(p—H,|U H} NS>,

by Proposition 3.2 and Corollary 3.3.

(b) In order to complete the proof it suffices, according
to (6.11) and Theorem 6.1, to show Eq. (6.2). To this end
we study the Fourier hyperfunction [A4(x,),4(x,)]®,in the
coordinates

x=(x,+x,)/2, &=x,—Xx,
= A(x;)A(x;) Dy,
V™ (x,€) = A(x)A(x,) Dy =V (x, — £).
The Fourier transform of ¥ satisfies
¥+ (p.g) =Zy{p.(g +p)/2),
U (p,(qg—p)/2) = Z,( p@),
and it follows, for ¥ = ¥+ — ¥,

¥+ (x,8)
(6.12)

(6.13)

sup‘i’C(pker{P}XS*"(P)),
S(p)=ST(pUS(p), ST(p)=—ST(p),
S*(p)= (—p2+H} )N (p/2—H,,)
=[(=p/2+H )N (p/2—-H,)]
xU H}FNS?.

Elementary geometry shows

(6.14)
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(i) $*O)=H.,
(ii) if BCZ is compact in R* and 0¢B,
then (U {p} X S( p))CB X (BUH, NS> )
peB

(6.15)

~
with some compact set BC R*.

(c) In the same way as in Proposition 3.1 we can show
that ¥( p,q) is a Radon measure in p and a Fourier hyper-
function in ¢. Thus we may choose fc<Z (R*), supp f B
with 0¢BC I and know by Proposition 3.1 that - ¥( f® g)
is a well defined Fourier hyperfunction, g (D*). Relations
(6.12) show

V(feg) = ([4(x,),4(x;) 1Dy,

S((xy + x2)/2)g(x, — x,) ), (6.16)
therefore by locality the Fourier transform of ¥( f,¢) van-
ishes for £2 < 0. According to statement (6.15) the support
of the Fourier hyperfunction ¥(fq) is contained in
BUH,, NS?3 . Now apply Eq. (3.26) for 7eZ (R*) and
fl,g,gleé’(D ) to get

(Z,(fi88), ¥(fe2))=Wik ef fe(E—2)
where 2(¢q) = g( — ¢)- This is a Fourier hyperfunction with
respect to g with support in BUH NS? and its support is
contained in B by Remark 6.1. Since fl,gleﬁ (D“) are arbi-
trary, the support of W( f,q) is contained in B. Hence its
Fourier Laplace transform with respect to ¢ is an entire ana-
lytic function of £ that vanishes on the open subset £ <O0.
Thus ¥( f.q) vanishes and we deduce by choice of f

supp Y C {0} xS(0) = {0} xH,,. (6.17)

(d) Denote by y, the characteristic function of a ball of
radius €> 0 and center p = 0. Proposition 3.1 and relation
(6.17) imply that y ¥ ( p.q) is well defined and that, for all
€>90,

=T
holds. Thus we get for
X (PY[A(f),A4(8) 19, = [4(f),A(8) 1D,
[4(),4(8)1®, = (¥ (p.g), (/2 — PE(p/2 4+ ).
But by uniqueness of the vacuum state (Hs) we know that

converges strongly for é—»0 to the projection operator
| @y} (P,|. This then proves Eq. (6.2).

C. Borchers classes

As with the result about the existence of a PCT operator
for a QFT in terms of Fourier hyperfunctions we only indi-
cate in this subsection that also for quantum fields over
E = J (D% V) the concept of the “Borchers class” of some
field is available since the possibility for this concept relies
exclusively on analyticity properties of the n-point functions
and the existence of a PCT operator. These analyticity prop-
erties are provided by Theorem 3.4, and the techniques of the
proof are very similar to those explained in detail in Secs.
IIl Cand VI A.

However, as expected, compared to the case of tem-
pered fields the Borchers class of a field in HFQFT is consid-
erably bigger. In order to see this recall that for tempered
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fields the Borchers class of a free massive field consists of all
Wick polynomials including derivatives of that field.*?
In Ref. 34 it has been shown that all power series

- an (X) . 2 /n __
B = o An S I lla /=0

(6.18)

define a relativistic quantum field over E = ¢ (D*) and that
the associated sequence of Wick polynomials

il (x)
By(x) = 2 c, A" —= N=1.2,..., (6.19)
n=0 n
converges in the relevant topology to B(x). Since all the
B, (x) are known to be relatively local with respect to A it
follows that B, too, is relatively local with respect to 4.
Hence all entire function of 4 as described in (6.18)

belong to the Borchers class of A.

VIi. CONCLUSIONS

In order to give a comprehensive picture about QFT in
terms of Fourier hyperfunctions we discuss here the status of
the remaining points of the basic structural results of QFT
mentioned in Sec. I. The existence of a scattering operator
[point (3)] in HFQFT has been proved in Ref. 7; however,
it has been proved only for a special class of Fourier hyper-
functions, that is, for a somewhat larger test-function space
than Z (D*). Though this is already quite a satisfactory re-
sult it would be preferable to have a scattering operator also
for fields over ¢ (D*). This point is under consideration.

In general form of the two-point function [point (7)]
can also be determined in HFQFT. The result is the obvious
generalization of the form given by Killen and Lehmann. If
we combine the information provided by Propositions 3.1
and 3.2 with Eq. (3.26) for n = 2 we get immediately that
the two-point function of a scalar field over & (D*) has the
following general form:

W,(fog) = f Hdp)f( — P)E(P),

with some L '_-invariant positive Radon measure ¢ with
support 3, which is slowly increasing in the sense of Proposi-
tion 3.1(b). The structures of such measures are known>:

t(dp) =cd( p)d°’p +f p(d)s (p)d*p, >0,
0

with some positive slowly increasing measure p on (0, )
that is not necessarily polynomiaily bounded as for tempered
fields.

The possibility of a Euclidean reformulation [point
(10) ] of relativistic QFT in terms of Fourier hyperfunctions
has been indicated to exist by Nagamachi and Mugibayashi
in Ref. 5 shortly after Osterwalder and Schrader’s solution of
this problem in terms of distribution. At the price of intro-
ducing an even smaller test-function space 7 (D*) C £ (D*),
Nagamachi and Mugibayashi® could actuaﬁly prove a com-
plete symmetry between the Euclidean and relativistic for-
mulation of “HFQFT” without any additional growth re-
strictions as in the distributional setting.

However, the space & (D*) has some disadvantages as a
space of test functions for QFT. So one might reconsider this
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problem for the test-function space £ (D*). Admitting even-
tually similar additional growth restrictions as in the distri-
butional setting the proof of equivalence between the Euclid-
ean and relativistic formulation of HFQFT seems to be
possible.

We have not tried to prove dispersion relations, which is
quite an involved matter. However, we expect that it is possi-
ble to prove the necessary analyticity properties for the 2-2-
particle scattering amplitude but not the necessary growth
restrictions in order to be able to write a dispersion relation
with a finite number of subtractions.

Finally we sum up the main points of this paper and give
an outlook for further applications of HFQFT.

Since there is no a priori choice for the test-function
space in relativistic quantum field theory we have isolated
conditions on a space E of functions on space-time in order
that £ be “admissible” as the test-function space of a relativ-
istic QFT [condition (H,) in Sec. I]. As our short review
shows it has been known since the early days of general QFT
and has emerged more clearly later by considering model
constructions that the traditional choice E = % (R4, ¥) has
to be modified for various important reasons. And accord-
ingly several attempts have been made in the past to genera-
lize the notion of a “tempered relativistic quantum field.”
Most of these suggestions have considerable difficulties with
an appropriate notion of localization in coordinate and/or
momentum space. Though it might not have been so clear
from the beginning, the only suggestion that has a precise
notion of localization in both spaces has been that of Naga-
machi and Mugibayashi.*

In this paper we have stressed the point of view that a
sensible generalization of the notion of a tempered quantum
field should not only have these localization properties but
should also allow us to derive (hopefully) all the basic struc-
tural results of QFT known for tempered fields.

And accordingly in this paper we have presented a short
introduction to QFT in terms of Fourier hyperfunctions and
have shown that indeed most of the structural results of QFT
continue to hold in this more general approach. We mention
some further results of HFQFT that we think to be impor-
tant for future applications.

The existence of entire functions of a free massive field
A, for instance,

21 geRR,
can be used in the construction of concrete models.
For instance, the transformation

A(x) - B,

can be used for an easy “decoupling” of the interaction of the
*“derivative coupling model” and thus to obtain a solution of
this model.>* We expect that a renormalization theory based
on Fourier hyperfunctions would admit a clearer and more
powerful notion of “renormalizable interactions” than in the
traditional approach based on (tempered) distributions. An
example has been treated in Ref. 34.

One important reason for the great success of Euclidean
methods in the construction of models in lower-dimensional
space-time clearly is the fact that these methods allow us to
take into account in a natural and powerful way the relevant
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positivity condition. Since the test-function space
E = gZ(D",V) of HFQFT is a nuclear DFS space its topo-
logical dual E ' has a well developed theory of Radon proba-
bility measures on it as for the standard case .’ or &’. This
might turn out to be important for the construction of
HFQFT models with nontrivial interactions according to
the “functional integral point of view.”

Thus we think that our paper clearly shows that the test-
function space (1.2) of Fourier hyperfunctions provides
quite a comprehensive realization of the requirements (A)-
(C) of the Introduction. In any case this approach is much
more natural with respect to the realization of the localiza-
tion problems [requirement (B)] and is considerably more
powerful in the realization of the structural results of QFT
[requirement (C)] than any other approach. Furthermore
as indicated above there are convincing prospects of further
successful applications in model constructions.
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APPENDIX: PROOF OF LEMMA 5.2

(a) For ye¥’* = R* — V the distance to the light cone V'
is easily calculated to be

dist(¥, ) = (Jy] — [ »o )2

and it is attained at a point e( y) of the boundary dV
e(y) = (| yo| + |y (sgnyo§)72, §=y/|y|. (A2)

The points of K are parametrized by
K={z=(y—§p)yeR?, £eV}.

We calculate

(AD)

dist(K,Aa) = inf]|z — A4
K
in two steps using (A1): The first step is simply
inf |[(y—&y)—Aa| = in,fl'ly—/lal =A/2, (A3)
ye

eV, peV©
and for the second we note

inf [(y—&y) —Aa|?

geV, yeV©
= inf{inf[|y — £+ | y — Aa|*]}.
yeV© &eV
For £ = e( y) this equals, according to (A1) and (A2),

inf{(|y| — | yo)?/2 + | y — Aa|?}
wve

= inf ‘{(|y| — | 7D?*2+ 5 + (ly| = 7}

1¥1>! yol
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The last infimum is attained at
|yol=A/4 and |y|=34/4
and equals A 2/4; hence

infinf|(y—§&y)—Ad|=4/2 (A4)
§eVyEVC
and this is attained at
yiE =40+ 13a)/4, £=e(yi),
oratdat =(yiFf —e(yf)ytlie,
Aa* = A(F 1,3a),( + 1,3a)) (A5)

and we conclude
dist(K,Aq) = |[da* —Aa|=AleT|=A1/2,
where

a* =(+1,—a)/4.
(A6)

et =g —Gg=(—a*,at),

This proves part (a).
(b) For zeK* , that is, £ =y — xeV'* | we get

et =far =(+£E°—£a)/4>(+£0— |E))/4
hence
z:¢">0, for zeK*,

(AT)
z-e »0, for zeK —.
It follows that
|z—Ad|»|z—Aa*|, for zeK™,
(A8)
|z—Aa|»|z— Aa~|, for zeK~.

Thus (b) follows.
(¢) In order to prove part (c) we distinguish two cases.
If |z} < (4 /4 — 8)€, ', then, by part (a),
A/4+ 6+ €2l <A/4+ 6+ A/4—6=1/2
= dist(K,Aa) <|z — 44|,
if z also belongs to K.

If, however, |z|<(A /4 — 8)8|a?* |, zeK, we use (A8) to
obtain

z—Ad|>|z—Aa* >3] |z| —A|a*| |>|z] —AaT|
»>6&lz| +6+A/4+ A(2la* | —1)/2 —8ja* |
>6lz| + &+ A /4,

since A>A,(8) is
— 8lat |6>0.

equivalent to A(2la*|—1)/2
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A complete analysis of the free-field massless spin-s equations (s = 0, 4,1) in Kerr geometry is
given. It is shown that in each case the separation constants occurring in the solutions obtained
from a potential function can be characterized in an invariant way. This invariant
characterization is given in terms of the Killing—Yano tensor admitted by Kerr geometry.

1. INTRODUCTION AND MATHEMATICAL
PRELIMINARIES

A complete understanding of the characterization of so-
lutions of spin-s free-field equations in Kerr geometry has
yet to be achieved. Interest in these equations originated
with the investigations of Teukolsky,' who showed that in
the Newman—Penrose” formalism separable solutions were
possible for certain Maxwell and Weyl scalars in Kerr geom-
etry.® (Kerr geometry is the space-time geometry of the
gravitational background due to a rotating black hole.)

Chandrasekhar® has shown that these results can be ex-
tended to the Dirac equation. These results have been
further extended™® and shown to hold for more general
classes of space-time. In the original work of Carter’ it was
established that the Hamilton-Jacobi and Schrddinger equa-
tions admitted a solution for the Kerr geometry via standard
separation of variables techniques. Because of this property,
Kerr space-time admits a quadratic constant of the motion
in addition to the already known two Killing vector fields.
However, the key property at the heart of the solution of the
equations for spin-s (0,4,1) is the existence of a Killing—
Yano tensor.? The role played by such a tensor for the solu-
tions of the Dirac equation has been explained in Refs. 9 and
10. In this paper we indicate how this characterization works
for massless particles with spins 0, 1, and 1 and massive parti-
cles with spins-0, 1. In so doing we clarify the role of the
Killing—Yano tensor. The results for spin-1 are new and the
treatment of spins-0, 4, while not new, is presented in a uni-
fied way.

Once this work is extended we expect to better under-
stand the methods by which a theory of “variable separa-
tion” can be constructed for general spin-s equations. Earlier
work by the authors,'! although not incorrect, did not suc-
ceed in giving an intrinsic characterization of the separation
parameters appearing in the solution of Maxwell’s equa-
tions. What was in fact achieved in Ref. 11 was a characteri-
zation of a particular choice of gauge. The contents of the
present paper are arranged as follows. In Sec. I we outline
the conventions and notations used, together with the rel-
evant definitions and properties of Killing—Yano tensors. In
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Secs. II and I1I we deal with the zero-mass equations of spin-
0, }, and 1, respectively. .

In this paper we consistently use the spinor notation of
Penrose and Rindler.'? In addition, we employ the null tet-
rad formalism as described by Chandrasekhar.* Specifically,
we restrict ourselves to the Kinnersley null tetrad of vectors
with the components

I'= (1/8) (P + d*,A0,a),

n'= (1/20*) (P + a*, — A\0,a),

m' = (1/+2p) (ia sin 6,0,1,i csc 6),

m' = (1/y2p*)( — iasin 6,0,1, — i csc 6),
where

A=7r+a®—2Mr, p*=r + a* cos® 6,

p= (r+iacos?).

(L)

The Kerr solution of the Einstein equations has the line
element

2
ds2=(1—2—Af—r)dt2—p—dr2—p2d02
P A
)
+4aMr§1n 0dtd¢
2 sa2
- ((rZ+a2) +ZLM’+“‘9> sin? 0 dg. (12)

A Killing-Yano tensor K, .55 is a (skew symmetric)
tensor satisfying

v(CC’KAA')BB’ =0, Kysp5 +Kppaar =0 (1.3)
The Killing—Yano tensor can also be equivalently represent-

ed in terms of the pair of symmetric Killing spinors
K,p, K p via

K ypp =3(€45 K4 +€ABI?A'B')- (1.4)
Conditions (1.3) are then equivalent to
V(AA ’KBC) =0, VA(A ’EB'C‘) =0,
_ (1.5)
VBA’KAB + VAB'KA’BI =0.
© 1989 American Institute of Physics 2360



We have the following result: In Kerr space-time the
equations for a Killing—Yano tensor have only one solution.
The nonzero components of this tensor in the null tetrad
formalism using the Kinnersley tetrad are

(1.6)
The Klein—Gordon equation for a spin-0 free-field is
O¢ = (V. V) =m?p. (1.7
In Newman—Penrose notation (1.7) has the form
O¢=[D—p—p" A+ (A—y—y*+u+u*)D
—(6*—a+4+B*—1*+m)5
—(6+B—a*— 7+ 7*)5* ¢ =m’s. (1.8)

In terms of the coordinates used to describe the line ele-
ment (1.2) this equation reads

O¢=(—-120{AM(L, D5 + DD,

Ky =iacos 8, Ky =17

+ (L \ L+ L L) =m. (1.9)
Equation (1.9) admits a separable solution
¢ = Ry(r)Sp(8)e™e + i, (1.10)

where the separation equations are

(A2 .25 + D Dy) +2m P + 4 ]R0=0,(1 "
[L1L5 + L3 Lo+ 2mia cost 6 — 4 1S, =0.

The directional derivatives in expression (1.11) are de-
fined by

D,=08, +iK/A+2n(r—M)/A,

DF =38, —iK/A+2n(r— M)/A,

KL,=0,+Q+ncoth,

L =0,—Q+ncoth,

(1.12)

where K = (# + a*>)o+amand Q=aosin @ + mcsc 6.

From the theory of separation of variables for the
Klein—Gordon equation it follows that there exists a second-
order symmetry operator U such that

U = A (1.13)

for a separable solution ¢. (We say that U is a symmetry
operator if it commutes with O: [(],U] =0.)
In terms of the Killing—Yano tensor,

U= (KAA 'BB'VBB‘ ) (KAA' CC’VCC' ) - KAA 'BB’MBB'VAA'
= (1/20*)[@* cos? O [MD D5 + D+ D))

—rz[fli’o““—i-f,*fo]], (1.14)
where
MAB’ = %VBA ’KBB‘AA"
We also note here that the symmetric tensor
'z/'AA'CC'zKAA'BB’KBB'CC’ (115)

is a second-order Killing tensor satisfying the Killing equa-
tion

V(AA"%/‘BB’CC') =0. (1.16)
This fact is crucial in the separability of the corresponding
Hamilton—Jacobi and Schrddinger equations.
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Il. THE DIRAC EQUATION

In spinor notation the Dirac equation has the form

vAx’l’x' = (ime\/i)(tm VAX'¢A = - (ime/\/i)xxv.
2.1)

Equations (2.1), when written in Newman-Penrose nota-
tion, are

(D —p®)xr — (6 + 7 — a*)ye = (im,/\2)do,
(8* +B* — ™) yr — (A +p* — ) xo = (im, /N2,
(D—p)p,— (8* + m—a)po= — (im,/\2)yy, (2.2)
6+B—1¢—(A+u—pdo= — (im, /)y,
Chandrasekhar* found solutions of the form

$1=(1/P*)R_,/25_, 26"+ ™,

$o= — R, /28",

xr = — (1/P)R_,;38),,€ T ™9,

XO' i —R1/2S_1;28i0‘+im¢.

2.3)

The second-order separation equations are
8D, D~ [im,/(A +im,r)]AD
— A+ mA)IR_,,, =0,
{09 ,,D5 + [im./(A —im,r)|AD &
— (A 4+ mA)}AVR,, =0,
{ZpL 5 + [am, sin0/(A +am,cos 0)].L ,
+ (A2 —a*m?cos* A)}S_,,, =0,
{L5 L~ [am, sin6/(A —am, cos 6)].7 ),
+ (A% — a®m? cos® 8)}S,,, = 0.

The separated solutions satisfy the eigenvalue equations

LAA’XA‘ = (KAA'BB'VBB' -M,, )XA’ = (4 /\/5)¢A,

(2.4)

Ny 9" = (Kyy P Vop + My )8 = (A /Ny, *2
From Egs. (2.5) follows the conditions
[Vaao L% + Ny V4 xx =0, (2.6)
[V4Nyy + L4V, ]¢"=0.
From (2.5) we can construct the operator
0 LY
A= [Nj. 0 ] Q.7

acting on the Dirac spinors
b4 ]
Xarl
The operator (2.7) anticommutes with the Dirac Hamilto-
nian
[ (im,/\2)€e," — Vg ]
v, — (im, 2z ']
The proof of relations (2.6) is instructive; we now prove the
first of these relations. Consider the operator
Qic = NAA‘VAC' - VAA’LAC'
using

H= (2.8)

(2.9)
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Vi Koc = €sMcy + €4cMpy.,
VAA'I—(B'C' = —€pMyc —€4cMyp.
We find that
Quc =3[K V5 Vie + K, 7V ,05. Ve
— KP4, Voo — KBV, V
+ (€4 M + €, "M )V 4
+3M5%, Ve ]
+ M Vi + M VA, + (V4 M) (2.11)

(2.10)

Noting that
K, BVBA’VAC' =K, BV Ve
since K, is symmetric,
K, 2V, Vi — Ko BV .V 5
=3K P (Vap Ve + Ve Vg + [V Ve D
— 4K P (Ve Vg + Vg Vi + [V Van D
=lescKp P (Vg V2 + V2V 15.)
4K P [Vap Ve ] + 4K P [Van ¥ ]
=K, [Vas Ve 1 + 4K P [Vap V00 ] (213)
€MV g =MV, —M*,. V., (2.14)
we can write
Qic = IltI_(A'B'[VAB"VAC' ]
+ 3K B [Vap VA ] + (V4 M) (2.15)
Now consider
Vs Mpp = %VAA'VCB’KCB
=4(Ves Vau + [Vaa- Vs DK 5
= (V- Mps + €45V My
+ €48 YapcnK D),
from which the following results can be obtained:
v(A(A'MB)B') =0, VAA’MAA‘ =0,
Vs Mp,? =4V ,5cpK P =W, defining W,p.

Note that we can also write V,, My,
= — 1V, Vs K €p. and proceed in a similar manner as
before to obtain the additional result

VA(A'MAB') = —'%WA’B’C’D'EC'D'
= —W,p, defining W, . (2.18)

Now since (by reducing to symmetric spinors) we can write
forany 75,5,

(2.12)

(2.16)

(2.17)

_ 1 K’
TABA ‘B = T(AB)(A gy +3€4:8 T(AB)K’

+%EABTKK(A'B') +%EAB€A'B’TKKK'K’ (2.19)
it follows that
Ve Mpp =€, Wyp —%GABWA'B'- (2.20)

We also note in passing that V ;. M. is a skew-symmetric
tensor, i. e., M, satisfies

V.M, =0, 2.21)
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i.e., M, is a Killing vector.
Returning to the operator @, ..., we can now write

QA’C’ = %EA’B'[VAB”VAC’ ]

+ 3K P [Vap Vi 1 + Wacrs (2.22)
from which its action on a spinor ¢ is as follows:
Qicd = %K'A’Blffi AEB'C'C'M'¢M’
S OO ORI
+ W, cop e KEM G = 0. (2.23)
Thus
Ny V¢S =V Lyc ¢ (2.24)

If we consider only the neutrino equation V4*'¢, =0
for the case in which m, = 0 (massless spin-{), then the sep-
aration constant A > stems from the eigenvalue equation

LHA'NAA'¢A = 2/2)¢B‘ (2.25)

lil. THE MAXWELL EQUATIONS

For the case of the Maxwell equations corresponding to
mass-zero spin-1 the characterization of separation param-
eters in terms of the components of the Killing—Yano tensor
can also be achieved. Maxwell’s equations are commonly
formulated in terms of the skew-symmetric energy momen-
tum tensor F,, zp., which satisfies

Vi Fppce + Voo Fagng + Vg Fecus =0,
v IFAA‘BB’ =0, FAA'BB‘ + FBB'AA' =0.

As with the case of Killing—Yano tensor, F,,.55- can be
realized via the symmetric spinors ¢,5, ¢,.5 according to

Fis85 = €508 + €an Bap- (3.2)
In terms of these symmetric spinors, Maxwell’s equations
have the form

V4 bap =0, (3.32)
V,% b5 =0. (3.3b)

In Ref. 4 Chandrasekhar has obtained explicit solutions for
these equations: viz.

(D —2p)po, — (8% + 7 — 2a) oo = 0,
(D —p)gy, — (6* +2m)dy, =0,

(3.1

(3.4)
(6 —27)¢o) — (A + 1 —27) oo =0,
(6—7+28);, — (A +2u)dy, =0.
From the crucial observation that
P8 —27)(D—2p) = (D—20)p(5 —27), (3.5)

Teukolsky' deduced that if ¢o, = y0e’™ * ™%, then the func-
tion 9, satisfies

[AD, D + Lo L\ — 2igp )t = 0. (3.6)

This function admits a separable solution ¥, = RS,, where
the separation equations are

(AD D[ —2ior—A)R, =0,

(3.7)
(LS +2a0cos0 +4)S,=0.
If Egs. (3.4) are analyzed further and we write
Kalnins, Millgr, Jr., and Williams 2362



¢“ — (2(5*)2)—- 1¢1 leiar + im¢’
we find that the function ¢,, satisfies

[ADG Do+ LoL " + 2i0p)¥, =0, (3.8)
which admits a separable solution ¥,, = R_,S_, with the
separation equations

[AD G Do+ 2ior+ A JR_, =0,

[LoL " —2a0cosB—1]5_,=0.
Equations (3.7) and (3.9) were first derived by Teukolsky.'
The functions R _ ,, S, are called Teukolsky functions by
Chandrasekhar. If instead of R , ; we choose the function
P_,=R_,, P_,=AR_,, then the functions exhibit inter-
esting properties, which are summarized in the Appendix.
Chandrasekhar proceeded further and showed that ¢,, can
be written in the form

$o1 = (AWN2B*E) DL, — (1/p*)

X (L +iasin D) }P_ .S,y

(3.9)

3.10
(3.10)

[(M=p/2)A+p—y+ (1 =2p)y* — pu*)}D + (1 —p)p*)

where € is asin (Al).

We now seek the invariant characterization of the pa-
rameters A and % . To determine this we draw on the results
of Cohen and Kegeles,'> who showed how to obtain solu-
tions of (3.3) via the use of a Debye potential P*'Y" and a
gauge degree of freedom G}/ If these functions satisfy

VAM'Y L, PNV = gaM'G NO (3.11)
then
bap = v(AW’vB)X'? e 2V(AW'GB) v (3.12)

is a solution of (3.3). More specifically, if one chooses
G,¥ = —-U, P*", where

— % — i —_ =
U =p*i» Uip =7%, Uy = — 7%, Uy = —pu*,

then P*'% satisfies the decoupled equation

— (1 =p/2)6+B—7+ (1 =2p)a* — pr*)(6* + 2(1 —p)B* + (1 —p)7*)
—@P/2)*+7m—a+3-2p)B*+ 2—p)r*)6+2(1 —pla* — (p — 1)7*)

+ /DD —p+ Q2 —pp*HA+2(1 —p)y* — (p— Du*))P*" =0,

where p is the number of “ones” appearing in the indices of
y 2K

The choice of G} made above is particularly interest-
ing since it yields three equivalent representations for the
same function, viz.

(l) p= 0, ?0'0‘ =P lsleiaz+ im¢:
$oo = DD P,

bor = (IN2P*) [ DL, — (1/p*) (3.14)
X (&L + iasin 82 ) 1P°°,
= [1/2(,3*)2]3031?0'0"
(i)p=2, P'V=(p)’A"'P,,S_,eo+m
boo =L L P,
b= — (AP [ DL — (1/p%) (3.15)

X(LF +iasin 0D )P,
¢, =026 1D D P
From the identities given in the Appendix it is straightfor-
ward to establish that (3.14) and (3.15) are representations

of the same functions ¢ 5.
(iii) p = 1; in this case P°" satisfies

o5 1) r 2o o 228
P P p
A(#0 B Lpor g
p /p _
An examination of this equation shows that P! satisfies the
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(3.13)

'same equation as pdo. - Hence a solution may be taken to be

PV = (1/\2%)[D oL — (V/p) (Lt —iasin6D,)]
XP_\S_,eo+ime

With this choice the components of ¢ ;5 can be written as

o= (2/P) DL P,

¢01=_—21[A(°@1—‘_2;)-@o+ +A(gl+ —_i)@o
4p p p

_a sin 9)$o]
P (3.16)
" (yr ia sin 0) P ]ﬁm,’
F;

é1 = (AN2*) D" L PO
Again, using the identities in the Appendix it can be verified
that expression (3.16) for ¢,, is identical to those given
whenp =0o0r2.
These representations (and the corresponding ones for
& 4.5 ) are invaluable for the proof of our principal result.
Theorem: If the functions ¢, 5 are the solutions of
V4 ,.¢,.5 = 0as represented by, say, (3.14), then the param-
eters A and ¥ are intrinsically defined via the relations

C*, 5 Pan
= (KA(A'CC'K BB') DD,VCC’ Vop:
+ 4MA(A’KBB‘) PPV pp + ZMA(A'MBB’) )ban
=1€d, 5, (3.17)

+ (.fr
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A(AB¢C)B = (KAA'EE'VEE' - MAAI)
X (KBA'DD,VDD' + 2MBA' )¢ac

=(A/2)$ 4. (3.18)

The proof of relations (3.17) and (3.18) is (in princi-
ple) straightforward. The use of the algebraic computing
language MACSYMA has been particularly useful in this re-

a’ cos® OA (D D + D D)p*bro—
40°p*
"Ma? cos® ¢
4(p*)°>

4p’p*
iar cos 8(p* + 5p)
4p’p* (

10—

is nontrivial.
It can also be verified that the following holds.
(i) If ¢,5 is a solution of (3.3a), then so is

¢;B = A(A C¢B)c-
In fact,
VCC'A(CA¢B)A
= [ABAGA'Cl — (K Vg — M )M,
+ MK PPV +2M 1)
—2Mp M AV KA PP M, 1V
(3.20)
(ii) If ¢,5 is a solution of (3.3b), then
é4s =C*"? ,5d,.5 is asolution of (3.3a). Moreover,
$cp = CC’D A’B'¢A’B'
is a solution of (3.3b) if ¢ .. is a solution as well.
(iii) If ¢ .5 is a solution of (3.3a) then
ACFCFDKL¢KL + ADFCFCKL¢KL
= CCDAB [AA E¢EB + ABE¢EA ]
The operator C4,?" is essentially the operator introduced by
Torres del Castillo."
We take the opportunity here to give a more complete

discussion of the vector potential 4. which gives rise to the
corresponding F, 4. 55

ABHA'B’ —
’ C AB¢A’B' _(C‘C’D‘

(3.21)

Asis well known, the choice of vector potential is not unique.
A derivative of a gauge function can always be added accord-
ing to Acc- »Acc + Voo ¢ As in Ref. 11, we choose the
gauge in which the components A... are divergenceless;
then these functions satisfy

Odce = (VBB Vpp )Ace: =0, V2% A, =0. (3.22)
There are two independent solutions for the above equation

which correspond to the same F,,.pp.. These solutions are
the analogs of electric and magnetic multipoles,'*

Aoy = [P+1(«=2’)1S+1 —ZLrS_na

Fecgg =Vec Apg — VBB’ACC"

1 ] eiat + im¢’

Ay =[P (LTS — f,S+1)(2p2)"l]ei”’+i"’¢,
Agy = — (DG P+ @oP—l)S+1(\/§l_7)-leiot+im¢’
2364 J. Math. Phys., Vol. 30, No. 10, October 1989
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spect. For relations (3.17) the given result can simply be
verified using identities (A4) of the Appendix.

Relation (3.18) is somewhat more difficult. For the
cases when A4 = C = Oor 1 the result is relatively straightfor-
ward to establish. However, the result when 4 =0, C=1
requires extensive computation. In particular, the verifica-
tion of the identity

(Z£\L5 LT Lo)p*dio

iasin @ A
b0 + Z(ﬁr:‘) ¢11=7¢01

iasin 6

267 (3.19)

Ay = (D P+ DoP_)S_ (V2p*) ~'e™ + 4. (3.23a)
Ao = [P, (iacos 0.L" + iasin §)S_,A~"]e+m9,
A, = [P_,(iacos 6.7 + iasin 6)S, (2p?) ']+ ™9,
Aoy = — (rDy— 1)P_1S+le""‘+"'"¢’

Ay = — (rD —DP,S_ e, (3.23b)

Indeed, the (3.23a) corresponds to electric multipoles and
(3.23b) corresponds to magnetic multipoles. In establishing
(3.23a) use was made of the identity

(L, —iasin0D; )P, ,S,,
+ (L —iasin0Z)P_ S, ]
= iop[p* D oL\ — (&1 + ia 0D ) 1P_ S, 1.

It should be noted that the method of Cohen and Ke-
geles'? also gives expressions for the vector potential. More
specifically, the vector

Acer = (Ve PE . —2G . ) + complex conjugate

is such that A ... is a solution of the Maxwell equations.
However, the choice of functions P*'Y" and G " given pre-
viously does not lead to solutions in the divergence-free
gauge.

IV. CONCLUSION

In this paper we have explicitly shown how the separa-
tion parameters that occur for spin-s =0, 1, 1 equations can
be intrinsically characterized in terms of covariant operators
whose coefficients can be written in terms of the Killing—
Yano tensor and its covariant derivatives. In Minkowski
space we subsequently show that these characterizations and
their natural generalizations hold true for any s. There are
well-known difficulties with the generalizations of equations
of type (3.3).'% In this respect it is our intention to examine
the nature of the intrinsic operator characterization of the
functions 4 .. and their generalizations for higher spin. All
these results provide a nontrivial example of solutions to
spin-s equations. Ideally, a suitable theory of such solutions
to this type of equation would enable us to derive the exis-
tence of such solutions from intrinsic properties only.
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APPENDIX: SUMMARY OF THE CHANDRASEKHAR?
RESULTS

Chandrasekhar,* in his treatment of electromagnetic
waves in Kerr geometry, has thoroughly developed the prop-
erties of the Teukolsky' functions. We summarize his results
in the following theorems.

Theorem Al: For a suitable choice of the relative norma-
lization of the functions P ; it is possible to arrange that

_J

D P, = (—i/2K)[(A + 2ior)P,, — € P_,],

LrS_ 1 =(=120)[ (A —2accos 0)S_, + €S, 1],

DP_, = (i/2K) [(A — 2ior)P_, — € P, ],
LS =020 [(A+2a0c0o88)S, + €S_,].

ADDP_, =€P,,, MDGDFP,,=%P_,,

(A1)
where
€2 =A%~ 4(a%0* + amo).

Theorem A2: If the functions §,, are normalized to
unity,* then it is possible to arrange that

Lol S =FS_,, L& LIS =%S,., (A2)

with € as in Theorem Al.

Corollary: The derivatives of the functions P, and
S, can again be expressed as combinations of the same
functions:

(A3)

In addition to identities (A3) the following relations are instrumental in the establishment of (3.17):
D& Lq =(E/0) ¢+ Lo (1/p*) [ — ¥, + iasin 8(1/A) ],

DL oy = C by — L o(1/p*) (¥, + ia sin O¢y),

FLFEL o =€ + (/L —iasin 0Dy, — L (1/p*) (¢, + ia sin 6¢,),
AD D= — € — (1/p)(L [ —iasin 0D ,)vp, — D o(1/p*) (A, — ia sin 64,),

AD Doy = — €+ (1/p) (L, —iasin 0D ;" YAy, — Do (A/p*) (¥, + ia sin ),

(A4)

L\ L =€, — (1/p)L, —iasin 0D ; YAy, + L (1/p*) (AY, — ia sin 6y,),

AD L o= — Ch + (1/p) (L —iasin 6D 5 ) Ay,

DL Fihy=C, + (1/p) (L[ —iasin 0D ),

where

'/’0=2¢oo’ 'ﬁ:ﬁﬁ*ﬁbon 1/’2=2(F_’*)2¢11~
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It is here shown that the chiral anomaly is related to the topological properties of a fermion.
The quantization procedure of a relativistic particle requires that the particle be an extended
one, and to quantize a Fermi field, it is necessary to introduce an anisotropic feature in the
internal space of the particle so that it gives rise to two internal helicities corresponding to a
particle and an antiparticle. This specific quantum geometry of a Dirac particle gives rise to the
solitonic feature as envisaged by Skyrme and the Skyrme term appears as an effect of
quantization. When in the Lagrangian formulation the effect of this topological property is
taken into account, it is found that the anomaly vanishes.

1. INTRODUCTION

In recent times, the old idea of the topological origin of
the baryon number proposed by Skyrme' and Finkelstein
and Rubinstein® has been revived. These authors put for-
ward the idea that conserved quantum numbers arise as a
consequence of the topological properties and that particles
that carry conserved quantum numbers are built up from
classical fields of nontrivial topology. In this picture baryons
appear as solitons, commonly known as skyrmions. In a re-
cent paper’ it has been shown that the Skyrme term, which is
necessary for the stability of a soliton, may appear as a conse-
quence of the anisotropic feature of the internal space-time,
where we have assumed that there is a fixed axis correspond-
ing to a “direction vector” and this property of internal
space-time helps us to have a consistent quantization of a
Fermi field. In this scheme all fermions appear as solitons
and the Skyrme term may be considered as an effect of quan-
tization.

It may be added that Sternberg* has studied in detail the
operation of charge conjugation and has argued that geomet-
rically charged conjugation is induced by the Hodge star
operator acting on a twistor space. It has been pointed out
elsewhere® that the geometrical formulation of conformal
inversion, which is induced by a charge conjugation acting
on a spinor, in effect, corresponds to the inversion of the
internal helicity for a spinor. This internal helicity may be
taken to correspond to a fixed direction vector in the internal
space of a massive spinor or a direction vector (vortex line)
attached to the space-time point of a massless or massive
spinor in a composite system of hadrons. The Hodge star
operation in twistor space eventually inverts the orientation
of the direction vector. In view of this, the internal helicity
may be taken to represent the fermion number and can be
taken to be of topological origin.

Jackiw® first pointed out the significance of topological
effects in gauge field theories and its relationship with anom-
alies in quantum field theory. In a very elegant way he has
shown how anomalies arise due to quantum mechanical
symmetry breaking. Alvarez-Gaume and Ginsparg’ studied
non-Abelian anomalies from topological considerations. In
this paper we shall show that the topological aspect of the
stochastic quantization procedure of a Fermi field, where a
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direction vector is attached to a space-time point corre-
sponding to the anisotropic feature of the internal space giv-
ing rise to the fermion number, helps us to find out the origin
of the chiral anomaly in quantum field theory. This anomaly
is avoided when we take into account this quantum geome-
try to study interactions involving gauge fields.

Il. CONFORMAL GEOMETRY, TWISTOR SPACE, AND
TOPOLOGICAL ASPECTS OF A FERMION

It is well known that the wave function of the form
¥(X,,Y,), where Y, is an attached vector that extends the
Lorentz group SO(3,1) to the de Sitter group SO(4,1). Now
in the stochastic quantization procedure for a fermion, it has
been shown that a massive fermion is characterized by a
fixed direction vector in the internal space that helps us to
derive the fermionic propagator in Minkowski space from
the two-point correlation of the stochastic fields
¢(Z,) =@(X,) +ip(Y,), where the coordinate is given
by Z, = X, +iY, in a complex manifold.® This indicates
that the internal space of a massive fermion is disconnected
in nature. This disconnectedness of the internal space gives
rise to an internal helicity of the particle that corresponds to
the fermion number. This follows from the fact that since the
group structure is now given by SO(4,1), the irreducible
representations of SO(4), the maximal compact subgroup of
SO(4,1), are characterized by two numbers (k,n), where k&
is an integer or half-integer and 7 is a natural number. These
two numbers are related to the eigenvalues of the Casimir
operators by

1SS ,=k*+ (k| +n)*—1,
éeaﬂyasaﬁsya zk($k\ +n),

where S5, a,8 = 1,2,3,4, are the generators of the group.
Barut and Bohm® have shown that the representations of
SO(4,1) givenby S = }and k = + }canbefully extended to
two inequivalent representations of the conformal group
SO(4,2). In fact these values actually correspond to the
eigenvalues of the operator K = 1(a*a — b * b) in the oscil-
lator representation of the SO(3), X SO(3), basis of SO(4).
The value of k as well as its signature is an SO(4,2) invariant.
The representation (s = 0, kK = 0) in the conformal interpre-
tation of SO(4,2) describes a massless spin-0 particle. The

(D
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representation s = }, Kk = + ] describes the helicity state of a
massless spinor. Now for a massive particle, the conformal
invariance breaks down and k = + } cannot be represented
as helicity states in the conventional sense, but represents an
“internal helicity” or orientation so that the mutually oppo-
site orientations are equivalent to particle and antiparticle
states.

Since these representations can be fully extended to the
conformal group SO(4,2), we can now deal with eight-com-
ponent conformal spinors. The simplest conformally covar-
iant spinor field equation postulated as an O(4,2) covariant
equation in a pseudo-Euclidean manifold M *? is of the form

(ra aa + m)é(m =0, ¢=012356, 2)
Na

where the elements of the Clifford algebra I', are the basis
unit vectors of M *?, m is a constant matrix, and £(7) is an
eight-component spinor field. Cartan'® has shown that in the
fundamental representation where the unit vectors are rep-
resented by 8 X 8 matrices of the form

0 =
r,= , 3
A 3)
the conformal spinors & are of the form
4
= ) 4
=g,

where ¢, and ¢, are Cartan semispinors. The characteristic
property of these spinors is that for any reflection ¢, and ¢,
interchange. In this basis, Eq. (2) becomes equivalent to the
coupled equations in the Minkowski space

idp, = mé,,
idd, = mg,.
However it is also possible to obtain from Eq. (2) a pair of

standard Dirac equations in Minkowski space. To this end,
we have to work with a unitary transformation C, given by

(3)

L R
= , 6
C=lp | (6)
where L = 1(1 + 75), R = 1(1 — ;) with
_‘1 0
=lo -1l
With this, we have
ce=go=|" %
¥,
and
_ Ve O
C, 1l"#C,zl"”D: 0 n.

This suggests that Eq. (2) is equivalent in Minkowski space
to the pair of standard Dirac equations

(149 + m)"/’] =0,
(i@ +m)y,=0.
It is to be noted that space or time reflection interchanges ¢,
and @, and transforms ¢, and ¥, into themselves; conformal

reflection interchanges both @ <@, and ¥,«<¢,. It should
be added that ¢/, and ¥, may represent physical free massive

(8)
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fermions whereas @, and ¢, do not unless they are massless
since they obey coupled equations. However, in the case
m#£0, if we define ¢, and @, such that they represent two
different “internal helicity” states given by k= +} and
~14, ie, ¢y =9¥(k=1) and @, = (k= — 1), Eqgs. (5)
can be reduced to a single equation with two internal degrees
of freedom when the linear combination of ¥(k = + 1) and
(k= — 1) represents an eigenstate. Now, to retain the
four-component nature of the spinor in Minkowski space,
these two internal degrees of freedom should be associated
with particle-antiparticle states. Evidently this property of
@, and @, satisfies the criteria that space, time, or conformal
reflection transforms one into the other. This follows from
the facts that (a) the parity operator changes the sign of k;
(b) the time reversal operator T changes the orientation of
the internal helicity and hence changes the sign of k; (c¢) as
@, and @, are related here to particle-antiparticle states, con-
formal reflection changes one into the other. Thus each
member of the doublet of massive spinors having the internal
helicity k = + L and — J, corresponding to particle and an-
tiparticle states, represents a Cartan semispinor.

To have a geometrical interpretation of the doublet of
Cartan semispinors it may be noted that it is possible to re-
gard the components of the semispinor as the homogeneous
coordinates of a point in three-dimensional projective space
whereas those of another semispinor are regarded as the ho-
mogeneous coordinates of a planein P* (Ref. 11). Moreover,
a point-plane correspondence exists in P that reflects the
conjugation relation of semispinors. On the other hand, ac-
cording to the analysis of Penrose,'? there also exists a 1-1
correspondence between twistors of valence () ($) and a
point plane in P>. Thus the semispinors into which an eight-
component spinor splits in the Cartan basis are identical to
Penrose twistors. This reflects the analysis of Sternberg* that
charge conjugation corresponds to Hodgestar operation in
twistor space.

This analysis along with the fact that the anticommuta-
tion relation of the eight-component conformal spinors gives
rise to supersymmetry algebra' suggests that we can intro-
duce a spinor structure at each space-time point so that we
have additional degrees of freedom to our space-time mani-
fold E parametrized by (x#,B,a), where 8 = (Z;) is a two-
component spinor. This effectively corresponds to a super-
space. Indeed, the additional degrees of freedom 6, @ in the
space-time structure may be related here with the internal
helicity given by the values k = + land — }in the represen-
tation space of SO(4) = SO(3), ® SO(3),. To this end, we
choose the chiral coordinates in the superspace as

Z4=xt+ (i/2)A40% (a=12), (9)
where we identify the coordinate in the complex manifold
Z,=X,+1iY, with Y*=1414£6° We now replace the
chiral coordinates by the matrices

ZM =X 4 (i/2)A210°, (10)
where A (a = 1,2)eSL(2,c). With these relations the
twistor equation is now modified as

Z,Z+ A 0T, =0, (11)

where 7, (. ) is the spinorial variable corresponding to the
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four-momentum variable p¥, the conjugate of X *, and is giv-
en by in the matrix representation

p =7t (12)
and

Ze=(0"m,), Z,=(Fu0"), (13)
with

ot = iX + (i/2)A 54 0%m,.. (14)
Equation (11) now involves the helicity operator

S= —1%%" 07 m,.. (15)

It may be noted that in the complex manifold, we have taken
the matrix representation of P,, the conjugate of X,, in the
complex coordinate Z, = X, + iY,,asp™* = #'7* imply-
ing Pi = 0 and so the particle will attain its mass due to the
nonvanishing characteristic of the quantity Y. In the null
plane where Y2 = 0, we can write the chiral coordinates as
follows:

ZA =X 4 (i/2)667, (16)
where the coordinate Y* is replaced by Y44 =4646*". In
this case, the helicity operator ig given by

S= —2Y"7 1, = — 00 7,7, =€, (17)

with € =i@*'m,., €= —i@*7,. In this case, following
Shirafuji'* we can apply the canonical quantization proce-
dure where i Z, and / € are canonically conjugate to Z “ and ¢,
respectively, and we can postulate the canonical commuta-
tion and anticommutation relations given by

[Zaszf,’] =8aﬁ’ (18)

{€&} =6 (19)
Symmetrizing Z, and Z ¢ and antisymmetrizing € and € we
require that the state vectors should satisfy

(Z,,2} + [EeD ) = 0. (20)
From this we find

(S+4ee— DY) =0, 2D
where

S=HZ,z. (22)
Now defining the operators

Si=2z% Si=Ze€ (23)
we have the commutation relations

[$:57] = —145% (24)

[S.S.] =450,

which indicates that S/ and S ¢ are the helicity raising and
lowering operators, respectively. The state with the internal
helicity + } is the vacuum state of the fermion operator

€S = +§) =0. (25
Similarly, the state with the internal helicity — 1 is the vacu-
um state of the fermion operator

gs= —3)=0. (26)

In case of a massive spinor, we can define a negative
definite plane D — where for the coordinate Z =X 4 iY, Y
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belongs to the interior of the forward light cone (¥>0) and
as such represents the upper half-plane with the condition
det Y>0 and § Tr Y'> 0. The positive definite plane D * is
given by the set of all coordinates Z with .Y in the interior of
the backward light cone (Y <0). The map Z—Z * sends a
negative definite plane to a positive definite plane. The space
M of null space (det ¥ = 0) is the Shilov boundary so that a
function holomorphic in D ~(D *) is determined by its
boundary values. Thus if we consider that any function
@(Z) = p(X) + i$(Y) is holomorphic in the whole do-
main, we note that the helicity +  ( — 1) given by the oper-
ator i@ *r, ( — 6“7, ) in the null plane may be taken to be
the limiting value of the “internal helicity” in the upper
(lower) half-plane. This indicates that in the massive spinor
case, we can consider that the helicity given by

S= —A0°7,m, (27)
represents the internal helicity + } where we have Y>0.
Since the map Z— Z * transforms a negative definite plane to
a positive definite plane, we will have an opposite internal
helicity — { with the coordinate Z* = X, — Y, replaced
by the matrices Z4* = X" — (i/2)A2*'6a having
| Tr Y<O. In the null plane we will have the condition
Y*' =4 649" so that we can have the simultaneous exis-
tence of two helicities + } and — § corresponding to the spin
prajections on the z axis for a massless spinor. In this way, we
can relate the spinorial variables 6 and 8 in the superspace
given by the coordinate (X, ,6,0) with the internal helicity of
a massive spinor. Evidently, this corresponds to the values
k= +}4 and —} in the representation space of
SO(4) = SO(3),®850(3), in the de Sitter space.

Now we want to point out that when the extension of a
particle is given by the coordinate (X, #,9,4_9), we can have a
gauge field theoretic description of this extension when the
corresponding gauge fields have the group structure
SL(2,c). Indeed, the metric tensor g (X,6,6)

=g, (x)846* can be taken to be described by the SL(2,¢)
gauge fields in Minkowski space-time with the gauge field
strength tensor given by

F,=d,B,-3,B,+[B,5.] (28)

where B, is the matrix-valued potential and belongs to
SL(2,c) (Ref. 3). The asymptotic zero curvature condition
then implies F,,, = O so that we can write the non-Abelian
gauge field as

B,=U"'d,U, where UeSL(2,).
With the substitution, we note that the corresponding La-
grangian is given by

L=M*Tr(3,U'3,U) + Tr[4,UU *,3,UU *]?

(29)

where M is a suitable constant having the dimension of mass.

Thus we find that the quantization of a Fermi field con-
sidering an anisotropy in the internal space leading to an
internal helicity description corresponds to the realization of
a nonlinear sigma model—where the Skyrme term in the
Lagrangian (Lgyym. = Tr[d,UU *,3,UU *]?) automati-
cally arises for stabilizing the soliton. Thus in this picture,
fermions appear as solitons and the fermion number is found
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to have a topological origin. Indeed, for the Hermitian repre-
sentation, we can take the group manifold as SU(2) and this
leads to a mapping from the space three-sphere S* to the
group space S > [SU(2) = $3] and the corresponding wind-
ing number is given by

1

=—— | ds, e FTe[U'3,UU '3, UU" 3,U].
214 Js " [ g o]

(30)
Evidently g is a topological index and represents the fermion
number.

q

. TOPOLOGICAL ASPECTS OF A FERMION AND THE
CONSERVED CURRENT

The above analysis can be used to link up the topological
origin of fermion number with the internal helicity. Then the
wave function for a particle and an antiparticle is implicitly
represented as ¥(x,6) and 1/1(X,9), 6,0 indicating the inter-
nal helicity + {and — 4, respectively, and the metric tensor
is given by g,,, (X,6,6). That is, spinor structures are intro-
duced to each space-time point and we have a superspace.
This geometry effectively gives rise to the SL(2,c) gauge
fields (as the spinor-affine connection) having the field
strength

F,=d,B,—4d,B,+[B,.B,1],
where B, is the matrix-valued potential. In superspace a
given covariant tensor F,, does not have contravariant com-
ponents F*. Therefore, following Carmeli and Malin'> we
choose the simplest Lagrangian density which is invariant
under SL(2,c) transformations

a= —1Tr(ePF 4F,) (31)
where €7 is the completely antisymmetric tensor density
in four dimensions with €°'** = 1. Applying the usual proce-
dure of variational calculus, we get the field equations

35 (€*P°F,5) — [ Bs,€*P°F,5] = 0. (32)

Taking the infinitesimal generators of the group SL(2,¢) as

_[0 0] _[1 0] _[0 1] 1
gl_IO’gZ_O —1’g3—00’()

we can write

B,=b;g"=b,g,

F,=F,g=1,g (a=123).
Evidently in this space, these SL(2,c) gauge fields will ap-
pear as background fields.

Thus to describe a matter field in this geometry, the
Lagrangian will be modified by the introduction of this

SL(2,c) invariant Lagrangian density (31). Hence for a
massless spinor field we write for the Lagrangian

L= —JpD g~ Tr eF, F,,, (35)

where D, is the SL(2,c) gauge covariant derivatives defined
by

D,=4d,—igB

u?

(34)

where g is some coupling strength. It is to be observed that by
the introduction of the SL(2,c) gauge field Lagrangian in
(35), we are¢ effectively taking into account the effect of the
extension of the fermionic particle giving rise to the internal
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helicity in terms of the gauge fields.'® That is, writing the
space-time coordinate and the four-momentum variables as

0 =4, +i0,, ,
e (36)
P, =p, + b,

where g, (p, ) corresponds to the mean position (momen-
tum) relating to the external space-time and @, (P, ) corre-
sponds to the internal stochastic extension, we can write,
following Brooke and Prugovecki,'” the following represen-
tation of Q, /@ and P, /w, @ = #/Imc (I being a fundamen-
tal length) acting on functions defined in phase space:

w ap, a7
Lo
) aq, “y

where ¢, and ¢, are matrix-valued functions. Thus identify-
ing ¢, with the SL(2,c) gauge field B,, we note that this
spatial extension will give rise to a Lagrangian density given
by (31) in addition to the point-particle spinorial Lagran-
gian density g—ﬁy# d, ¢. Besides we can conceive of a coupling
with this backgroundfield with the spinor and this leads to
Eq. (35) for the effective Lagrangian of the spinorial matter
field.

From this, we can now construct a conserved current
corresponding to this Lagrangian and we get (neglecting the
coupling with the gauge field)

V=9r" + e, Xf s =i + 4. (38)
Indeed from the properties of SL(2,c) generators we find
from (32) that

(3,85 — b, Xf,5) =0.
This suggests that

% =€, Xf,5 = %9 1 . (39)
Then using the antisymmetric property of the Levi-Civita
tensor density €™ we get
d,i5=¢"%3,38,8,;=0.

#“

(40)

Now noting that for spinor field, the vector current density is
conserved, we finally have

d.§=3d,( +j5) =0. (41)
However, in the Lagrangian (35), if we split the Dirac mass-
less spinor in chiral forms and identify the internal helicity
(+14) ( —1) with left (right) chirality corresponding to 8
and @, we can write
'Z?’,;Dy'/’ = '7’?’,;‘9,4'/’ - lgl_p’}/szgazp

= {b?/,ua.ugﬁ - (lg/z){'r—,}R?/pB/]tsz - ‘ZRY#B;;bR
+ 9. BLY + Uiy B} (42)

Then the three SL(2,c) gauge field equations give rise to the
following three conservations laws,

aﬂ [%( - lg‘—bRY,u!bR) +J;1;] =O,

9, [4( _ig'_pLVu'ﬁL +igl7’R7’,;'/’R) +],24] =0, (43)
a# [%( - ig¢L7y¢L) +J;3; ] =0.
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These three equations represent a consistent set of equations
if we choose

o= =R/ G =il
which evidently guarantees the vector current conservation.
Then we can write

aﬂ ('ZRYﬂ¢R +];21) =0,

a[l (¢L7/,u.¢L _jl2‘ ) =0.
From these, we find

3, (WY, ¥s¥) = dujps = — 20,5 (45)
Thus the anomaly is expressed here in terms of the second
SL(2,c) component of the gauge field current jﬁ. However,
since in this formalism the chiral currents are modified by
the introduction of jﬁ, we note from Eq. (44) that the anom-
aly vanishes.

From these equations, two separately conserved charges
emerge, Viz.,

0. = [wtvnax— R

(44)

(46)
Oc = [wived’x+ [
The charge corresponding to the gauge field part is

q= fjé d’x= J €*da, F3, (ijk=123). (47)
surface

Visualizing F}, to be the magnetic fieldlike components for
the vector potential B2, we see that (i = 1,2,3) is actually
associated with the magnetic pole strength for the corre-
sponding field distribution.

The term €7 Tr F, 4 F,5 in the Lagrangian can be actu-
ally expressed as a four-divergence of the form d, (}*, where

W= — (1/16m")e Tr[} B, Fp, ~3(B.ByB,) ].
(48)

We recognize that the gauge field Lagrangian is related to
the Pontryagin density

P= — (1/167%) Tr*F, F** = 3, O (49)

and ¥ is the corresponding Chern—Simons secondary char-
acteristic class. The Pontryagin index

q=JPd4x (50)

is then a topological invariant. If we consider Euclidean
four-dimensional space-time, then the above integral may be
reduced to a three-surface integral where the three-surface is
topologically equivalent to S. Now it is noted that we must
have F,; =0 at all spatial and temporal infinity points so
that the action S = L d*x gives rise to a finite energy gauge
field configuration. Then the gauge potentials tend to a pure
gauge at large distances in all four directions, i.e., we have

B, -~ U™ '9,U. (51)

X, ~a

This then helps us to write
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1= %2 )5
XTe[UT'3,UU'3,UU"'9,U]. (52)

We observe that this is nothing but the fermion number as
discussed in the previous section. In four-dimensional space-
time, if we assume B, to go faster than 1/r, B, being zero at
negative infinity of the time coordinate but tends to a pure
gauge at positive infinity of the time coordinate, we can write

q=Jer°

From this, it appears that the axial vector current is now
modified as

=i +280, (54)
and though d,, /5, #0, we have 3,5, = 0. That means, when
the topological properties of a fermion related to the origin of
fermion number is taken into account, we are not confronted
with the chiral anomaly. The origin of the chiral anomaly is
thus found to be due to the naive form of the point particle
current without any topological structure, which turns out
to be essential for the quantization of a Fermi field.

IV. FERMIONS AND THE INTERACTION WITH AN
EXTERNAL ABELIAN GAUGE FIELD

The chiral description of the matter field in terms of the
spinorial variables 8,0 in the metric tensor g, (x,0,0) giving
rise to the SL(2,c) gauge field currents necessitates the in-
troduction of a disconnected gauge group for the external
Abelian field interacting with the matter field in a chiral
symmetric way. In the case where the external Abelian
gauge field is the electromagnetic field, the Lagrangian den-
sity is given by

L= —yy,D,¢— | Tr(e®®"*F 4F ;)
— L Tr(F, F*) + Tr(j,4%). (55)

Here D, is the SL(2,c) gauge covariant derivative and, con-
sidering the order of ¢ — B, coupling to be negligible com-
pared to the matter current electromagnetic field coupling,
we can replace it by d,,,

i‘aﬁ = aaBﬁ - aBBa + [Ba’BB]9 BQGSL(zyc)

and F,, =d,4,—3d,4,, 4, being the electromagnetic
gauge potential and j, is the matter current matrix given by

; _[%mk +Ji 0 ]
g 0 Yovu¥e —in !’

where ji is the second component of the SL(2,c) gauge field
current as discussed in the previous section. It is evident that
this matrix structure ofj, exhibiting the chiral form suggests
that for 4, we should take the disconnected gauge group
U,. X U,g = U,;x{1,d} where d is the orientation reversing
operation. Evidently in such an interaction the field strength
and current are not gauge invariant but only gauge covar-
iant, each changing sign under d. This is similar to the non-
Abelian theories where field strengths and currents are only
gauge covariant even under gauge transformations connect-
ed to the identity. The internal symmetry group here is O(2)
which is given by the relation

ds, e’

(53)

x'=a

(56)
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0(2) =S0(2) x{1,d} = U, x{1,d}, (57)

where d is the orientation reversing operator. Indeed, we can
take

A, = [A’;) * 4 0 ]

o

Kiskis'® has studied the interactions having disconnect-
ed gauge group. Following Kiskis, we can think of a large
system of observers each responsible for a small open region
U, of the connected space-time manifold M. Let us consider
that all the frames in U, have the same orientation. Physical-
ly this means that the space is simply connected and the
observer can give an unambiguous definition of positive
charge everywhere. This suggests that we can introduce the
connection (gauge field) in the Lagrangian

L'=LY+ L3, (59)
where i identifies quantities associated with the region
U,,L {? is the matter field Lagrangian, and L (" is the kinetic
energy term for the connection. The gauge symmetry of the
L " is given by

(58)

A-g7'(+A)g, (60)
with g a smooth map
g=U-0() (61)

which may lie in either component of O(2). A transforma-
tion that reverses the orientation at each point can be written
as

g =dg,
g, = U,-»S0(2), (62)
1 0
a=(; _J)
0 -1
This gives
A-gs (I —A)g,. (63)

We see that it is a combination of charge conjugation and
orientation preserving gauge rotation. Evidently in this for-
malism the chiral currents interact with the gauge field in a
disconnected form. Indeed, writing

4,, 0
“z[o A_]

"
we find the interaction term is given by
r%nm—ﬁmw ) 0 ](M)
0 (Pr¥u¥r +)A4u_ |
Evidently there is no term like 4, , 4, _ in the Lagrangian.
As Kiskis'® has discussed, in the overlap region
U, =UNU,

there are two observers studying the same physical system
where each observer has set up his own basis in the internal
symmetry space over U;. The relation between these bases is
a gauge transformation

where the map lies in either component of O(2). That is,

observers i and j may have opposite charge convention. If
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they have opposite convention about charge, they will have
opposite convention about field. In fact, if we designate a
priori what is a particle and what is an antiparticle, the left
and right directions can be determined by any parity violat-
ing interaction. On the other hand, if we designate what is
left and what is right the particle-antiparticle designation
remains fixed. Thus any parallel transport from a region U,
to U, of the manifold will be such that either the orientation
remains the same and the observer will see the same charge
or the orientation is opposite when by reversing the orienta-
tion of U; the observer will see the same charge. Thus any
path from any region U, to U, will be such that either this
will give the same orientation for U; or it is opposite when
reversing the orientation, the observer will identify a left-
handed or a right-handed particle.

V. DISCUSSION

We have shown above that the chiral anomaly is con-
nected with the topological properties of a fermion. Indeed,
the topological property of a fermion gives rise to the fer-
mion number which is always conserved and helps us to treat
fermions as solitons. The Skyrme term here arises just as an
effect of quantization of a fermion® and is related to the
quantum geometry of a relativistic particle. The relativistic
generalization of a quantum particle necessitates the particle
to be an extended one and to attain the fermionic property,
we need to introduce an anisotropic feature in the internal
space of the particle so that it gives rise to two internal helici-
ties corresponding to a particle and an antiparticle. This spe-
cific quantum geometry of a Dirac particle gives rise to the
solitonic feature as envisaged by Skyrme' as well as by Fin-
kelstein and Rubinstein.? When in the Lagrangian formula-
tion the effect of this topological property is taken into ac-
count, we find that the anomaly vanishes.

This analysis suggests that the origin of anomaly lies in
the fact that fermions are conventionally treated as localized
point particles devoid of any specific geometrical and topo-
logical feature. But when this topology is taken into account
anomaly vanishes implying that when we study quantum
mechanical symmetry breaking, we must take into account
the geometrical features involved in the quantization proce-
dure. That is, quantum mechanical effects have their origin
in quantum geometry and need to be studied in this perspec-
tive.
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New exact solutions are searched for on the basis of the method of separation of variables
proposed in earlier work by the present authors [J. Math. Phys. 30, 2132 (1989)]. The essence
of this method consists of constructing first-order matrix differential operators that define the
dependence of the Dirac bispinor on the related variables, but commutation of such operators
with the operator of the equation or between them is not assumed.The classical problems are
considered as possibilities, namely, electrons in the field of plane monochromatic
electromagnetic waves (Volkov’s problem) and electrons in the Coulomb field (hydrogen
atom). Then “plane” external electromagnetic fields are considered for which some new exact
solutions are obtained in terms of special functions. Four new exact solutions of the Dirac
equation in the fields with axial cylindrical symmetry are also shown, and lastly one “free”
solution with exotic geometry is demonstrated, namely, “free”” parabolic cylindrical spinor

waves.

1. INTRODUCTION

We have proved rigorous theorems about necessary and
sufficient conditions on the external vector fields that allow
us to have partial or complete separation of variables in the
Dirac equation in Ref. 1 (see Theorems 1-6 for Cartesian
coordinates and Theorems 7 and 8 for the general orthogo-
nal curvilinear coordinates).

Taking into account the conditions of complete separa-
tion of variables in the Dirac equation in Cartesian coordi-
nates, we can see that all the possible potentials that allow
such a separation contain additively in the components the
dependences on the corresponding variables, i.e.,

A, =4, (x*) + B, (x"x"x"), k#£m#En#£L

Therefore it is possible to simplify according to

(1.1)

v=y exp[iEka(xk)dxk], k=ijmn (1.2)

As a result of transformation (1.2), the bispinor W satisfies
the Dirac equation in the form

Y3, —id) +v'(8;, — id)) +y(d,, —id,,)
+ (8, —id,) + me}¥ =0, (1.3)

where the Lorentz condition on the vector potential is ful-
filled automatically:

3,A™=0 (1.4)

(summation on m takes place). Here and thereafter we use
the nomenclature of Ref. 1.

Simplifications analogous to (1.2) are possible also in
the case of curvilinear coordinates.

Note that the conditions of separation of variables in the
Dirac equation according to Ref. 1 require the components
of the vector potential to be sums of functions of separable
variables. However, the physical fields may have structure
other than as sums of functions of separable variables; for

* Permanent address: Centro de Fisica, Instituto Venezolano de Investiga-
ciones Cientificas (IVIC), Apdo 21817, Caracas 1020-A, Venezuela.
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example, as a field of a plane monochromatic electromagnet-
ic wave:

A, = Ae“E=0, (1.5)

Here the wave propagates along the Z axis with transversal
polarization. In such cases we can often reduce the Dirac
equation to the form (1.3) by means of transition to the new
variables. However, such transition is connected with a mix-
ing of space and time variables and as a result the matrices
multiplying the corresponding derivatives may not have
definite Hermitian form and, moreover, may be degenerate.
In the case (1.5) such a situation takes place for the well
known variables

u=z—t v=z+1 (1.6)

The degenerate matrices must be handled with special care.
In other words, after reducing the Dirac equation to the
form (1.3) we can use the method of separation of variables
proposed in Ref. 1.

In the case (1.5) the Dirac equation takes the form

{10, — iAW) + 73, + 78, + 73, + moh¥ =0,
(1.7)

where

F=r -t PP
Here the matrices ¥* and y” are degenerate.
Separating successively x,y, and vaccording to Theorem
3 of Ref. 1 we have

R,=—id, K,=—ia, K,=—id, (19
R, =¥k, +Aw) + Pk, — i 3, + 1k, — ims,

(1.8)

(1.10)
Choosing the representation
0 o I 0
r=Goo) 7=l _7)
g 0/ 00 -1 (1.11)
g ] o
r=G o) 7=l0x §)
we obtain the exact solution
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v ik
¥ = (W‘), ¥, =i—’—;:-’—”3‘l'., v, = (z‘), (1.12)
2 2
k2=k2 2,
Y +m°, (1.13)
@ = exp[ _%f{(k" + Ay + kz}du],
(1.14)

——— _ l‘
P2= ok

{k — ik, + A(u))},.
This is the well-known Volkov solution.>?
Our nomenclature, however, is closer to Refs. 4 and 5.
Taking the Dirac equation in spherical coordinates in
the presence of a Coulomb field in a diagonal gauge tetrad we
have

[r‘ 3, +2La, +—’.;—<9¢,
r rsin @
+y‘a,—iy‘—“—+m0]\p=o. (1.15)
r

According to Theorem 8 of Ref. 1, separating ¢, 6, and ¢
successively we have

. [ .
= —id, K,= —1id,,

6= — ‘[7’2 de +£§m]y'y",

=l ira Ky (B L) — im.

ak

>

(1.16)

e

Here m is an eigenvalug of the operator K, and k is an eigen-
value of the operator K.
Taking the matrices 7' and 7* in the form

=€ D - 9

we can have from (1.16) the standard radial equations of a
hydrogenlike atom

R
or r r 7 (gv)
N

ar r r

(1.17)

(1.18)

Gathering the operators X » and K ¢ after the unitary trans-
formation that is the inverse of that of (3.25) of Ref. 1, we
obtain the operator (expressed in the Cartesian gauge)

= d s—1 d 7’4}
K, = _— sin”!' 68—+ 221 (1.19)
6@ {7’17’4?’2 [90 + V1\VaVs i 9p i
connected in the standard way with the momentum of Dir-
ac’s particle:

~s A 1 2 1 Az 1 A 2

Here L is the orbital momentum operator and }o is the spin
momentum.

Thus we have classical results for the classical problems
in our scheme of separation of variables proposed in Ref. 1.
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Il. SOLUTIONS OF THE DIRAC EQUATION IN
CARTESIAN COORDINATES

We assume that when necessary the transformation
(1.2) is fulfilled and, according to Theorem 6 of Ref. 1, the
components of the vector potential satisfying the Lorentz
condition and allowing the complete separation of variables
take the form

Ai = 0’ A.I =Aj(xi)’ Am =O’ An =An (xm)’ (2-1)

or the trivial case when the components of vector potential
depend only on one variable. The separation is most simple if
first we separate the variables in pairs. Then instead of (1.3)
we have

(V' 0+ P(E — 4 )PV = kY, (2.2)

{r'di + 77 (8, — idy) + mo}ylyzq} = ik¥, (2.3)
where

¥ =2w =41+ )0+ ¢V (2.4)

In contrast to Ref. 1 throughout the paper, we take the
fourth variable to be imaginary.
In the standard representation of the Dirac matrices,

0 a") (1 O)
= , k=123, =1
v (0"‘ 0 r=iy _;
(here and after 4* is anti-Hermitian), instead of (2.2) and
(2.3) we can write

(2.5)

ké, ={id, + (E—A)}E,, 2.6)
{id; — (E—A4)}, = — k&, 2.7
ilmy—Kk)A+ (-0, + (ky + 4,))B=0, 2.3)
i(mg+ k)B + (0, + (k; + 4,))4 =0, (2.9)

where k is an eigenvalue of the operators of Egs. (2.2) and
(2.3).
Then we have for the structure of a bispinor

A5, —§2)

7 B(§1+§2)

V= 2.10
A+ &) (219
'“iB(gl_fz)

Note that the potentials

A (xR, 1#k, A,(X), i#], 2.11)

in our nomenclature correspond to the parallel electric and
magnetic fields (£ ||H), respectively.

Let us consider situations where Egs. (2.6)-(2.9) allow
exact solutions in terms of special functions.

A.A;=cz, c=const
After introducing a new variable y,
y=E~—cz (2.12)

(here E is the energy of the state), Egs. (2.6) and (2.7) take
the form

—kéi+ (—icd, + )6, =0, (2.13)
— (icd, + )&, + k&, =0. (2.14)
After the change,

x =2/c(E — cz) =+2/cy, (2.15)
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and from (2.13) and (2.14) we have the equation of the
parabolic cylinder,

{32, — (k> +ic)/2¢ + }x?}£, =0, (2.16)

for which exact solutions in terms of degenerate hypergeo-
metric functions are well known:

& =ae” ¥ *M( — ia/2 + L,4,ix*/2)
+ byxe = XM — ia/2 + 3,3,ix*/2). (2.17)

Noting that Eqs. (2.13) and (2.14) are mutually conjugated
we have

£% = a,e™*"M(ia/2 + L}, — ix*/2)

+ byxe™"*M(ia/2 + 3,3, — ix*/2). (2.18)
Taking into account the relation
M(afx) =e(B— aB, —x), (2.19)
instead of (2.18) we can write
E¥ =ate ¥*M(ia/2 + L}, + ix*/2)
+ b¥xe” **M(ia/2 + 33, + ix*/2). (2.20)

Substituting (2.17) and (2.20) in (2.13) we find the
connections between coefficients to be

a,=i2c/k, b,=a* b,=ik/\J2¢c, a,=b*,
(2.21)

The determination of the functions 4 and B is trivial.
Thus the problem is solved exactly.

B. A>=cx, c=const

Introducing the variable

z=k, +cx, (2.22)
instead of Egs. (2.8) and (2.9) we have

i(my—k)A+(—cd,+2)B=0, (2.23)

ilmy+KkYB+ (cd,+2)A=0. (2.24)
As a result of the substitution

z=1c/2p, (2.25)

we again have the equations of the parabolic cylinder,

{02, — 312+ (k> —m} +¢)/2c}4 =0, (2.26)
{02, —1y*+ (k> —m} —¢)/2c}B =0, (2.27)
for which exact solutions are known:
A=ae ""*M(a/2 + L1y°/2)
+ aye Y *M(a/2 + 34,5°/2), (2.28)
}
é—] =e—iBﬂ/7l{aw_”‘/nM(_i_]cz__E+ 1’ _Lkz.+L
7 7 7

Ey=e" iﬁu/n{blﬂ""/"M (l_k_’- - g, __Zik‘
7 7 7
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+L,2Lff‘-)+bz/t

B= ble_y:/4M(a/2 + %9%ay2/2)

+ byye ~Y*M(a/2 + §3,5°/2). (2.29)

If
(k2—mi)/4c= —n/2, n=123,.., (2.30)

the degenerate hypergeometric functions reduce to the Her-
mite polynomials, and the quantization of energy takes
place:

E=(m2+k?+2nc)'2 (2.31)
Returning to Egs. (2.26) and (2.27), we have the rela-
tions between the coefficients of the solutions:
a,= — i2cb,/(my — k), b, = {ij2¢c/(my + k) }a,.
(2.32)

Itis trivial to solve Egs. (1.6) and (1.7) in this case. The
problem is solved exactly.

C. A;=pe"™, f=const, p=const

Equations (2.6) and (2.7) for this potential after the
change

u=e* (2.33)
take the form
— k&, + (inud, + (E — Bu))é, =0, (2.34)
and therefore
9> 1 9 1 ( up | 1 s 1o
—t+—— =\ ——+=((E-Bu)’' -k )] =0.
[8#2 AN a )jes
(2.36)
The change
&, = exp( — iBu/mp™’"Y, (237)

leads to the equation of degenerate hypergeometric func-
tions

(Y 4+ Y (2q—1-8) + (GE/p—q)Y, =0, (2.38)
where

& =2iBu/7, (2.39)
g =ik, /7. (2.40)
Therefore

: . ik E 2ik '
’213;;) +azulk,/nM(’_z __E ko 2’/3/‘)], (2.41)
'S 7

7 q+1 g

. k, iE 2k, 2
b ”M( 5 B R, L,Z’B")}. (2.42)
' 7
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According (2.35) and (2.36) the coefficients are connected
by the relation

ar=b, a¥r=b, a/a,=i(E+k,)/k (2.43)

The problem is solved exactly.

In the case of free motion -0, M(a,B,0) =1],iff
is not an integer number then we have superposition of two
free waves running in opposite directions.

D. A,=pe", f=const, =const

After the change

pn=e", (2.44)
instead of (2.8) and (2.9) we have

im—Kk)A+(—nud, + (k, +Bu))B=0, (2.45)

ilm+k)B+ (qud, + (k, + Bu))4 =0. (2.46)

Thus again we have the exact solution

A= emownlayrip (ot 2y g 200)
n n

n
P L 1)
n n 7
(2.47)
B= e*B,u/n[bl/tik./nM(kz + lk] + 1’2lk1 + 1,23#>
n n Uj
4 bz,u_ik'/ﬂ‘u(kz - lk] + 1, _ 21k1 + 1,23/‘)]_
n 2 7
(2.48)
The coefficients are related as follows:
by =ia,(k, + ik ))/(mg + k), (2.49)

by = ia,(k, — ik,)/(mq + k).

E.A,=1/z,I=const
Now we have instead of (2.6) and (2.7)
— k& + (0, + (E—1/2))6,=0, (2.50)
(id, —(E—1/2))§, + k&, =0. (2.51)

Passing to the second-order equations we have the well-
known Whittaker ones:

{02 +il /2 + (E—1/2)> —k?}£, =0, (2.52)
{02, —il/2+(E—1/2)? —k*}&,=0. (2.53)
The corresponding solutions have the form
£ =e 7y e, M(1 — il — k2 — 2ily)
+ a,M(il — k,2ily)y™}, (2.54)
E=e "y o M1 + il — k2 + 2ily)
+ b,M( — il — k, — 2iLy)y™}, (2.55)
where
y=0/k?—E? (2.56)
k= —IE/NK*—E>. (2.57)

The connections between the coefficients may be deduced
from substitution of (2.55) and (2.56) into (2.51) and
(2.52):
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b, = —ia,k/[2§kT—E*(1 + 2D},
b,= — [2JkT=EZ(1 —2i)]/ik.

The behavior of solutions in the asymptotic region when
Z— oo is given by

(2.58)

— 20—l — sl
Ei=e %y Tl + eV,

Ey=e i e 2y i,

(2.59)
(2.60)

F.A,=I//z, I=const

Equations (2.8) and (2.9) with such potential take the
form

im—K)A+(—3, + (ky+1/x))B=0,  (2.61)
ilm+k)B+(3, + (k, +1/x))4 =0. (2.62)

Analogously to those presented previously, these equa-
tions may be solved exactly; namely, we have

A=ce " ay' ¥ "M + I + 2lk,/A,2 + 21,p)

Fay M(— 1+ 20k,/4,1 — 2L}, (2.63)
B=c¢ " a{ilmy+ k)/2\Jk2 + m2 —k?Q21+ 1)}!

X M( + 2lk,/A,21y)y

+a,{(my—k)/2i\(k: + mi —k*(1 =2)}~!

XM(1 — 1+ 20k,/A,2 — 2Ly)y' — 1} (2.64)

11l. SOLUTION OF THE DIRAC EQUATION IN
CYLINDRICAL COORDINATES

The Dirac equation in general cylindrical coordinates
3.1

in the presence of vector fields in a diagonal tetrad gauge
takes the form

[yl(%ﬂ_ iA#> + f(%"— iAo) + 10, —id,)

x=e"cosf, y=e"sinb, z t

+ 948, —id,) + mol‘ll =0. 3.2)

In the case where the vector potential has only one com-
ponent, i.e., 4, =4, =4, =0, A, = 4,(u), Eq. (3.2) al-
lows a separation of variables such as

Riu= =¥ 3,/¢ + V'Y do/e" + iv'y* (4, + E),
(3.3)

R, = =¥V, + V' vv'mo, (3.4)

[Ki,K.]=0, (K,+K)¥=0. (3.5)

Here it is taken into account that the operator of Eq. (2.2)
and the operator of energy — i d, are commute.

In order to solve Eq. (3.2) and to find the explicit form
of the bispinor let us transform from standard representation
of the Dirac matrices to some ““almost standard” representa-
tion through the transformation

y=S"98, S=(1/vI(1 + iy, (3.6)

which corresponds to the transitions 7 —iy* and * - iy,
The operator K, leads to the equations
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— (4, + my)y = ke,

3.7
(az - "IO)¢J = kX’
V= (‘f’), (3.8)
X
where
U =5"'¥=yw,expli(k,z— Et)}, (3.9)
W, = (‘P), (3.10)
X
Thus we have
k*=k2+m}, 311
where k is an eigenvalue number of the operator R’,.
Equation (3.3) leads to the system
{(d'7¢9)d, + i"m/e* — 0> (4, + ED}p =k,  (3.12)
{(c'/e")d, + id?m/e* — o* (A, + E) Yy = ky, (3.13)

where m is an eigenvalue of the operator — i d,. The num-
ber m takes the values permitted by the corresponding
boundary conditions in the Cartesian tetrad gauge.

The transformation S(6) that achieves the transition
from the diagonal tetrad gauge to the Cartesian one has the
form

5(0) = e=#*exp(— (6/2)1'P), (3.14)
1.e.,
Yeare = §“(9)‘I'Diag- (3.15)
According to (3.14), §(9 +27) = — 3’(6) and therefore
Wpiag (0 +2m) = — Wi, (6). (3.16)

So we have m = n + 1, where n is an integer number.
Equation (3.12) leads to the system

{e=#@, + m)}p,={k+ (4, + E)}p,, (3.17)
{e~ *(d, —m)}lp, ={k— (4, + E)}g,, (3.18)
where
- ‘p‘). 3.19)
¢ (402 (

The system of equations (3.17) and (3.18) allows exact
solutions in the case of the potential 4, = I /¢".

A./=0, free case
In this case, instead of (3.17) and (3.18) we have

paaz —{m(m—1) + (k> — E¥pp, =0, (3.20)
P ‘9"’2—{m(m+1)+(k2 EY/p’}p, =0, (3.21)

a 2
where a new variable ¢ = p is introduced.
The solutions of (3.20) and (3.21) are well known:

Pr=cpJ,_ 1, (WkT—E%p), (3.22)
¢72—32\/_ w2 (WS —E°p). (3.23)

After substitution of (3.22) and (3.23) in (3.17) and (3.18)
we have the relation between the coefficients

c,=iecn(k—E)/(E+K).

(3.24)
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In the Cartesian gauge the radial solutions have the form

_in(WkT—E?p), (3.25)
@2~T 12 (WkT—E%p). (3.26)

For the asymptotic behavior (large p) we have the well
known cylindrical wave

J i1 (WNk*—E®p)
1
cosjVEZ —k? ———(m+ )—-——]
\/‘JkZE?p [ 2 4

(3.27)

B. A,=//e", /I=const

Taking into account the change

e =p, (3.28)
we have instead of (3.12)

(3, +m/p)p,— (E+k+1/p)p, =0, (3.29)

(3, —m/p)p, + (E—k+1/p)p,=0. (3.30)
We find the solutions of (3.29) and (3.30) in the form

@, =J1 —E/ke *{F,(24p) — F,(24p)}, (3.31)

@, =1 — E/ke™{F,(24p) + F,(24p)},  (3.32)
where

A=JkT—E% (3.33)

The substitution of these expressions in (3.16) and (3.17)
leads us to the equations

(a +_l§__1>pl+(_{’i+ >F2_0 (3.34)
Ap p p
(ap _—[E—)Fz (—”‘c.‘—g)Fl =0, (3.33)
Ap Ap P
where p = 24p.

Let us consider the behavior of the solutions of these
equations when p—0. Then it is convenient to write

(3.36)

Here a,, a,, and v are constants connected according to
(3.34) and (3.35) by the relations

Fi=ap", F,=ap".

w+IE/Aa + (m+ lk/A)a, =0, (3.37)
(—m+Ilk/Aa,+(—v+IE/A)a, =0, (3.38)
from which we have
v=ym? =17 (3.39)
Introducing the function
=p"G,(p), (3.40)

we can see that the function G, satisfies the equation
PGy + 2v+1—p)Gy + (IE/A —v)G,=0.
Then

G,=cM(v —IE/A2v + 1,p). (3.42)

Taking into account Egs. (3.34) and (3.35) we have
finally

(3.41)
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Fy= —cl(vA—IE)/(mA ~ Ik)1p"
XM(v+1—IE/A2v + 1,p), (3.43)
Fy,=cp*M(v — I[E/A2v + 1,5). (3.44)

Formulas (3.42)-(3.44) define the functions of the variable
pfor E<kand E>k.

Note that in the case E < k the energy spectrum will be
discrete. In order to find the possible values of energy it is
necessary to use the condition of finiteness of the functions
F, and F, when p— oo.

We have the following behavior of the hypergeometric
functions for p> 1 (see Ref. 6):

Ir'(d) —a, L)
T'(b—a) '(a)
from which we can see that M(a,b,p) does not contain the
exponentially increasing term if

1/T(a) =0. (3.46)
Application of this condition to the functions F, and F, gives
1/T(v—IE/A) =0. (3.47)

Since the poles of the gamma function are negative integer
numbers and zero, we have at last

M(abp)—e~— ™ p° %, (3.45)

v—IE/A= —n. (3.48)
So the possible values of the energy are
E, =k/{(I/(n+w)*+1}'2 (3.49)

The solution of the Dirac equation in the diagonal tetrad
gauge has the structure

g
_ ikz—i-m — @2

lDiag —
( l)
— P2

x exp{i(k,z + mp — Et)}.

(3.50)

Now we shall investigate the possibilities for exact solu-
tions of the Dirac equation (3.2) if we separate the variables
first with pair separation of 1,6 from z,, i.e.,

ay . 2] ag g a3 _ Ty
[r“(——eﬂ - zA,,) +7 (— tAe)]W“‘l’ = —ik¥,
(3.51)

{78, —id,) + (3, — id) }y'y'¥ = ikV. (3.52)
Taking into account the standard representation of the
Dirac matrices (2.5) we can rewite Eq. (3.51) in the form

{ial(%ﬁ_ _ iA,,) _ ia'(%ﬁ _ iAo) +k ]WL =0, (3.53)

a a

(3.54)
- ‘I’l)
¥ ( o) (3.55)
which leads to
¥, = C(z,1)0”Y,. (3.56)

Using the explicit form of the Pauli matrices,
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0 1 0 —i
1 —
7= (1 o)’ o= (i o)’
] 0
o= (0 — 1)’
we have from (3.53)
ko, — i{(3p/¢" — idy) +i(3,/¢" —id,)}p, =0, (3.58)
ko, + i{i(3,/¢* — id,) — (3p/¢* — idy)}p, =0. (3.59)

The corresponding equivalent second-order equations
take place:

{d2, — (kg + Dko/p* +d, 4, — A}

(3.57)

—2k,Ay/p + k73, =0, (3.60)
{d2, — (kg — Dko/p* +d,d, — A3
—_ 2k6A9/,0 + k 2}¢2 == 0. (3.61)

These equations admit exact solutions for the potentials
Ag = Crand 4, = C, where C is constant.

C.A,=Cr, C=const

This case corresponds to a constant magnetic field

B =2Ce,. (3.62)
After the change
© =70’ (3.63)
(3.60) and (3.61) lead to
{# 9 +%<9ﬂ - :ﬂl)ke - i:f
+ (k*—2k,C+ C)]¢>,=o, (3.64)
25, + o, e e S
+(k2—2k9C—C)]¢72=0. (3.65)
Introducing the new unknown functions
@12 =e"pf,, (3.66)

where a and f3 are constants, we find for f] and f, the differ-
ential equations

e+ (s 2) + 2o

2
+pat + 208 + B =B
73
k?—2k,C+C
Ly e B Kot C
2 4y
(ko + 1) kg 02]
-9 e _ X =0,
” 47/2,Uf1
[,u ai + (,u(Za +E-) +L)8
I3 IL‘ 2 M

B> -8B

(3.67)

+ pa’® 4+ 2aB +

B k*—2k,C—C (ks — Dk,

a
=+
2 2 4y 4u

C?
= =0. 3.68
42 ,U]fz ( )
G. V. Shishkin and V. M. Villalba 2378



These equations may be simplified if we set

& — C*/4p* =0, (3.69)

BB —1) — (ko + 1Dky/4=0, (3.70)
ie.,

B=(ks+1)/2 or ky/2, (3.71)
and for

C=y, a=} (3.72)

Egs. (3.67) and (3.68) take the form
{ud, + (kg +3—p)d, + (kK*/4y — D}, =0,
(3.73)
wadl, + (kg +1—p)d, + k*/4y},=0. (3.74)

These equations admit polynomial solutions under the con-
dition

k*/4y = n. (3.75)
Then, instead of (3.73) and (3.74) we have

{pd2, + (m+1—p)d, + (n—DY;,=0, (3.76)

{uad2, + (m—p)d, +nlf, =0, (3.77)
where

m=ky+1. (3.78)

The solutions of these equations are the Laguerre polynomi-
als®

fi=al7 4,

-1

f:’. = ch nm— 1
where ¢, and c, are constant coefficients.

Substituting (3.79) and (3.80) in (3.76) and (3.77) we
have the relation between the coefficients

e /ey =29"?/k. (3.81)

After a unitary transformation that is the inverse of
(3.14), we finally have the expressions of ¢, and @, in the
Cartesian tetrad gauge:

Pre,. =€ PP IOL T

o= (W2, (m—1)/2F m—1
¢20.’:ar(_e lu' th—l N

(3.79)
(3.80)

(3.82)
(3.83)

D.A,=C,=const
Now Egs. (3.60) and (3.61) may be reduced to the form
{p?9}, — (kg — )k

—(CY —k*)p* —2k,Cop }9, =0, (3.84)
{p? 5, — (kg + D)ky

—(C5 —kH)p* —2kyCop Y, =0. (3.85)
After the change

z=ap, (3.86)
we have

{0 + (~3+k/z4+( — (kg + 1))}, =0, (3.87)
{04 + (=L+k/z4+ 0+ (ko — )W) )@, =0, (3.88)
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where

a=2Ch—k? k= —2ksCo/a; p, = + (kg+1).

(3.89)

The solutions of these Whittaker equations are the func-
tions

M, (2) =e 722 ML+ p — k1 4 2u,2). (3.90)

Because of (3.87) and (3.88) the parameter u takes two
values and therefore we formally have two functions of type
(3.90) as the solutions but one of them is singular at z = 0.

Note that Eqs. (3.60) and (3.61) are very simple with
the potential 4, = Cy,

ke, + (3, — (ko/ p+ Co)lp2 =0, (3.91)
kg, = (3, + (ko/ p+ Co))p, =0. (3.92)
According to (3.90) we finally have
@, =ae 22T MO 4+ — k1 + 2p,2)
+be 722 M( —p, — k1 —2p,,2), (3.93)
@, =ce” 2V EM 4+ u, — k1 + 2u,,2)
+de 7?2\ 2 ML — py — k1 — 2u5,2), (3.94)
where
wy=ko+14, p,=k;—14 (3.95)

Substituting these solutions into (3.91) and (3.92) we
have the relation between the coefficients

alc=k/aRky +1), a/b=k/a(k, —1). (3.96)
So instead of (3.93) and (3.94) we have
@ = e~ ¥k lM(lq9 + 1 —k2ky +2,2)
+be= 7z M M(—ky — k, —kg,z),  (3.97)

@, = (aa/k) (2k, + 1)e="2M(k, — k,2ky,z)
+ (bk /@) (2k, — 1)~ le= %' ~Foy

X (1 — kp — k2 — 2k,,2).
(3.98)

Note that Egs. (3.51) and (3.52) are investigated in
Ref. 7 with an application to quaternions. But the author
only looks into some of the possibilities we consider and he
does not deduce the relations between the coefficients of the
solutions.

IV. SOLUTION OF THE DIRAC EQUATION IN
PARABOLIC CYLINDRICAL COORDINATES IN THE
ABSENCE OF FIELDS

Here we consider the most complex case of separation of
variables in the Dirac equation in the search for an exact
solution when Lame’s functions depend on two variables
even in the diagonal tetrad gauge. The general approach for
such cases is proposed in Ref. 1. We consider here only the
case of free motion, i.e., we investigate the “free” parabolic
cylindrical spinor waves.

The free solutions of wave equations, i.e., in the absence
of fields, play an important role both for understanding the
nature of the spreading of the waves of different geometric
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types in space and for the construction of a theory of interac-
tions. It is well known that the latest aspect is most elegantly
achieved by free plane waves interacting locally. It is difficult
to accept as truly free waves the well known cylindrical,
spherical, and other types of waves because the amplitudes
of such waves change with distance. We can, however, talk
about a natural damping of divergent spherical or cylindri-
cal waves. But how do we accept the “supernatural” amplifi-
cation of convergent waves? What is the powerful source
that generates them in the infinite distance and forces them
to converge along fixed congruences? In this sense if we ac-
cept the primitive correspondence “free particle-free wave”
and take into account that the free particle moves with con-
stant impulse and energy, i.e, with constant direction and
amplitude in the wave sense, we can accept as the only possi-
ble truly free wave the de Broglie’s wave, which has won
respect for its constant “love of freedom.”

The free plane, cylindrical, and spherical waves are well
known in the literature.®® Here remembering about the con-
ditional freedom of geometrically complex waves we present
the “free” parabolic cylindrical wave, i.e., the free solution of
the Dirac equation in the corresponding coordinates.

The Dirac equation in the parabolic cylindrical coordi-
nates

x=u—V*)/2, y=pv, 2z, t (4.1)
takes the form
{(¥/m)d, + (¥'/h)3, + ¥ 3, + ¥, + mo}¥ =0,
(4.2)
h=(u*+v)'"2 (4.3)

As the single Lame’s function in (4.1) depends on two
variables z and v, it is natural first to fulfill the separations in
pairs (u,v from z,t):

{rd, + v d,)vv* +ihk}d =0, (4.4)
where k is the constant of separation.
Writing
? P X1
(b:( ), =( ), 2( ), (4.6)
X i P2 X X2

we can find the structure of the bispinor ® and its depen-
dence on the variables z and #:

_ 2 i(kz — Et)
®= ({ioJ(E —mg)/(k, — ik)}fp)e - G
Here ¢ is a new unknown bispinor connected with ¥ by the
relation

P = 7YY, (4.8)

E is the energy of the state, k, is the z component of the wave
vector, and ¢ depends only on variables ¢ and v.

Using the standard representation of the Dirac matrices
(2.5) we have from (4.4)

(6?3, —d'd, + kh)p =0, (4.9)
(—0%d,+0'3, +kh)y=0. (4.10)

Because of the structure (4.7), Egs. (4.9) and (4.10) are
equivalent and therefore we only consider Eq. (4.9).
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The presence of the expression h = (u* 4+ v*)'/?in Eq.
(4.9) does not allow us to separate variables immediately in
this equation. However, after a similarity transformation by
means of the operator

§= NI+ +ic*(h —p)"'%}
(see Ref. 1) we have the more simple equation
(P 3, +ikp) —i(? 3, —ikv)} =0, @="5L (4.12)
Introducing a new two-component spinor

¢={—1i(c*8, —ikv) — a*(0? 3, + iku)}¢, (4.13)
we have the second-order matrix differential equation
{32, + ic?k + k?u?) + (82, — ic’k + kW) }YE =0,

(4.11)

(4.14)

which allows the separation of variables
(0} +iock + kp)E =g, (4.15)
(32, —ic*k + kW) E= — A€, (4.16)

where A is the separation constant.

Now we make a transition to a new representation of
Pauli matrices in order that 0 - ¢°. It is easy to see that such
a transition may be achieved by means of the corresponding
unitary transformation

U= N (1 +id"), U—'*U=0> (4.17)
Then we have instead of (4.15) and (4.16)

(9%, +ick + k*u* — A)ynp=0, (4.18)

(32, —ick+ kW + )y =0. (4.19)

Because of the separability of the variables ¢ and v, we can
now write

7 =Pu)@v), 7=RW)S), (4.20)
where the unknown functions satisfy the equations

(32, +ik— A+ k*u?)P(u) =0, (4.21)

(3%, —ik — A+ k’u?)R(u) =0, (4.22)

(3%, —ik+ A+ kW)Q(v) =0, (4.23)

32, +ik+ A+ k2AS(v) =0. 4.29)

The standard solutions of these equatidns of the parabolic
cylinder are well known.®

Taking into account the transformation (4.17) we have
a spinor structure

I Y P N

Analogously in correspondence with (4.11) and (4.13)
we have

@ ={(h+ )" +ic®(h — u)""*Hi(Q, — ikQv)P
+ i(ikR, — Ru)S — (S, + ikSv)R
— (P, + ikPu)Q, (4.26)
@ ={th+ )" +ic*(h — p)'*H(Q, — ikQv)P
+ (i(kRu — R,)S — i(S, + ikSv)R

— (P, + ikPu)Q, (4.27)
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Finally with (4.7) and (4.8) we obtain the exact solution of

Eq. (4.2):
; E—m (¢71)
k, — ik \@,

)
P2

Regarding the discussion of the exact solution (4.28),
i.e., the parabolic cylindrical wave, note that the space de-
pendence of this wave on the x and y variables is determined
by the equation on the u and v variables (4.4) separated
from z and ¢ (4.5). It allows us to affirm that the vector
potential of the kind 4,(z) or 4, (¢) may be included in the
solution (4.28) in a trivial way.

For example, in the case 4,(z), instead of (4.5) we have

{y# 8, + 119, — id(2)) + mey YO = ik®.  (4.29)

Taking into account the stationarity of the state after the
similarity transformation

U= gUETEn (4.28)

(#} -5 mS ,,=§q>=(3'), (4.30)
2

by means of the operator’

S=3(1 - +iry), (4.31)
we have the equations
{0'3, — P(E+ 4}y, — (ic°my, — k)n, =0, (4.32)
{0'9, — P(E+ 40}y, — (iPme— k)7 =0.

According to the structure of these equations,

_ a(z))
7, = nz(b(z) , (4.33)

where the functions a and b in the standard representation of
the Pauli matrices satisfy

{8, + i(E+ 4)}b(2) — (imy — k)a(z) =0,

(4.34)
{9, —i(E+ A)}a(z) + (imy+ k)b(z) = 0.
By (4.30) and (4.31) we have
@ (p,v)(a+b)
b= ¢2(:u’v)(a+b) e—iEt, (435)

@3(p,v)(a—b)

Pa(p,v)(a—b)
where @,, @,, @3, and @, are components of the bispinor
solution of Eq. (4.4).

Analogously, the vector potential 4, (¢) may be intro-
duced.

Finally we consider the asymptotic behavior of the solu-
tion (4.28) tox— 0, y— oo . Because of (4.1) the conditions
X— 0, y— oo are equivalent to the requirement yu— o for
any v (or inversely v— o forany u).

According to the relation®

(o) _ Te) _,.;
M(a,c,z ~——— ezz(a ) 4 a 11ra’ 4.36
T T(c—a) (4.36)
we find
) iA /ZkA iku®,, — A /sz
p~e* Iu;l/zk N e»;( z‘u_ A/ ) ’ (4.37)
AKC + M = *2D

where the functions 4, B, C, and D depend only on v and
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p=(x*+ )" =W ++4)/2. (4.38)

Noting the explicit connection of x,y with u,v (or, equiv-
alently, with p), we have

((x+p)i/1./4kAe—ikp+eikx(x+p)—i/l/4kB) (4 39)
(x +p)i/1/4kce—ikp+ eikx(x +p) —i}./4kD ’ *
for large x and y (or, equivalently, for large p). Then our

solution takes the form of the superposition of free plane and
cylindrical waves with amplitude modulation.

V. DISCUSSION

The possibilities for the method of separation of vari-
ables in the Dirac equation in the presence of vector fields in
the search for exact solutions are not exhausted by the solu-
tions considered here. They only demonstrate the usefulness
of our method.' Even in the statement of the problem we
have other possibilities for exact solutions. These are the so-
lutions in the same geometries and for the same external
fields but with other orders of separation of variables. Then
we have the natural problem, namely, the problem of the
unique solution (Cauchy problem). Note that we have not
considered the boundary conditions for our solutions. Only
after the introduction of boundary conditions can we select
the physical solutions. Note, too, that as the Dirac matrices
have the special structure and each Dirac 4 X 4 matrix con-
sists of the 2 X 2 matrices, each component of the Dirac bi-
spinor finally is determined by the second-order differential
equation for each variable, whose solution contains two lin-
early independent functions. So the number of mathemat-
ically different solutions will be determined by the number of
combinations of different solutions of the equations on the
separated variables. The physical solution will be deter-
mined by criteria of finiteness, square integrability, bound-
ary conditions, and others.

In any case, we have demonstrated the possibilities for
the search for exact solutions of the Dirac equation by means
of our method proposed in Ref. 1 for all types of variables,
namely, in the “plane” Cartesian coordinates, in the curvi-
linear cylindrical coordinates, and finally in the exotic para-
bolic cylindrical coordinates where Lame’s function does
not separate its variables in the diagonal tetrad gauge.

'G. V. Shishkin and V. M. Villalba, J. Math. Phys. 30, 2132 (1989).

2D. M. Volkov, Z. Phys. 94, 3 (1936).

*D. M. Volkov, Sov. Phys. JETP 7, 1286 (1937).

“F. L. Fedorov, Sov. Phys. JETP 35, 495 (1958).

5F. L. Fedorov, Dokl. Acad. Nauk USSR 174, 334 (1967) (in Russian).
°M. Abramowitz and 1. Stegun, Handbook of Mathematical Functions (Do-
ver, New York, 1965).

'A. Hautot, J. Math. Phys. 13, 710 (1972).

*A. S. Davydov, Quantum Mechanics (Pergamon, Oxford, 1965).

°A. I Akheizer and V. B. Berestetskii, Quantum Electrodynamics {Science,
Moscow, 1969), in Russian.

G. V. Shishkin and V. M. Villalba 2381



The equivariant inverse problem and the uniqueness

of the Yang-Mills equations
M. C. L6pez and R. J. Noriega

Departamento de Matematica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,

Buenos Aires, Argentina

C. G. Schifini

Departamento de Matematica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires,
Buenos Aires, Argentina and CONICET, Consejo Nacional de Investigaciones Cientificas y Tecnicas,

Argentina

(Received 23 August 1988; accepted for publication 3 May 1989)

The equivariant inverse problem for Yang-Mills-type Euler-Lagrange expressions is solved in
the affirmative. This leads to a proof of the uniqueness of the Yang-Mills equations.

I. INTRODUCTION

Let P(M,G,7m) be a principal fiber bundle with base
space M, total space P, and structural group G. Let
n=dim M, r = dim G. For a, B non-negative integers we
define V: = T3 (LG), the space of a contravariant, S covar-
iant tensors on the Lie algebra LG of G and p: G -» GL(¥)
by

N a4
pr=Ade ~-® Ad ® Ad @ *-* ® Ad, (D)
where
(a4
Ad(a)( 7)(Xe): = p(Ad(a)(Xe)), 2)

and Ad is the adjoint representation of G. Let z be the local
chart around e in G given by exp.

A gauge field is a connection form won P. If Uis an open
set in M then a gauge is a pair (U,0) where o: U+ Pis a
smooth section of 7. For a gauge (U,0) letw,: = 0*w. Then
w,, is an LG-valued one-form defined on U. If (x,7) is a local
chart in M such that U N ¥V #Q then

o, = (A%dx)e,
(latin letters run from 1 to n, greek letters run from 1 to » and
we use the summation convention). The 4 { are called the
gauge potentials of w associated to (U,o), (x,V), and e, .

If (U,0) and (U',0') are two gauges such that o(m)
= ¢'(m) forsomemin U N U’, then thereis a smooth func-
tionyg: U N U’ -+ Gsuchthato ¢y =o’'in U N U'. Itis well
known that

e
ax '
where /?: = z? o yf; 1§ dz” are the left invariant one-forms
generated by the dual basis of e,, and Ad(a)e,
= Ad% (a)e,.

We say that T'is a gauge tensor field of type (V;r,s,w) if it
gives for every gauge (U,o) a V-valued relative tensor field
T, of type (rs,w) defined over U. We say that T is a gauge
tensor field of type ( p;r,s,w) if furthermore

T, =p HT,inUNU’, 4)
where p is given by (1).

The coefficients of the curvature form, defined as

F;:=A;}——AZ,.+CZ,,A?A{, (5)

A =Adgoy 4l 450y (3
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where Cg, are the structure constants associated to e,, are
the components of a gauge tensor F of type (Ad;0,2,0).

If we have a Lorentz metric g,; on M, the gauge covar-
iant derivative of Fis defined as

Fgu:=F3, —FgTh —F3Th +F;Cg, A%, (6)
where I'};, are the Christoffel symbols associated to 8-

The Yang-Mills equations are
where B4 are the coefficients of an Ad G-invariant bilinear
symmetric form on LG. They can be obtained through a
variational principle as follows. If L =L(g;4%4%)),
then through a variation of 4 § one obtains the Euler-La-
grange equations

E (L)=J,, (8)

where

EL(L)= 9

aL _ d ( aL )
A axi\das,)

To allow for possible interaction with a gravitational
field, it is of interest to define the energy momentum tensor

ri=gir)=2%.

og;
If one chooses L as

L=B,F*“F ”ij,
then Eq. (8) becomes (7) and Eq. (10) becomes
TY=B,,(F*%, F‘gfk—gg”F“”kF’Zk). (12)

The left-hand sides of (7) and (12) are gauge tensors;
the same is true for the Lagrangian (11). However, while the
gauge invariance (i.e., being a gauge tensor) is mandatory
for the field equations, it is not so for the Lagrangian, be-
cause in general it has no physical meaning. The equivariant
inverse problem! for this particular case could be stated as
follows. If L is a function of the type

L=1L(g; F7), (13)
such that E!, (L) and E "j(L,)\ are gauge tensors, is there a
gauge invariant Lagrangian L such that E_ (L) = E (L)
and EY(L) = EY(L)? We will prove that this is the case, a

(10)

(11)
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fact that restricts severely the form of the function given by
(13). Using this restriction, we will prove that Yang-Mills
equations are the only possibility, thereby proving the
uniqueness of these equations. It is worthwhile to note that
the F; satisfy identically the following:

*Fel =0, (14)

This problem was treated by Horndeski.> He added the
following strong hypothesis about the form of the Lagran-
gian in flat space-time: that it reduces to 4g'/% y,, F %, ,,
where ¥, are the components of a symmetric Ad G invar-
iant bilinear form on LG. This allows him to find the general

form of the Lagrangian. We do not assume such a hypothe-
sis.

il. THE EQUIVARIANT INVERSE PROBLEM

We will work in a four-dimensional space-time, and we
will only assume in this section that E (L) is a gauge tensor.
This leads to Theorem 1. Let us denote L ¥ = E¥(L) and let
us suppose that » = dim G = 3. If we consider H ** given by

\/gHihjk ug.hk
th ik +Lhkgij,

ik hj
(15)

then it is clear that H ** is skew-symmetric in i,4 and skew-
symmetric in j,k. Then, by a previous result* we can write
Hihjk — a;ﬁ Fm‘kFB;‘k + b:xﬁ Faih *F Bik
+ Cop *F"“”Fﬂ""+daﬂ (16)

where the coefficients are gauge invariant scalar densities
and 1<a, £<3. Since H ** = H ™"* it follows at once that

A,z = g, an
Replacing in (16) and multiplying by g,, it follows that
(IWNQL'=a'g' + 2a,, F*, FP¥

+ b g (F *F 7%+ F¥, *F %%, (18)

*Faih g ﬁk’

b:!B =Cﬁa, da,B =dﬁa"

taking account that

*Fm‘k xp ok _ £g1j¢aﬁ+ Faf;( F 8% (19)
where
¢P=FIF*, (20)

Decomposing b ;4 in its symmetrical and skew-symmet-
rical parts, and taking account that

Fajk tFBik+Flijk *Faik=%gij¢aﬁ’ (21)
where

'/,aﬁ F"'J x5 B (22)
then it follows that

L¥=\g{ag’+ a,z T + b5 S 7} (23)

We have proved the following lemma.

Lemma I: If LY = L ¥(g,,; F%,) is a tensorial concomi-
tant symmetric in /, j, then LY has the form (23), where
Qop =gy, bog = — bp,, and a, a,,4, and b4 are gauge in-
variant scalars. Also,

T80 = Foi F 5 | Fel F 5, (24)

SGB'J=F‘1'S g BSI+F0’JS *g Bsi. (25)

By the way, since (23) is valid for any symmetric tensor
LY, it follows that the ten tensors g, 79%, and S are

lmearly independent (1<a, 8<3).
By a previous result’ it is known that

a= a( ¢aﬂ; WB)) aaﬂ = aaﬁ( ¢;‘V; ¢”V)’
baﬁ = baB( " YY)

in a dense subset of the set of concomitance variables (i.e., as
long as F',F? F3*F! *F? *F3is a linearly independent set;
see Refs. 4 and 5), and where ¢*# and ¢ are given by (20)
and (22).

Since LY=9L /dg;, then L%*=L"¥ In view of
(26}, this can be written, after some reductions as

(26)

J
da, da,
B
2 (aa_aﬂ _ aa ) ToBIT wvhk | 9 2B abaﬁ SoBIT uvhk _ abaﬁ ¢,wsaﬁijghk
a¢ Hy 8¢a8 8¢ v a¢'yv
. 2%‘?0&!}:]” #vij+ a:‘jﬁ, ¢;xvsaﬁkk ;+ b g:k Faj [ Bsk F'ak‘v 7 8sj)

+ baB gjh(Fais *F Bk

Multiplying (27) by g;, and F }, for an arbitrary F }, we
obtain

— 8C v ¢aﬁvur + 8baﬁpv( —_ ¢,mraﬂ + ,/,mvaﬁ)
—12b,, y7*P = (28)
where
Copur = 0a,3/00*" — da,,, /3™,

aﬁ!‘v = abaﬁ/a¢ #V,
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Faks *F Bsi) + baB gik(FajS *.F Bsh __

Ft MF59) 4 b,g g/ (F *F P" — Fh *F 7'y =0,

(27)
!
¢aﬁvpy_Fai'Fﬂj th F,uk Frs
¢vyyaﬂ Fw F;q Fyh Fak tFBs
and
¢Yaﬁ Fw FaJ tFBh

It is very easy to prove that 3 7 is skew-symmetric in all of

its greek indices. Also, from the definition we have
,/,praﬂ _ — ![,amvﬁ' (29)
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From (21) it follows easily that
YT = — ey g g, (30)
and
¢vm'aB — ,/,ﬂwav _ % ¢,ura ¢VB_ (3 1 )
From (30) and (31) it follows that
,ﬁvwaﬁ - — WIWVB _ % ¢wv ,paﬁ + % ¢Bm' ¢va
— L prre g, (32)

and from (7) in Ref. 4 we know that (9) in Ref. 4 is true.
Written out in full and using (30) we have

¢7aﬂ#v — ¢Burav + % ¢B#r 1/,av _ % ¢/3,u7 ¢av
_%¢5#V¢Ya_%¢ﬁya,‘//w’ (33)
where ¢ #7 = F %, F #, F 7", is skew-symmetric in all of its
indices.
It is straightforward to prove that
*ijFBhk — % { ¢aﬁ( gihgjk _gikgjh)
+ 2F¢zmk *F ﬁjm gih _ 2Famh [ ﬂjm gik
+ 2Fakm *Fﬁim gjh _ 2Fahm *F Bim gjk
+ 2Fckk xp B} (34)
Multiplying (34) by F}, F*, F*; we deduce
l/,vwaﬁ — ¢uwaﬁ + % ¢Vﬂa ¢Br . % ¢VM ¢aﬂ
— % ¢V#ﬁ ¢ar_ (35)
Using (31), (29), (31) again, and (35) it follows that
baB,uv( — ¢Vura1? + ¢mvaﬁ)
— baﬁpv(,/,nrﬁ¢av+ ¢wﬁ ¢aV)_ (36)

Due to the skew-symmetry of ¥*”? and ¢#?* it follows
that the only terms in (36) that could be different from zero
are those that have

BFEYVFEB #l pFY#a#p,

vEYFEB#v, vF#EyFaFtv.

Being » = 3 we deduce from (37) thatit mustbe ¢ = f3,
and so all terms in (36) are null because of the skew-symme-
try of b,5. Then (28) reads

8C 50 PP 4 12b,5 Y7 =0. (38)

Since F ¥, was arbitrary, we can differentiate (38) with
respect to F 7, and then multiply by *F 7, to obtain

—8C,guv YR+ 12b,5 7P = 0. (39)

Using (33), (30), (31), (30) again, (35), and (29) it
follows that

CaByv ‘baﬂva = % CaByv ¢auy ¢VB + % CaB;w ¢yay '/’Bv’
(40)

and so, repeating the argument that led to (37) we deduce
that (39) reads

(37)

— 8C,

afuv

WBVM = - 16(C1 122 '/’”227

+ Chi33 P37 + Copay 777).
(41)
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Similarly, using (7) of Ref. 4 and the identity ¢
= — ¢*P" we obtain

SCaBHV ¢anM = 16(C1122 ¢“227 + C1133 ¢“337

+ Cpas ¢7257). (42)

Taking ¥ = 3 in (38) and (39), and taking account of
(41) and (42) we have the 2 X2 system,

— 16C, 5, ¢'123 — 24b, ' =0, (43)
—16C, 5, ¥'125 + 24b,, ' = 0. (44)

By working out an example we see that the determinant
of (43) and (44) is not identically zero and so being a poly-
nomial, it is non-null in an open dense set. Then b, =0
everywhere. Similarly, taking y = 2, and ¥ = 1, we obtain
bz =0b;=0."

Now, from (27) and from the independence of tensorial
products of independent tensors, we deduce

aa aaaﬁ
Q.5 — —— Y =0, 45
8 36" g ] (43)
and
d Ji
Cas _ Wuv _, (46)
a¢ 1534 a¢aB

From (46) we deduce that there is a function f = f( ¢°%;
¥*#) such that

af
Aop = . 47)
5= 30 (
From (47), we can write (45) as
ad (f— 2a — af W‘V) -0, (48)
a¢a/3 awyv
and then we obtain
1 af ,,V) 8
=—| f——2— h , 49
a= 5 (75 +hw (49)
for some function 4. Substituting everything in (23) we have
Li=L§ +gh(y*)g’, (50)

where L, = g f is a scalar density.

It is important to note that within the domain of the
variables ¢°%, %, it is included that ¥** =0 for all a, B,
even if we take account of our hypothesis that
F1LF2F3*F' *F? *F3arelinearly independent. Infact, it is
enough to consider (g;) = diag( —1,1,1,1) and Fj =§]
52 — 828!, F% = §'-8) — 58}, and F3, = 5!-5* — 65,

Now, let k be the function

EL
k() = h(¢**) — h(0) — —— (0) ¢, 51
(W = () = h(O) =225 (O ¢ (51)

where 4 is given in (49) and (50).

Since k(0) =0 and (Jk /d¢¥*P)(0) =0, it is known®
that

k(W) = @yeg ) 94 4.

Then, (1/A)K(AYP) = a,uee (AP*) - ¢
Let v be defined as

v=v(y¥) = —j

o]

1

1
- k(AyYP)dA.
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Then a straightforward computation proves that

k= aw
and so
LY=L+ (2Jg v)? + (2Vg h(0))’
+ Vg 8"
=L\" + g g5 ¥*°

=L’ +((n g)Aep ¥°)".

Then we have proved the following lemma.

Lemma 2: 1f LY = L Y(g,,; F7,) is a symmetric tensor-
ial concomitant such that L7=EY%L) =dL /dg; for a
function L = L(g,,; F i) (not necessarily a scalar), and if
the Lie group is three-dimensional (i.e., @ = 1,2,3), then L ¢
has the form (52), where L, is a scalar density, ¥** = /g ¥,
and 4, are real numbers.

The result (52) is proved for » = dim G = 3. Let us sup-
pose now that r>3, and let AS(4) be

AS(4) ={4eR"* 4= —A'}.

Let g, be a symmetric matrix in R *** of signature (1,3)
and let F.F2F?® be elements of AS(4) such that
FUFALF3*F'*F?*F3 be linearly independent. If we

(52)

denote
A’ ={a, (gU,F,lj,F,Z,,F3)F"
+ba(gy’F:pF§yF3)

1<a<3, a, and b, scalar concomitants},

itisobviousthat 4’ C AS(4).Sincedim AS(4) = 6andthe
real numbers are examples of scalar concomitants, then it
follows easily that AS(4) C 4’, and so AS(4) =

As a consequence, if (F};) € AS(4) is a fixed but arbi-
trary skew-symmetric matrix, then there are scalar concomi-
tants a,(g; Fl;Fi;F}) and b,(g; Fl; Fi F))

ijs ijs ij» ifs
(1<a<3) such that

Fy=a,F+b,*F;. (53)

From (40) it follows at once that

¢P4=a, ¢P+ b, ¥y** (1<B<3), (54)

* = (a,a5 — b, b)) + 2a,bs Y, (55)

VP =a, y*P— b, ¢ (1<B<3), (56)
and

¥* = (a,a5 — b, bg) ¥ — 2a,b, §%. (57)

Ifa=a(g, Fj; F}; Fj; F}) is a scalar concomitant,
then, for F* fixed, we can write, in a dense subset of the set of

concomitance variables

a=ap (¢ ¢ (1<a, B<3), (58)
as a consequence of (54)—(57) and Ref. §. It is clear that

aps (8% YF) = ap. (7% ¥7P), (59)
where F* is F* when computed in any other coordinate sys-
tem.

The relation (59) is valid for the scalar a appearing in
(23) as well as for the scalars a,; and b,z in (23). Then, we
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can repeat the proof leading to (50), and so to (52). Thus
(52) is valid for all r>3.
We deduce from (52) that

L =L+ (ng)i,, ¢+ T(F2)

=L, + (Ing)t(¥™) + T(F?) (I1<a, B<3). (60)
If now we vary F* then it follows from (60) that
L(g,; FlL, F3, F3; FY)

g £ i 4y

=8 fes ( ¢°% ¢°) + Vg(In @) 15 ( §7)
+ Tp (F3) (1<, B<3).
But we can choose f¢« ( ¢*4; %) such that
Sre (8725 9%0) = fra (¢°8, 4°F)
because fis chosen to satisfy

I _

39~ Geor = ey

then Vg fr« ( ¢°%; ¥°%) is a scalar density concomitant of
8y Fj, F}, F}, F}. Since

i ijs i
h=a __(f_ . ¢#V)
2 Y
then hg. = hg. and so it defines a scalar concomitant of
g, Fi, F§, F}, F}.

gr 5 g Loy

Finally,
tre () =

(61)

Wﬁ 0)- 9%,

and so
17 (U*°) = B-tp (§9),
where B = det(dx'/dx/). Then it defines a scalar densrty

t=1t(F; Fl; F}; F}). Let us find its form.
From the invariance identities’ we have

t PR (AF AR AR AR,

ijy g iy )

2.p3. 4
U’FU’F'J’F)

=t 5 (F} (62)

Since ¥ can be zero, we can take lim,_, in (62) to
obtain

ts ""(F,J,F,lj,Fi,F“ )
=t 524(0;0;0;,0) = /€7, (63)
where the result follows from Ref. 8 (/,; are real numbers).
Integrating (63) we obtain
1=l = L€ FFE,  (1<a,B<4). (64)
From (61) and the following considerations we deduce

L(gy;F i F 3 F3FY)

Rl EL A 1

_L (gquq)Ff/aFr_/)F“)

+ (In @) z9*° + T(F)
Similarly it follows that

L(gg)Fa)_Ll(gy) )+(lng) sza

+ T(F3) (1<a,B<r).

We have proved the following theorem.
Theorem 1: If L(g,;F ) is such that E 9(L) is a tensor-

(1<a,B<4).

(65)
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ial density, then L is given by (65), where L, is a scalar
density and /,; are real numbers.

Remark: 1t is not difficult to prove that (Ing)/ ¢ is
not equivalent (it does not have the same Euler—Lagrange
expressions E Y) to any scalar density.

Let us denote L, = (Ing)l ;4. Since E' (L) is a
gauge invariant tensorial density, then

E (L)y= ""thk”,

Differentiating this last equation with respect to 45 i» it
follows that L %4* + L %Y is tensorial density. But from (65)
we deduce

Lipk+ LB =L 53+ L, %0+ L, %3
+L2 lkhj yhk+ lehj (66)
Now, L, 2 + L, %4 = 0, as we can see from the defini-
tion of L,. Also L, %2¥ + L, %¥is atensorial density because
L, is a scalar densxty Then, from (66), TEM 4 THhM is a
tensorial density.
To find the contribution of T to (66) we consider, for
each a, B between 1 and r, the scalar density
B_’ (Tuhk lkhj)Fr+lF;l-(l-2’ (67)

where F** ! and F”*+? are arbitrary and independent skew-
symmetric tensors. We will prove later that

CaB = Caﬁ;«s ‘2’”,
where 1<y, 6<r + 2, and C,,,,; are real numbers.
Differentiating successwely (68) with respect to F/ !
and F’ T ? we obtain

4T1s1m + Ttm Is Ttlms Tsm + Tslmt

= aBr+1r+2€tS[m (69)

Changing m with ¢ in (69) and adding the correspond-
ing equalities, we have

5Tfjf;" + ST"‘“' Tor — T;"’;g =0. (70)

Changing / with s in (70), and comparing (70) with the
resulting identity, it follows that

rip = T,

and so the contribution of T to {66) is null.
It remains to prove (68). In order to achieve this, we
proceed as we did to derive (65) from (52) to write

(68)

Cop =BG 5 ($*¥*")  (r<p,v<r+2). (71)
Differentiating (71) with respect to g; we have
ac, 1 ( G.s )
0= 5~ 4G, uy
7\@8 WN 4
G .
BT (ruv<r+2).  (72)
ag+”

Since g% and T#*9 (r<u,v<r + 2) are linearly indepen-
dent in a dense subset, it follows from (72) that

Ele 3G

g = ,uv, _—— O,
£ gy v Y
and so

CaB = \@Gag(l//‘w),

(73)
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and
G5 (AY") = AG 5 (P*). (74)

Differentiating (74) with respect to A and making A = 0
it follows that

3G,
Gas(¥**) = W’i (0) 9 = Cog,,, ¥,

which, together with (73), proves (68).
From the identity following (70) we deduce easily that
T %4* is skew-symmetric in all of its latin indices. Then

Tg B e, (75)
Differentiating (75) with respect to F%, we have

N dd_, .

fhkrs aB _ijhk
TZg%; W . (76)

But the left-hand side of (76) is skew-symmetric in all of
its latin indices. Since we are working in a four-dimensional
space, thenitisnull, and sothed,; in (75) are real numbers.

Integrating (75) gives

T=d 9%+ KLF5 +K. )
Let K = K3Fj + K. We know that E, (L) is gauge invar-
iant. Using the replacement theorem of Horndeski® and tak-
ing account that E, (K ¥F7%,) = 2K 4C%,4?, we have
EL (L) (g0 — 1 F) = EL (L) (80 — 4 Fh)

+ E (L) (8n0; — 3 F
(78)

and so E/, (L,) is a tensorial density. We will prove that it is
zero. In fact

Ei(Ly) = E((Ing)1,9")

= (Ing)E} ([,9) + 1,

17,(1
&y v
By making a change of coordlnates such that
(g;) = diag( — 1,1,1,1), g;, =0, and det (dx"/Ix’) = 1, it
follows from (79) that E (L,) = 0. Since E*, (L,) is a sca-
lar density, then it is null in every coordinate system. Now,
taking a coordinate system where g = 1 and g**g,, ; #0, it
follows from (79) and the vanishing of E/, (L,) that
L
" o4y,
Differentiating (80) with respect to 4, we have
Iaﬁeijhk = 0,
from where it follows /,; = 0. Then
LZ = 0. (81 )

Using (64) we deduce that L is a scalar density defined
everywhere (the tensorial character follows from the conti-
nuity of the invariance identities ). Besides

g ghkj (79)

=0. (80)

EL(KFF?)=2K}C5. 47
is a tensorial density. It follows easily® that it is zero. We

have proved then

L=L+&, (82)
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where E"(I?) =0, E"f(}?') = 0. Then it follows
EY(L) =E%D), E'L)=E'D). (83)

But, from (83), L is a scalar density whose Euler—La—
grange expressions are gauge invariant. We deduce'® that L
can be replaced by a gauge invariant scalar density without
modifying the Euler-Lagrange expressions. This solves in
affirmative the equivariant inverse problem for L, and so we
have the following theorem.

Theorem 2: If L(g;;F ) issuch that £ YL)yand EL (L)
are gauge invariant tensgrial densities, then there is a gauge
invariant scalar densny L such that

EWL)=EYL), E.,(L)y=E.(L).

Ill. THE UNIQUENESS OF THE YANG-MILLS
EQUATIONS

Let Z be defined as in Theorem 2. By similarity with (7)
and ( 14), we could claim the field equations to be

Lau/ =J. (84)

Now, Eqs. (85) corresponding to the Yang—Mills inter-
nal equations do not depend on the charge and current distri-
bution, and so they should be satisfied identically.

Let HY = "‘L” sothat HY;, =0.
Since H ¥ is gauge invariant, this can be written as

oHY

—=F8 =0 (86)
aF 7y, 9FB, MV
Differentiating (86) with respect to 44 » We have
H¥f + HE = (87)

so that it follows easnly that H ¥%* is skew-symmetric in all of
its latin indices, and so

H Y5 = progm™ (88)
Differentiating (88) with respect to F'¥, we have
H ij,hk;rs — a'u'aﬁ ijhk. (89)
BT gFT
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But
ijihk;rs __ ijirs;hk in, js;hk
HaB y"—HaBy - _Ha By
and so H %257 is skew-symmetric in all of its latin indices.
aff vy

Since we are working in a four-dimensional space, then
H %357 = 0and so du,z/dF ¥, = 0, which means that y,z is

a scalar concomitant of g; alone. Then'' s, /g is a con-
stant for each .. From (88) we have, integrating

HY = pop *Fﬁij'l'/lz(gij)‘

But 4§ = 0 from Ref. 11, so that HY =y, *F#9, and
so

LY = iy *F5. (90)
Multiplying (90) by 7, and then multiplying by g"’g*
it follows that

7 rs B
L a = ﬂaBF rs,
and so, integrating

L= ﬂaﬂ¢aﬂ + C\/§’

in which case La”, =pF?,;, which means that
E! (L) = J! are the usual Yang—Mills equations.
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Tadpole graph in covariant closed string field theory
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A one-loop tadpole graph in covariant closed string field theory must generate all inequivalent
tori with one puncture. In order to determine the region of integration in moduli space we map
the tadpole to a two-sheeted sphere and use the analyticity of the modular parameter with
respect to the complex propagator parameter. It is shown that the naive closed string extension
of the Witten open string vertex fails to give the correct modular region for this one-loop

amplitude.

I. INTRODUCTION AND SUMMARY

In light cone field theory closed strings interact via a
three-point vertex that is the naive extension of the open
string three-point vertex.! In covariant field theory open
strings interact via a three-point vertex suggested by Wit-
ten.? Its naive extension, however, did not appear to be a
compelling candidate for a closed string vertex.> Neverthe-
less it has been studied somewhat.? It was realized that it
would not generate completely the modular region for the
four-point scattering amplitude* and therefore it would have
to be supplemented by an elementary four-point closed
string interaction. There are even concrete proposals for
such an interaction.’

There is, however, a very simple test that a covariant
closed string vertex must pass. When two of the legs of the
vertex are contracted with a propagator to give a one-loop
tadpole one must generate all inequivalent tori with one
puncture. This criterion was advocated in Ref. 6 as the basis
for a search for a satisfactory closed string vertex and it was
shown that it rules out all vertices based on SL(2,C) func-
tions (projective type vertices). For the case of the naive
extension of Witten’s vertex, which is not projective, qualita-
tive arguments were put forth that it would give the wrong
answer for the one-loop tadpole.”

In this paper we discuss the evaluation of one-loop tad-
poles. Our motivation for studying this problem in detail is
based on the following. The tadpole graph cannot be treated
with light-cone type methods because it corresponds to a
surface with one puncture, while light-cone graphs corre-
spond to surfaces with at least two punctures. Therefore this
is a somewhat novel type of problem, which we have found
can be studied quite effectively using the automorphic func-
tion of the level-two congruence subgroup I'(2) of the mo-
dular group T'. Given that projective vertices are ruled out®
as candidates for closed string vertices, we wished to learn
how to deal with nonprojective vertices and this vertex was a
prime candidate. As in Ref. 6, we concentrate on finding the
region of integration for the modular parameter 7 describing
the torus. The modular parameter 7 is a function of the com-
plex parameter T = ¢ + 6 (¢ is the length and 6 the twist
angle) describing the closed string propagator and knowl-
edge of this function is sufficient to determine if one is getting
the correct modular region. Finally, we wished to give quan-
titative confirmation of the argument of Ref. 7. Indeed, the
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naive closed string vertex fails badly in giving the correct
modular region for the one-loop tadpole and it does not seem
to have any special modular properties. This implies that
used in conjunction with the usual closed string propagator,
for which 0<t < «» and — <8 <, it cannot lead to a com-
pletely satisfactory field theory. Perhaps it is possible to use
our methods and result to understand possible modifications
for the closed string propagator.®

In Sec. II we first discuss issues related to analytic be-
havior. In a one-loop tadpole, two legs of a given three-point
vertex are joined by a propagator specified by the length
parameter ¢ and the twist angle 8. The modular parameter 7
of this torus, for a fixed three-point vertex, can only depend
on ¢ and 6. We argue that 7 is an analytic function of the
complex parameter T =t + if. This fact simplifies enor-
mously the work of finding the region of integration in mod-
uli space, since it is sufficient to work with rectangular tori
(8=0) to find 7(¢) and extend this analytically letting
t—T. Such type of arguments could not be made in light-
cone diagrams because the propagator parameters are not
independent. Namely, between two interaction points, the
length of all tubes must be equal, so that this constraint re-
quires the nonanalytic equation Re 7y, =Re T, =+ . In
covariant field theory there are no such constraints and one
has analytic dependence of the modular parameters on the
propagator parameters, which play the role of complex co-
ordinates for moduli space.

We then turn to review the representation of a torus as
two sheets joined across two branch cuts, one extending
from O to 1 and the other from a point x up to . This
standard mathematical presentation has been used in recent
string theory works.® Any square torus ( — i7 real and posi-
tive) can be mapped by a Schwarz-Christoffel transforma-
tion into two sheets with cuts running from 0 to 1, and from
x, real and greater than one, to «. We verify that for a gen-
eral torus the same type of Schwarz—Christoffel map works,
but x becomes complex. The only complication that arises is
that if one wished to present the fundamental region of the
torus as a parallelogram, the cutsbetweenOand 1 and xto «
would be curved. This is an illustration of the idea, which
will be used in Sec. III, that general tori can be dealt with
using mapping functions that are an analytic continuation of
the ones used for rectangular tori.

In the two-sheeted construction x is the modular param-
eter. For the general case of a torus with a modular param-
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eter 7, xdependson 7, infact x(7) =4 ~ Y(7), where A(7) is
Picard’s automorphic function of the modular subgroup
(2).'""* We found the two-sheeted presentation of the
torus especially useful, since it was possible to cut the tadpole
graph in two pieces and relate via a Schwarz-Christoffel
transformation each piece to one sheet. From the relation
between x and 7 one can see what is the region in the x plane
that corresponds to the fundamental region of the modular
group (Fig. 4). Special limits for 7(x}, necessary for Sec. I1I,
are given for the cases x»1 and x - .

In Sec. III we concentrate on the naive closed string
vertex and give the Schwarz—Christoffel map of the tadpole
(p plane) into the two-sheeted sphere presentation (z
plane). The map is interesting in that p = §°¢, where ¢ is not
a meromorphic differential on the torus. It could not have
been a meromorphic differential, since given that it should
map into a tadpole, which has one external leg, it would have
to have a single first-order pole with a nonvanishing residue
corresponding to the length parameter. But this is impossi-
ble for meromorphic differentials, since the sum of their resi-
dues has to equal zero.'? The differential we have is a multi-
valued one, it has two zeroes of order + 1 and a simple pole
(like a square root of a Weierstrass function). We argue that
it can be used consistently to perform the conformal map-
ping.

Our aim is to find x( 7). While, in general, this is very
hard to do explicitly, it can be done both for 7-0, which
corresponds to x—1, and T— 0, which corresponds to
x— 0. Comparing with the limits given in Sec. II for 7(x),
one is able to relate T and 7. We find that for 7- 0 one has
that 7~ T. This implies that the neighborhood of =0 is
covered (see Fig. 10) and since this region contains an infi-
nite number of copies of the modular region we find that the
naive closed string vertex fails to give the correct region of
moduli space.

In Sec. IV we give some conclusions and discuss how
our arguments can be applied to simplify the discussion of
four-point closed string scattering.

Il. ANALYTICITY AND TORI AS TWO-SHEETED
SPHERES

A. Analytic behavior of the modular parameter

We first wish to argue that the parameters that define
the propagator, namely, ¢ and € form a natural complex pa-
rameter 7 = ¢ + i6 and that the modular parameter, which
in our case of interest is 7, is an analytic function of 7, name-
ly, we have 7(T). A similar situation should hold for higher
genus diagrams in covariant closed string field theory, each
propagator parameter is an unconstrained complex variable,
and the modular parameters must be analytic functions of
those parameters.

The process of evaluating a tadpole graph can be setina
formal way,® following the formalism of Ref. 13. As dis-
cussed in Sec. V of Ref. 6 for any closed string vertex, one has
two local coordinates, z, and z,, corresponding to the two
legs of the tadpole that are to be contracted, and two func-
tions /4,(z,) and A,(z,) that define mappings from the local
coordinates to the z plane, where the strings interact. Figure
1 shows the local coordinates and the images of the unit
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FIG. 1. Formulation of the general problem of evaluating a tadpole graph.
The process of identification between Q and Q' is indicated. The z, and 2,
variables are the local coordinates.

~ circles @, under the functions 4. A particular torus is built

gluing @ with Q’, which is the image of the circle @, in the
plane z,. The circle Q, itself is obtained from Q,, via the
transformation R, (z) = t /z. Here t is a complex parameter.
It seems fairly clear that the holomorphic differential on the
surface will depend on ¢ but not on ¢, which does not appear
anywhere. [ A mathematical proof of this would probably
use the analytic dependence on 7 of the identifying transfor-
mation T, = h,°R,o(h,) ' in the z plane.] It then follows
that the modular parameter will only depend on ¢. But ¢ is
nothing else than the complex propagator parameter in dis-
guise, since the annulus between @, and @, in the z, plane
corresponds to the tube that joins the two legs of the vertex.
The mapping Inz, takes the annulus into a cylinder
of parameter T =length+itwist= —Int= —In|¢|
— i arg(t). Since the modular parameter depends only on ¢,
it will depend only on T and not on 7.

B. Tori as two-sheeted spheres

The mapping that takes a torus into two sheets glued
across two cuts is just a Schwarz—Christoffel map. Since this
standard presentation for tori is one of the main tools for our
work we discuss it next, and illustrate how for tori that in-
volve a twist angle, the same mapping function works if one
lets some parameters become complex. The mapping func-
tion is nothing else than the integral of the holomorphic dif-
ferential on the torus. Consider the rectangular torus indi-
cated in Fig. 2. The short sides of length 7 are glued to each
other, and so are the sides of length 7 The torus is cut along
the line A4’ into two pieces, which can be glued together
following the pattern indicated by the signs to again form the
torus [Fig. 2(b)]. The left piece is mapped into the z plane
via

p(2) =Nf dz : (2.1)
o JZ'(Z —1)(z —x)
G. Zemba and B. Zwiebach 2389
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FIG. 2. Construction of a square torus (a) as a two-sheeted sphere (c).
Here x is the modular parameter.

Note that the sides that have to be glued to the other half go
into the slits from O to 1, and from a parameter x to . The
horizontal sides FE and F'E’, which are identified in Fig.
2(b), are effectively glued in Fig. 2(c). The powers of ( — 1)
in the above equation are there because around z;, =0,1,x
one must have p~ (z — z;)'/2 The normalization constant
N is fixed requiring p(E) = in/2, and T depends only on x
via the relation T /2 = p(E) — p(F). The other side of the
diagram will be mapped similarly, as shown in the figure, but
note that the pattern of signs is automatically inverted as it
should, in order to be possible to glue the two surfaces.’? This
is so because the diagram to the right of Fig. 2(b) has to be
rotated by an angle of 180° around O in order to get a config-
uration equivalent to the one on the left and therefore be able
to use the same mapping function for both.

In order to work with tori that have a twist angle one just
lets T"and x become complex, there is no need to change the
mapping function. We illustrate this in Fig. 3. There a com-
plex torus with modular parameter r = T' /27 = (¢ + i0)/
27 is cut again in half. One may think that the Schwarz-
Christoffel map that takes one of the pieces into the z plane
may even need irrational powers to smooth the corners for
arbitrary 6, but this is wrong. The fact is that in the p plane
the total internal angle at point E, which is identified with E /,

_is still 7 and therefore comparing with the situation in the z
plane where the angle is 277 one sees that the power of ( — 1)
is still needed. The same holds for point F. Thus the mapping
function is the same, the normalization condition is the
same, and the only thing that changes is the fact that the
relation between 7 and x (which is the same) requires x
complex, given that T is complex. It should also be noted
that the mapping function would not take the straight slits

2380 J. Math. Phys., Vol. 30, No. 10, October 1989

N ok
s il X ool
P F
oleenfe s
= TE,

FIG. 3. Construction of a general torus using two sheets with cuts.

indicated in Fig. 3 into the straight lines joining Eand E ' or F
and F'. It would produce an equivalent copy of the half torus
with curved butidentical linesjoining Eand E',and Fand F'.
This is perfectly acceptable. Equally acceptable curved slits
shown in dotted lines in the figure could be found that would
give straight lines in the p plane. It is interesting to realize
how the identification procedure between the slits works in
both cases. For the case displayed in Fig. 3, in which we have
curved slits in the z plane, the argument is the same as in the
case of the square torus. For the case in which we have
straight slits in the z plane, we notice that p(z) follows a
curve that is symmetric around O between points F and E’
when z goes around the slit and therefore the previous argu-
ment can also be applied to this case.

Any torus can therefore be mapped conformally into
two sheets (Riemann spheres) glued across slits cut from 0
to 1 and from a given point x to o . In this rather convenient
presentation for tori the modular parameter 7 for the torus
can be calculated as

*dz
T=—, Wy = _
“"ld vy (2.2)
o= | &, P=z22-1(z-x).
o ¥

Here dz/y is a holomorphic differential in the two-sheeted
surface [in fact, the integrand in (2.1)] and the @’s are the
integrals of this differential over the cycles of the torus.
These integrals are just complete elliptic integrals and T,
which just depends on x, can therefore be written as

7(x) =i[K(k")/K(k)], (2.3)
where K (k) is the complete elliptic integral of the first kind
(see the Appendix for notation), k2=x"!, and
k' =1 — k? is the complementary modulus.

Two simple observations can be made: (i) in the above

construction four points were singled out, namely, 0, 1, x,
and oo; the branches can run between any pair of points and
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one still gets conformally the same torus; (ii) for a given
value of x there are five other values of x that represent the
same torus, the six values of x are obtained when one consid-
ers the six SL(2,C) transformations that generate the per-
mutations of the points 0, 1, and «. These six transforma-
tions form a finite group, the A group or group of
anharmonic ratios'® relevant to the problem of the four-
point scattering in closed string field theory.'*

The function x(7) is in fact just 1/4(r), where A is Pi-
card’s function. Under modular transformations one has

x(r+1)=1—x(7), x(—=1/7)=x(7)/[x(7) —1].
(2.4)

The function x(7) is invariant or automorphic under some
important transformations of the modular group. One has
that

x[(ar+2b)/(2cr+d)] =x(7), ad —4bc=1,

(2.5)

where a, b, ¢, and d are integers. These transformations form
a subgroup of the modular group denoted I'(2), where
' (V) denotes the level N principal congruence subgroup of
the modular group I':

b
(N)= [(Z d) €l'la,d=1mod N, b,c=0 mod N].
(2.6)

Note that I'(#) is, in fact, a normal subgroup of I'. This
implies that the quotient T'/I"(2) is itself a group. This
group is just the A group, of six elements. Therefore I'(2)
has index six in A and consequently its fundamental region
F , [Fig. 4(a)] contains six copies of the fundamental re-
gion of the modular group % ;. Here %, is the region of the
upper 7 plane bounded by the vertical lines 7 = 4 1 and by
two circles of radius } centered at + 1. The subgroup I'(2) is
generated by the transformations

To7+2, 7-7/(1 =27), 2.7)

and the effect of the generating transformations on the boun-
daries of %, is indicated in Fig. 4(a). The function A(7) can
be expressed in terms of theta functions

A(7)=1/x(7) = 61 (0|7)/6% (0|7). (2.8)

Most important for our purposes is that A () [and as a con-
sequence x(7) ] maps ¥ , onto the Riemann sphere and so is
the N = 2 analog of the modular invariant J(7). In Fig. 4(b)
we indicate how each of the six copies of ¥ ; that make 7 , is
mapped under x(7).

For the study of the tadpole diagram we need to know
the behavior of x(7) for special situations. It is possible to
obtain asymptotic expressions for 7 for some regions of x.
First consider the case when x— 1. Inspection of Fig. 4(b)
shows that 7— 0. In this case kX — 1 and it is possible to expand
both integrals using Eqgs. {A3) and (A4). The result for 7is

(2.9)

Note that the above function indeed maps a neighborhood of
x = 1 into the zero angle wedge at 7 = 0, as shown in Figs.
4(a) and 4(b).

T(x) =

_ i +0( x—1
In[(x—1)/16] In(x—1)
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FIG. 4. (a) Fundamental region % , of I'(2) represented in the 7 plane
showing the identifying transformations. (b) Image of ¥, under
x(r) =A~'(7). Here o = €™, and p = £'*",

The other limit of interest arises when x— . In this
case 7— oo and one finds the following expression:

7(x) = (i/m)[In(16x) — 1/2x + O(x " ?In x)]

(x— o). (2.10)

Ili. THE CONFORMAL MAP

The aim of this section is to provide the tools for the
determination of the region in moduli space covered by the
one-loop tadpole diagram using the bilocal, naive extension
to closed strings of the vertex that Witten proposed for open
string field theory [Fig. 5(a) ]. In this vertex, three cylinders
representing free propagating closed strings join in a sym-
metrical way. The total angle at each interacting point is 3.
The one-loop tadpole graph we wish to study is shown in Fig.
5(b). There is one incoming string (C) that splits into two
strings at the interaction points B,D and a closed string pro-
pagator pairing these two strings.

To find the region of integration in moduli space, we
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O
{a) {b}

FIG. 5. (a) Diagram representing the naive extension of Witten’s vertex to
closed string field theory. Here I, I, and III represent the three interacting
closed strings. Note that B is one of the two interaction points. The total
angle at any interaction point is 37 (b) The one-loop tadpole graph. The
intermediate loop parameter is called 7. The marked points are in corre-
spondence with the ones in Figs. 6-9. The diagram is cut along the CBADC
and EO lines.

perform a conformal mapping from the Riemann surface for
the tadpole [Fig. 5(b) ], which is conformally equivalent to
a torus with one puncture and to a double-sheeted complex
plane with two cuts. The conformal mapping is carried out in
three stages. First, we cut the original diagram along a line
that contains the two interaction points of the vertex and
slices the external propagator along a diameter [line
CBADCin Fig. 5(b)]. We also cut along the curve EQin the
loop portion of the diagram and we end up with two pieces.
For the moment, we assume there is no twist in the propaga-
tor. Each one of the two components of the diagram can be
represented as the portion of the complex plane shown in
Fig. 6. Segments £4 and E ‘A ' are identified in this construc-
tion. The other segments of the boundary are glued with the
corresponding ones of the symmetrical piece representing
the other half of the diagram. The upper half w plane can be
mapped to this region by a Schwarz—Christoffel transforma-
tion
w (w? — B2)1/?
p(w) = ZNJ; dw (wz _ 1)1/2(ﬁwz _a2)1/2 '

3.1)

le.

¥ E
0 JL -
R EI' : I

FIG. 6. Region of the complex plane corresponding to half of the tadpole
diagram for the case of zero twist angle.
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-8 -1 01 a B

FIG. 7. The region of the complex w plane that is mapped by (3.1) to the
region of Fig. 6. Because of the symmetry and overall normalization free-
dom it depends on the position of two points a and /3, as shown.

Here N is a normalization factor. The mirror symmetry of
the diagram around the real axis in the p plane (Fig. 6) is
realized as a reflection symmetry around the imaginary axis
in the upper w plane (Fig. 7). By virtue of this symmetry, the
origin in the w plane is mapped onto the origin in the p plane
and the mapping depends only on two real numbers, a and
B. Points + 1 (E’',E) are mapped onto points p =
Fi(#/2). Points +a (A4',4) are mapped onto points
p = Fi(n/2) + t /2, where tis the Schwinger parameter of
the loop propagator. Since the internal anglesat E, E’, A, and
A' are w/2, the exponent for the factors (w4 1) and
(w+a) is (—1). Points + B (D,B) are mapped onto
points T i(#/4) + t /2. The internal angles at B and D are
37/2 and therefore the exponent for the factors (w + 5) is
( + 4). The external state (C) is mapped to infinity.

In the next stage, we map the upper half w plane to the
whole complex z plane using the transformation z = w?. It is
useful to define x = a® and y = B2 After performing the
same set of operations for each half of the original diagram
we end up with two sheets, each one with two cuts on it: one
between 0 and 1 and the other from a point x up to infinity
(Fig. 8). From this picture, it is clear that y plays the role of
an auxiliary variable and that x is the modular parameter.
The segments EA and E A’ that had to be identified in the w
plane are effectively glued in the z plane across the slit that
goes from 1 to x. In the final stage, opposite sides of the cuts
of the two sheets are identified in order to recover the origi-
nal Riemann surface. The final expression for the mapping is

[z

FIG. 8. The region of the complex z plane that is mapped by (3.2) to the
region of Fig. 6. Here x = a? and y = B2 are real numbers for the case of
zero twist angle.

G. Zemba and B. Zwiebach 2392



then given by

p(z) = Nf dz’(
o Z'(

As we already pointed out in the Introduction, the differen-
tial in (3.2) is not meromorphic. To evaluate the integral we
have to specify the sign assignments given to the object that
is being integrated in each sheet. On the first sheet (Fig. 8),
we define the integrand of (3.2) to have opposite signs across
a slit that goes from O to 1 and across a slit from x to y. For
points beyond y we assign the same sign to points immediate-
ly above and below the cut in the surface. Signs are complete-
ly reversed on the second sheet. It is possible to check that
with this definition the object that is being integrated in
(3.2) is well defined over the double-sheeted plane.

Asit is customary, we normalize all closed string widths
to 7. The conditions that we will impose on this map are the
following: (a) let the strip width between E and E’ be 7,

p(E) —p(E") = im; (3.3)
(b) let the length of segment AE be equal to the length of

segment 4 'E "and both should equal f /2, where ¢ is the inter-
nal propagator parameter,

4 2
Z —y) )V. (3.2)

zZ— 1 —x)

p(A") —p(E’) =p(d) —p(E) =1/2; (3.4)
and (c) let the strip width between B and D be 7/2,
p(BY —p(D) = in/2. (3.5)

The overall normalization constant N can be fixed by consid-
ering the limit z— «. In this case the integral becomes a
logarithmic one and application of condition (c) gives
N =1 Conditions (a) and (b) leave us with two elliptic
integrals:

1
27r=f dz(—ﬂ-_L)m, (3.6)
o z(l —2)(x—2z)
=_ ( ¥ =2) )m. 3.7)
1 zZ(z—1)(x —2) ’

The first one determines y as a function of x and the second
one gives the intermediate time ¢ as a function of x and y.
Using both conditions we can find # as a function of x alone.
For the case in which the intermediate loop propagator con-
tains a twist we consider it as being performed before gluing
the two matching circumferences of the loop. Half of the
total amount of the twist is assigned to each component
piece. We may still use the previous technique, provided we
extend ¢ to a complex parameter 7 = ¢ + i6, in which ¢ is
interpreted as before and ¢ is the twist angle that runs
between — 7/2 and 7/2 (Fig. 9). We rely on the analyticity
of (3.6) and (3.7) to conclude that these expressions can be
extended to the case of complex T, provided x and y become
complex variables. For later convenience, we notice that
(3.6) and (3.7) can be rewritten as (Ref. 15)

27 = [/x(y — 1) ]11(a5, k), (3.8)
T=[/x(y— 1) ][ — (a} k) +yK(k)]. (3.9)

Here K (k) and [1(a? k) are complete elliptic integrals of the
first and third kind, respectively. The parameters & (modu-
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FIG. 9. Region of the complex plane corresponding to half of the tadpole
diagram for the case of complex T = ¢ + /0.

lus) and a are given by
k?=(x—1y/(y—x, k3=1—-k?,
=(x—1)/x, ai=1/(1-yp).

It is worthwhile to realize'® that there is an expected
symmetry in expressions (3.6) and (3.7). In order to see
this, consider again Fig. 1. It is clear that the answer for the
tadpole amplitude should be independent of an arbitrary ro-
tation of the circles Q, or @, around the origin by any integer
multiple of 277. According to the interpretation of the propa-
gator parameter T = t + {6, given in Sec. I1, a full rotation of
the circles results, in our conventions, in a shift of 7' to
T + 7. Under this operation, we should get the same torus
up to a disconnected diffeomorphism. It can be verified that
when x—»1— x and y—1 — y, (3.6) is invariant and (3.7)
shifts according to 7— T 4 #7 [this requires a short calcula-
tion using the invariance of (3.6)]. But x -1 — x corre-
sponds to 7—~1 + 7 [Eq. (2.4)] and indeed we recover the
same torus up to one of the generators of the modular group.

The region of integration in moduli space: Our strategy
for determining the region of moduli space covered by the
diagram consists in finding the limit curve in the 7 plane,
namely, the boundary of the region in moduli space. To do
so, we consider the boundary of the region &% ; in the T
plane, defined as the semi-infinite rectangle that satisfies
Re(T)>»0and — #/2<Im(T)<w/2. This region represents
the standard free propagator. Our calculation of x(7") im-
plies that we know 7( 7). The limit curve is the image of the
boundary of £ ; in the 7 plane under this map. Knowledge
of this curve is enough to determine if the diagram repro-
duces or not the correct integration region in moduli space.
In order to gain some understanding of the mapping, it is
useful to consider some special limits in which analytic
forms can be found for the previous expressions.

First we would like to consider the limiting case defined
by x— o0 and y— o0. For simplicity we consider the case of
real x and y and then we extend the results by analyticity, We
look for an approximation to the integral (3.6) for the case
in which both x and y are real and large. Since x < y, if x — o
we get the condition y = 4x + O(1), in order that (3.6) be
true to lowest order in x ~ . It is possible to obtain the follow-

(3.10)
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ing asymptotic relations, as it is shown in the Appendix:

y=4x—3—H(1/x) + O(x~?), (3.11)
T(x)=Inx+3In(i¢) + O(x™"). (3.12)

Using (2.10), we see that in this limit 7(x) and 7(x) are
similar and to leading order we have a linear dependence,

T(x) = —imr(x) (x-—-o0), (3.13a)
which implies
7= (i/m)T (T- ). (3.13b)

Subsequent terms do not follow this relation. This is the ex-
pected result since the region that we are considering corre-
sponds to the case of both Re(T) and Im(7) large. In this
region, the mapping that relates 7 and 7 is the mapping
between two strips and therefore it should be of the form
(3.13b). From a physical point of view, it is clear that in this
limit the length of the intermediate tube is very large and so
T is essentially the modular parameter independently of the
details of the gluing at the end points of the tube.

The second limit we will consider is given by x— 1,
which corresponds to small intermediate times and is char-
acterized by @, —0and k, - 0. Note thatifx— 1 theny— 1, in
order that (3.6) remains infinite. By using the asymptotic
expansion for I1(a?k), given in the Appendix, and setting
x =1 + ¢, where € is small, (3.8) gives

(17— tan~!

€= 16(});l)exp[_
y

=

y—1

+0(G55)| ot

In the limit € -0, we can invert the above relation to get
p(x) =14+ 7/In*(x — 1) + O(In"*(x — 1)). (3.15)

The time integral can be evaluated in a similar fashion, using
expansions for the elliptic integrals given in the Appendix.
[We notice that & = O(€) while k2 = O(eIn* €).] The re-
sult is

1 2—
7= 51 1__y_1)
2 v +"’4(2 p—1
+ O(€1n* e). (3.16)

Note that 7 can also be written in terms of x by replacing
(3.15) in (3.16):

T(x) = — (7/2)[/In(x — )] + O((x — DIn(x — 1)).
(3.17)

(3.14)

Recalling (2.9) we observe that in this limit there is also a
linear relation between the leading-order terms of 7(x) and
7(x), given by

T(x) = —i(w/2)7(x) (x-1) (3.18a)
and therefore
T=i(2/m)T (T-0). (3.18b)

This last property implies that the modular region will be
covered an infinite number of times. This can be seen from
the fact that as 70, the part of the neighborhood of =0
that is in %  will be mapped under (3.18b) into a similar
neighborhood around 7 = 0, as shown in the bottom portion
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FIG. 10. Qualitative picture of the modular region covered by the one-loop
tadpole graph.

of Fig. 10. Such a neighborhood contains an infinite number
of copies of the modular region. We see that the vertex fails
in providing a finite number of coverings because it does not
reproduce the familiar wedge around = = 0 shown in Fig.
4(a).

For completeness, we now discuss briefly how to obtain
a qualitative picture of the limit curve in the 7 plane. The
interesting part of this curve is the image of 7= i@ in the 7
plane. We wish to find the value 7, of the modular parameter
for T=1i(7/2) (see Fig. 10). For x of the form
x=1+4+7Im(x), yisoftheformy =1+ iIm(y), ascanbe
verified using Eq. (3.6), and 7 is of the form
7= —1+4iIm(7) (Fig. 4). Equation (3.7) and the values
of x and y imply that T'is of the form "= i(#/2) + Im(T).
The actual value of Im(7T) for a given x can be found by
solving Egs. (3.6) and (3.7) numerically. We find that
Im(x) =0.103 and Im(y)=1.382 correspond to
Im(7) = O and therefore to T = i(w/2). The corresponding
value of 7, lies on the segment that separates region .S, from
Sswith} < Im(7,) <+/3/2 (Fig. 4). Given (3.18b), we know
T for small values of 7, and therefore a continuous line start-
ing at 7 = 0 and ending at 7 = 7, must join all points corre-
sponding to purely instantaneous twists 7' = i@ (Fig. 10).
We observe that the curve does not appear to have any spe-
cial modular properties and that the modular region is cov-
ered an infinite number of times.

IV. CONCLUSIONS

The method developed here for the determination of the
limit curve in moduli space is quite general and may be ap-
plied to test other types of vertices. It is based on the repre-
sentation of tori as two-sheeted spheres and the analyticity of

G. Zemba and B. Zwiebach 2394



the modular parameter with respect to the closed string pro-
pagator parameter.

As this paper has further confirmed, the naive closed
string vertex is not a satisfactory vertex for covariant closed
string field theory. It has been shown that it fails in giving the
correct region of integration in moduli space for the one-loop
tadpole. The reason for this failure is the infinite covering of
the modular region that arises for very short intermediate
times. This behavior can be traced back to the fact that in this
vertex the interacting strings overlap too much. A condition
that must be fulfilled by a given vertex, in order to achieve a
finite number of coverings, is that it should be able to map
the neighborhood of T'= 0, which is in 7 ;. to the familiar
wedge around 7 = 0 in the modular plane. In fact, it is possi-
ble to obtain such behavior, as it is shown in Ref. 17. In view
of the failure of the naive vertex in producing the correct
answer for the tadpole problem, one may still consider some
unlikely ways out. One possibility, suggested in Ref. 18, is
that the quantization of covarient closed string field theory
may not be straightforward and the tree-level Feynman rules
need to be modified at the loop level. Another possibility is
that even though this vertex fails in providing the right an-
swer for surfaces with one puncture, it may still be capable of
producing the correct answer for surfaces with two punc-
tures or more.

Our method of analysis of closed string amplitudes by
considering their behavior for real values of the closed string
propagator parameter can be applied to the problem of four
particle scattering in covariant closed string field theory. In
fact, the open string results of Ref. 19 could be used as fol-
lows to verify that the closed string extension does not
work.* Such results define a function A (z), which gives the
SL(2,C) invariant cross ratio as a function of the intermedi-
ate open string propagator parameter. For closed strings,
one continues analytically, letting — T. As argued repeated-
ly in Ref. 17 we, in fact, know what A (7} would be. In order
to get the complete region of integration A(7) must equal
A(T), where A is a map from &, into two copies of the
fundamental region of the A group. ' It is possible to decide
whether or not A = A4 by considering their behavior on the
real axis.
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APPENDIX
1. Notation and definitions

Here we give the definition of the complete elliptic inte-
grals according to Ref. 15. The complete elliptic integral of
the first kind is defined as

dt 2 de

1
o V(1 -1 —k%?) o J1—kZ%sin’ 8
(A1)
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whereas the complete elliptic integral of the third kind is
defined as

I(a?k) EJ
0

_ J de
o (1—a?sin® V1 —kZsin’ 0
Here a’# 1. In both cases & is any complex number known
as the modulus.

! dt
(1 —a®tH)y(1 =) (1 =

k3%t?)

(A2)

2. Useful expansions for the elliptic integrals

The following expansions for the elliptic integrals of the
first and third kind are quoted from Ref. 15. For the elliptic
integrals of the first kind,

K(k)—ln(k) l[m( ) 1]/«2

9 4 71, :
() e w0 @y
K(k) = (7/2)[1+ 4k + k% + -] (k=0). (A4)
For the elliptic integrals of the third kind,
M(a? k) = (w/2)(1 +1&® + k*+ )  (ka-0),
(A5)

M(a%k) =[1/(1 — a®)}[In(4/k")

+V —ad*tan™'(V —a®)] + O(k?). (A6)
The last expression is valid for k> <1 and — &*>0. In all
cases k' = \/1 — k2 is the complementary modulus.

3. Calculation of asymptotic expressions of relevant
elliptic integrals

We look for an approximation to the integral (3.6) for
the case in which both x and y are real and large,

f ‘ dz(ﬁ__)‘” — o
0 zZ(1 —-2)(x—2)

If x— 0, we get the condition y = 4x + O(1), in order that
(A7) be true to lowest order in x~!. Next we set

y=4x+£(x),
where

E(x) =ag+a/x+ay/x* + -+
Expanding the integrand, we find

y—z\\2 [ 1 1
=214t (a, 43 +-L
( ) t oy Gt + o

xX—2Z
(o))
' 6 T 76

4+ O(x™3).
Replacing in (A7) we get
27 + (1/x), + (1/x) I, + O(x—3) =2,
where

(A7)

_f _dz__.(a +3Z)
4 Jo Jz(1 —2) ¢ ’
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1 2
h=1( _dz_[(al_a_o)gaowf_zz].
4 Jo Jz(1—2) 16 8 16
By requiring I, =0, I, =0, etc., we get
y=4x —3—(/x) + O(x7?). (A8)

In order to evaluate the time integral (3.7) itis convenient to
define

1 x (u~z) )I/z
Wy=—| dz| —————} |, A9
Hxu) 2,[ z(z(z—l)(x—z) (A9)
so that
'y
H(x,p) = t(x,x) +f duit-(;’—u). (A10)
x u

Here

=—%—1n 4x + O(x™ 1),

1 J"‘ dz
txx)y=—| ———
201 Jz(z—1)

(A1l)
di(x,u) __LJ'" dz
du 4 Ve(z= D) (x—2)(u—2)
=—!———K(k), (A12)
Wx(u—1)
where
k?=(x—Du/(u— Dx. (A13)

We consider x <u <y. When x and y are large k>—1 and
k20, so that we can use (A3) in (A12) and replace this
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result for the integrand in (A10). Carrying out the integra-
tion in (A 10) we obtain the desired result (3.12).
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Relations are exploited among Clebsch—-Gordan (CG) and Racah coefficients in the algebra
su, (2), known as a deformation of su(2). These are used to show that the Yang-Baxter (YB)
relation for the IRF (interaction round a face) model results from one of the symmetry
relations for the 9-j symbol specific to su, (2), and that in an asymptotic limit this YB relation
becomes the YB relation for the two-dimensional vertex model. The Racah coefficient, which
has a particularly simple dependence on g, is efficiently used such that an asymptotic limit of
the Racah coefficient is the CG coefficient and another limit gives the factorized S matrix of

the vertex model.

I. INTRODUCTION

The quantum theory of angular momentum, i.e., the al-
gebrasu(2), has been widely used in many branches of phys-
ics.!~® In recent years, extensive studies on Yang-Baxter
(YB) relations®’ (sufficient conditions to yield commuting
transfer matrices specific to exactly solvable models) have
inspired generalization of Lie groups, called quantum defor-
mations of the Lie groups.*”!! In particular, the generalized
algebra of su(2), called the algebra su, (2),*'* has become
of great importance in studies of the braid group,'*'* six-
vertex algebra,'® etc.

The Clebsch-Gordan (CG) and the Racah coefficients,
which play central roles in the theory of angular momentum,
were generalized in terms of g analogs by Askey and Wil-
son.'” Recently, these g analogs have been identified as the
CG and Racah coefficients of the algebra su, (2). Kirillov
and Reshetikhin!® have discussed relations among these co-
efficients and the YB relations. The present author'® has
pointed out that a known relation among Racah coeflicients,
which describes one of the symmetry relations for the 9-f (or,
generally, the 12-/) symbol, is a kind of YB relation for the
IRF (interaction round a face) model’ even in the frame-
work of su(2).

The aim of this paper is to present some new relations
among the CG and the Racah coefficients of the algebra
su, (2) and to obtain YB relations in terms of these coeffi-
cients. One of our devices lies in expressing the CG coeffi-
cient as an asymptotic form of the Racah coefficient: The
corresponding relationship in su(2) was given by Bieden-
harn.'® This provides efficient manipulation that circum-
vents the very involved expression of the CG coefficient in
su, (2). We show that one of the symmetry relations specific
to a kind of 9-j symbol, which is described in terms of three
Racah coefficients, produces the YB relation for the IRF
model. In an asymptotic limit, the YB relation becomes that
for the two-dimensional vertex model’ which concerns the
factorized S’ (R) matrix of the process

Jmy + pmy—jimy + jm, (1.1)

In the algebra su,(2), many of the quantities are func-
tions in the indeterminate g (Refs. 8-17). While the g depen-
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dence of the CG coefficient is very complicated,'>!® the
expression of the Racah coefficient is easily transcribed into
the corresponding expression of the algebra su(2) and vice
versa. In our formalism, this advantage of the Racah coeffi-
cient is utilized as much as possible.

We use the 6-j symbol in place of the Racah coefficient:
The distinction between these lies in a sign factor. It is partly
because the 6-j symbol, as well as its modified form, is used in
Ref. 13 and partly because we often use symmetries of the 6-f
symbol.

In Sec. II, a brief review is given of the algebra su, (2),
the CG coefficient, and the 6-j symbol (the Racah coeffi-
cient). Sections III-V constitute discussions on the CG coef-
ficient, the 6-j symbol, and various new relations among
them. In Sec. III, the CG coefficient is described as an
asymptotic limit of the 6-j symbol. Symmetry relations for
the CG coefficient are then deduced from those for the 6-j
symbol. In Sec. IV, another asymptotic limit of the 6-j sym-
bol is presented which plays a decisive role in discussing YB
relations. Section V is devoted to various relations among
CG coefficients and/or 6-j symbols. It includes two rela-
tions, each of which describes the 6-j symbol as a weighted
linear sum of CG coefficients. In Sec. VI, a kind of 9-j symbol
is defined. It has the same kinds of symmetries as the 9-f
symbol of su(2). In Sec. VII, the operator (matrix) R is
defined as a quantity to express the overlap of a pair of cou-
pled bases, one specified by ¢ and the other by 1/g. Relations
among R, CG coeflicients, and 6-j symbols are discussed. In
Sec. VIII, it is shown that one of the symmetry relations for
the 9-j symbol is rewritten as the YB relation for the IRF
model and that its asymptotic limit gives the YB relation for
the vertex model. The operator R is interpreted as the factor-
ized S matrix of the vertex model. Concluding remarks are
given in Sec. IX.

Ii. PRELIMINARIES ON su,(2), THE CG COEFFICIENT,
AND THE 6-f SYMBOL

This section is devoted to a brief review of the algebra
su, (2). In particular, algebraic expressions for the CG coef-
ficient and of the 6-j symbol, discussed by Kirillov and Re-
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shetikhin,'® are summarized. For recent studies on g analogs
in group representations, see works by Milne.?%%!

The algebra su, (2) is generated by the relation® "
[X+H/2]=FX*, (2.1)
and
_ gt —q-H”
X* X =t (2.2)
q7—q 7

where ¢ is an indeterminate defined as a positive number. In
the case of g— 1, the operators X * and H /2becomeJ * and
J, of the algebrasu(2) (Refs. 1-5), respectively. The gener-
ators H, X * acting on the bases | jm) yield

X E|jm)y = (GFmli+m+ 1D jm+ 1), (2.3)
and

(H/2)| jm) = m| jm). (2.4)
For a real number n we define [n] by
[n] — (qn/Z _q—n/Z)/(ql/Z __q—l/Z), (25)

Our definitions of ¢ and [n] are the same as those given in
Ref. 13:gand [ 7] here correspond to ¢~ 2 and (#) of Ref. 12,
respectively. The product [1][2]--[n] is denoted as [n]!.
We postulate that [0]! = 1and [#]! = 0if n < 0. Notice that
(2.6)

The symbol [#] with a natural number » is rewritten as

[n] is invariant under replacement of g by 1/¢.

[] =g = D72 4 gn=D72 4 oo p gD s
(2.7

Some miscellaneous relations for [n] are

g~ "*[n'1+ [nlg"? =[n+n'), (2.8)
(27 +1]{2%7 + 1]
=[2lj=7]+ 11+ [2(Jj—J1+ 1) +1]
+ -+ [205+7) + 1], (2.9)
and
(nl[n +n"] = [n+n"][n']=[n—"1[n"]. (2.10)

The comultiplication (coproduct) A,, which acts on the
product of two bases, v; ® vy, is defined such that

AX*)=X,*eq™ +q " oX£,
and
A,H)=H,el, +1,8H, (2.11b)

where I denotes the identity. The expression (2.11a) is a
generalization of

Jr=J*tel +1eJ,*, (2.12)

defined in the algebra su(2). Notice that the right-hand side
(rhs) of (2.11b) is independent of g. In the case ¢— 1, most
of the expressions throughout the paper approach those of
su(2). The coupled basis |( j; ji, )jm), is defined such that
the comultiplication A_ (X *) acting on it yields (2.3). The
algebra on su, (2) is a Hopf algebra.®~"* This means that the
antipode and counit on the generators X * and H are prop-
erly defined. This specific feature is not referred to explicitly
in the following discussions.

The CG coefficient is defined in the usual way as the
expansion coeflicient between the set of uncoupled bases and
the set of coupled bases. It is expressed as'?

(2.11a)

(jrfomymy| jm) g = A(Jy jof ) g0 X = XD+ 2w dema =MLy oy Wy — my )y 4 ma]!

X Lz = malllj+ m]lLj = mlt2+ 1)} (= D =hherenr

X{zWMji+i—j—zWMji—my—z2WMjo+ my—2WMj—jo + my + 20 j—jy — my + 211371

(2.13)

The sum over z is taken such that none of the factorials could have a negative argument. We have defined

A(abe) =( [ _a+b+C]![a—b+c]![a+b_c]!)1/2’

fa+b+c+ 10
and

x(a)=ala+1).

(2.14)

(2.15)

The symbol A (abc) is invariant under replacement of ¢ by 1/g, as is shown from (2.6). [ The symbol A is used also to denote
comultiplication (2.11), which, however, will not give rise to serious confusion.] The symbol x(a) is the one denoted as ¢{a)
in Ref. 13. The expression (2.13) is the g analog of the formula by van der Waerden and by Racah." It is normalized so as to be
unity in the case of j = m =, + /..

For later convenience and for checking expressions in this paper, we give (2.13) in a few special cases:

(j]'m——m[OO):(—l)j'"’q"‘/2 VI2i+ 1], (2.16)
(j1j2m1m2|ji)q = (- 1)j|~m.q{—X(j|)+x(jz)~X(j)+2r11.(j+l)}/4
( [% + 11U, + mi s + mo 1t + o — 1! ) 217
(i —m W —m NGy =+ =i+ + i NG+ +7+ 1]
2398 J. Math. Phys., Vol. 30, No. 10, October 1989 Masao Nomura 2398



The 6-j symbol is defined in the conventional way as the transformation coefficient between different coupling schemes of
three angular momenta. It is expressed in terms of CG coefficients by

[abe
d ¢ f r

] = (— D> 4 edmmslem), =1 Y (abmym,lem,,),

X (bdm,ms|fim,y), (afm,myslem) /3 [2e + 11[2f + 1].

(2.18)

The 6-j symbol multiplied by ( — 1)+ 2+ <+ gives the Racah coefficient, W(abcd;ef). Kirillov and Reshetikhin'? deduced
the following expression of the 6-j symbol, using (2.13) and (2.18):

oo

Xlz—d—c—ellla+b+c+d—zVa+d+e+f—zI[b+c+e+f—z]} L

The rhs of (2.19) is simpler than that of (2.13), the
expression for the CG coefficient, since (2.19) is described
only in terms of symbols [ ]!. From (2.6) or (2.19), we see
that the 6-j symbol is invariant under the replacement of g by
1/¢: Because of this, we abbreviate the suffix g or 1/g of the
6-j symbol. Furthermore, expression (2.19) is transcribed
into a known expression for the 6-jsymbol of su(2) by means
of replacement of all the symbols [#]! by »! . This transcrip-
tion cannot be applied to the expression of the CG coeffi-
cient, (2.13), in general. This transcription is not available
even with such symmetric CG coefficients as, for example,
(J1200] J0),.

Various symmetries of the 6-f symbol that are known in
the algebra of su(2) (Refs. 3 and 5) hold also in the algebra
of su, (2). That is, the 6-/ symbol of this paper is invariant
under any permutation of columns and also under an inter-
change of upper and lower arguments in each of any two of
its columns. Further, Regge’s symmetry holds.??

The CG coefficient and the 6-f symbols in the algebra of
su, (2) fulfills the same forms of orthogonality relations as
those®” in the algebra su(2). For example, it holds that

z(jljZmlmZUm)q(jljZmllmZ'ljm)q
j

= &(m,;m," )6(m,m,’). (2.20)

lim (- 1)*°

S— oo

[ a b e
S+d S+c¢c S+

/]J[TSTﬁ

_[(—1)"*"+"+"q‘f/2(a,b,f—c,d~f|e,—c+d)q/J[2e+1, g>1,
(=1t (abe—f, f—dlec—d),/[2e+ 1],

Let us show that the CG coefficient has the symmetry,

(jljzmlmzlfm)q =(— WY —m—my|j— m)i,g

} = A(abe)A(acf)A(cde)A(dbf) Z( —Dz+1{[z—a—-b—elllz—a—c—fll[z—b—d—f]

(2.19)

r

lIl. THE CG COEFFICIENT AS AN ASYMPTOTIC LIMIT
OF THE 6-/ SYMBOL

Here, we show that the CG coefficient can be expressed
as an asymptotic limit of the 6-/ symbol: The corresponding
relation in su(2) is well known.>!® The relation provides a
way to circumvent uses of the involved expression (2.13).

We prepare the following expression for studies of var-
ious expressions in asymptotic limits:

1
1S +alt with a very large §
[S+b]!
~[[S]"—”q{"‘“"""”}’4, if g>1 (3.1a)
~ [S]a—bq—{x(a)—x(b)}/ft’ ifq<1. (3.1b)
The factor [S] on the rhs is asymptotically

&%(g"* —~q~"?) in the case
g 5%/(g7"?*—¢"?) inthe case of g < 1.
In order to relate (2.19) with (2.13), let us replace la-
bels of (2.19) such that c»S + ¢, d—»S+d, and /(=S + f.
We replace further thelabelzasz—2S —z+a+ b+ c+d
and z—2S5 + z + ¢ + d + e, respectively, forg>1and g < 1.
We subsequently make S— oo in (2.19), using (3.1a) and
(3.1b). We compare the resultant expression with (2.13) to
obtain

of g>1 and

(3.2a)

g<l. (3.2b)

(3.3)

Proof: We prove it separately for the casesof g> 1,4 < 1,and ¢ = 1. In the case of ¢ > 1, we replace ¢ in (3.2b) by 1/¢, and
compare with (3.2a). After changing notations suchthata =j,, b =j,, e =j,f—c=m,,d — f= m,,andd — ¢ = m, we get
(3.3). To prove (3.3) in the case of g < 1 we replace ¢ in (3.2a) by 1/g to compare with (3.2b). Puttinga =j,, c — f=m,,

f—d = my, etc., we get (3.3). The relation (3.3) with ¢ = 1 is well known? in the algebra su(2).

Various symmetry relations for the CG coefficient other than (3.3) can be deduced from (3.2a) and (3.2b) being

combined with symmetry relations for the 6-j symbol. Among them, we have

(jrjamimy|jim), = ( — l)j'+j2_j(j2j1m2m1|jm)1/q
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i 2+ 11\, .. .
=(=1)y:——m m./Z(LJ__) — .
( ) q (2, 4 1] (jrj—mym| om,), (3.5)
={(Ji +L+m)/2,(jy +jo—m)/2,( )y —Jo + my— my) /2,y — o — my + my) /2 o i — o)y (3.6)

The last relation, which expresses Regge’s symmetry>* of the CG coefficient, is linked to Regge’s symmetry®” of the 6-j symbol.
Kirillov and Reshetikhin'?® deduced (3.4) and (3.5), using (2.13): A misprint in their expression is corrected in (3.5). The
combination of (3.3-3.6) generates ¢ analogs of all the known symmetry relations for the CG coefficient of su(2).

It is possible to define the g analog of the 3-/ symbol by the rhs of (3.2). We should multiply, however, an extra factor
gt €+ 9+)/6 where + means + or — accordingtog>1org < 1, tounify (3.2a) and (3.2b). Symmetries of the 3-j symbol,
rewritings of (3.3)—(3.6), are linked to the symmetries of the 6-j symbol.

In a previous paper,” the author presented a new expression of the 6-j symbol in the algebra su(2). Transcription of it in
the g analog is done with the replacement of every factorial n! by its ¢ analog [#]! so as to yield

b
[a e} = (— 1)+ **<(bae) (cde)/{(caf Y (bdf )}
d ¢ fl
XZ (=D " la+zlMle+f—zN[b—c+d+z]! (3.7)
T la—zb—e+zl[bte+z+ 1 —c+f+z][ —b+c+d—z]!’ ’
where
— ! — 1 1\ 172
(abc):([a+b cllla b+c].[a+b+c+1].) : (3.8)
[—a+b+c]!
it is equivalent to (2.19), though these are apparently different from each other.
There is another expression of the CG coefficient, which is apparently different from (2.13):
(jlj2mlm2Um)q = (- l)j.—m,q{—x(j,) + x(a) —x(DI/4 + mi(m+1)/2
( L —m ' —m M+ m)t[j—mlllj, +Jp —j1N2 + 1] )‘/2
[ +m M+ m M~ +i0 —f 4+ 1A+ +j+ 1]
z, z(j+m [j1+m1+Z]![j2+]—m —Z]!
X (_l)q(1+ + 1)/2 . . 1 . (39)
2z: (21 j—m =zl jy —my =z j, —j + m; + z]!

Proof: We prove separately the cases ¢> 1, g < 1, and ¢ = 1. In the case of ¢ > 1, we replace the labels in (3.7) as a— b,
b-S+ficoe,d-S+c,e-S+d, f-a,and z— —z + ¢ + e — f, and make S— « using (3.2a). We subsequently change
notations of labels such that a =j,, b =j,, e =j, f— ¢ = m,, d — f= m,, d — ¢ = m. We compare the resultant expression
with (3.2), and get (3.9). In the case of g < 1, we first putg = 1/¢" in (3.9) soas to be ¢’ < 1. Next, we use (3.4) to rewrite the
left-hand side (Ihs) as ( — 1) *%= 77 ( j,j,m,m,| jm),, . We subsequently interchange labels as j,<>j, and m,<m, together
with the replacement of zby j — m — 2. After replacing ¢’ and z’' by g and z, respectively, we get (3.9) with g < 1. In the case of
g = 1, the expression (3.9) becomes the so-called Racah’s first form.”

The expression (3.9) is to (3.8) what (2.13) is to (2.19).

IV. ANOTHER ASYMPTOTIC LIMIT OF THE 6-/ SYMBOL

In this section, we give another asymptotic limit of the 6-symbol.

Let us replace labels of (2.19) such thatb—>S + b,c—>S + ¢c,e~S + ¢, /-~ + f,and2— 25 4 2’ soas to make S— 0. It is
shown that the label z’ does not exceed the minimum of @ + b + ¢ + danda + d + e + f and that the term of the largest order
in S'is specified with the largest possible value of Z', irrespective of g. Using these, we transform (2.19) separately for the cases
of g>1 and g < 1. We get the following result, valid for a positive number g:

nm<_1)zs+a+b+e+d[a Stb S+e [2S+e+f+11!=[T<a,d,f—c,b—ﬁb—e,e—c>, b+c<e+f,

d S+c S+fl [25+b+c]! 0 btc>e+f
(4.1)

S~

We have defined 7' by

Tada.d'ard®) = —_(latoble—a }ld—d Vld+d )y

@ —a"M\[a—aa+a"[d+d 1Nd—d"]! (4.2)

V. RELATIONS AMONG CG COEFFICIENTS AND/OR 6-/ SYMBOLS
Here, we give some relations among CG coefficients and/or 6-f symbols. Some new devices are developed to deduce them.
Let us putin (2.18) m; = d and m = ¢. We make use of (2.17) to express the first and the last two CG coefficients on the
rhs of (2.18) in terms of g-analog factorials. It then follows that
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[a b e =q{—x(a)—X(b)+x(e)—-2x(c)+2x(/)}/4([c+d_e]![c+d+e+1]!)l/2
d ¢ f (caf) (dbf)
XZ(_])e+d+f+mqm(c+d+l)/2 [e+f—m]! ([a+m]![b—c+d+m]!)‘/2
= {—c+f+ml \[a—m]l[b+c—d—m]!

X (a,bmc —d —mlec—d),/\[2e+ 1].

We have another expression similar in form to (5.1):

{a b e] = (= 1)@+ b+ e+ dgl—x(@) —x(6) +x(e) = 2x(c) + 2x(N}/3 (caf) (dbf)
d c f {le+d—elllc+d+e+ 111312
XZ q~m(c+d+l)/2 ([a+m]![b+c—d+m]!)‘/2
o le—f+mllle+f+m+ 11t \la—mll[b—c+d—m]!

X(a,bm, —c+d — mje, ——c+d)q/\/[2e+ 1].

In the algebra su(2), the present author®* obtained (5.2) with ¢ = 1.
The relation (5.1) is termwise invariant under the replacement

a-s—d, bos—c¢, cos—b,

d-s—a, mom+(a—b—c+d)/2.

Similarly, (5.2) is termwise invariant under the replacement
a—»s—¢, b-s—d, c-s—a,
d—s—b, mom+ (a—b+c—d)/2.

These invariances result from the Regge’s symmetries of the 6-f symbol and of the CG coefficient, (3.6).
The following relation holds among CG coefficients:

(j1j2m1m2|jm) = ( —_ 1)j|+jz *jq—{x(fl) +x(j) —x(H}/2 2 ( _ l)mn*mlyq{"h —m/ — (m + m)(m,+ my)}/4
q

my’>m;

X(g"?—q= " T (i jp—my —my | j— m)  T(jys josmysmp,my’my’).

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

Proof: We consider the case of g # 1, since (5.5) with ¢ = 1 gives a trivial equality. Let us replace labels of (5.1) such that
¢—=S+c¢,d-S+d,and f—S + f tomake S— . Toits rhs and lhs we apply (3.1) and (3.2), respectively: The cases of g > 1
and g < 1 areto be treated separately. We replace labels such that a—j,, b—j,, and ¢ —j. Further, weput f — c»>m,,d — f-m,,
d—c-om, m->—m,, m+d—c—-m, in the case of ¢>1, and put c—f-m,, f—d-m,, c—d-m, m-m/,

¢ —d — m—-m,’ in the case of g < 1. It then follows (5.5).
We transform (5.5), using (2.20) and (3.3), to get

Eq{x(j') R XD famymy| jm) g Gy famy'my’| jm)
j

_ {( _ l)m. - m.'q{m. —m, —(m, +m)(m, + mz')}/4(ql/2 _ q—1/2)m. - m"T(J'pJ'z,mpmz’ml'»mzl),m1>m1',
Om, <m;’ )
The combination of (4.1) with (5.6) yields

lim (—1)”“*"“”[0 re S+e] [2S +e+f+1]!
d S+c S+f1 [2S+b+c]!

=(— 1)b+C—e-—fq{X(b)+x(v)—x(e)—x(j)}/4q—(bc—ef)/2(ql/2 _q—1/2)b+c—e—fzq{x(a)+x(d)—X(i))/2

S— oo

J

X(a,df—c,b—f|jb—c),(adb—ee—c|jb—c),.
Corresponding to Racah’s sum rule in the algebra su(2), we have the relation

d glla d g a b e
— 1)e+f+efn 1 {a }{ } —{x(&) + x(f) + x()}/2 _ ] —{x(a) + x(5) + x(e) + x(h}/2
D S PR | PR d c 7
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Proof’ Let us show that the lhs is transformed into the
rhs. In the first 6-f symbol on the lhs, we substitute (5.1)
after labels b, ¢, @, e, and fin (5.1) are replaced by 4, b, ¢, g,
and e, respectively. In a similar way, we substitute (5.2) in
the second 6-j symbol on the lhs of (5.8), after labels b, d,
and e in (5.2) are replaced by d, b, and g, respectively. The
sum over g on the lhs of (5.8) is then carried out by using the
orthogonality relation for the CG coefficient, (2.20). We
compare the resultant expression with the expression (3.7),
and obtain the rhs of (5.8).

The relation (5.7) can be deduced also from an asymp-
totic limit of (5.8). To show it, we replace b, ¢, ¢, and fin
(5.8) by S+ b, S+ ¢, S+ e, and S + f, respectively, and
make S— . The cases g>>1 and g < 1 are treated separately.
We apply (3.2) to two 6-f symbols on the lhs and obtain
(5.7).

The relation (5.8) in thecase of f=0,a=d,and b = ¢
gives

a b e
2 1 { ] —{x(e) + x(g)}/2
Eg[g+ 1 P g7

— ( _ 1)2a+2bq—x(a) —x(b)‘ (59)

From the combination of (5.1) and (5.2), where ¢ in
(5.2) is replaced by 1/g, we can deduce the orthogonality
relation for the 6-j symbol. This in turn gives a check of (5.1)
and (5.2).

The Biedenharn—Elliott (BE) rule in the algebra su(2)
holds also in su, (2):

Ez:(—l)”+f+‘[2z+1][a ¢ "]{a g zHc z k]

kg zllf b olf d b
=(—1)“+C+k+g+d+e+h{a 4 h][h g k}
d e bllf d el

(5.10)

Here, the labels of the 6-j symbols are arranged in a way
suitable for the deduction of (7.12) given later.

The simplest way to deduce (5.10) is to make use of the
transformation from one specific coupling scheme of four
angular momenta to another specific one, the way well
known in the algebra su(2) (Refs. 3-5). There is no addi-
tional g-dependent factor in (5.10), since transposition of
angular momenta is not involved in the transformation of
the coupling schemes of concern.

VI. A KIND OF 9-fSYMBOL AND ITS SYMMETRIES

Here, a kind of 9-j symbol is presented which has specif-
ic symmetries similar to the 9-j symbol of su(2).

In the algebra su(2), the 9-j symbol is defined as the
transformation coefficient between different coupling
schemes of four angular momenta.’~> Two defining expres-
sions, equivalent to each other, of the 9-j symbol are widely
known, one in terms of six CG coefficients and the other in
terms of three 6-/ symbols.’>~> As is discussed on p. 458 of
Ref. 4, the transformation of the coupling schemes consists
of three pure recouplings and two transpositions.

In the algebra su, (2), the situation is slightly different.
The transformation coefficient is really expressed in terms of
six CG coefficients. However, two of the coefficients, whose

2402 J. Math. Phys., Vol. 30, No. 10, October 1989

labels are arranged in the standard form, are specified by the
indeterminate 1/g, while the other four are by ¢. It is due to
the presence of transpositions involved in the recoupling of
four angular momenta. Contrary to the case of su(2), the
transformation coefficient is not expressed as a sum over
products of three 6-j symbols.

Here, we define an analog of the 9-j symbol by

a b e
c d f
h k gig

= 2 (— l)zzq—{xu) +x<h)+x(d)+x(e)}/z[2z+ 1]

X[a ¢ h”b d k”e f g]
k g zlle z fllz a b’
This 9-j is not invariant under interchange of ¢ and 1/g,
contrary to the 6-/ symbol.

Significance of the symbol defined by (6.1) lies in the
following symmetry relation, valid for every ¢> 0,

(6.1)

a b e a e b
c d f — ( _ I)Aq—x‘(A)/Z c f d ,
h k glg h g kg

in which 4 and x’'(A4) are defined by

9
A=Y a;=a+btct+d+etf+g+h+tk

i=1
(6.3)
and
9

x'(A)y =3 x(a;)=x(a) +x(b) + - + x(k).
i=1
(6.4)

Proof: We rewrite the first 6-f symbol on the rhs of (6.1) in
terms of two 6-j symbols by using the Racah’s sum rule (5.8)
after labels in (5.8) are replaced such thatb—c, c—g, d—k,
e—h, and f -z together with g— 1/g. Subsequently, we use
the BE rule (5.10) for taking the sum over z on the resultant
rhs of (6.1). From this we get the rhs of (6.2).

The 9-f symbol satsifies the same kind of relation as
(6.2) under interchange of the first two columns: The proof
is essentially the same as that given to (6.2). Further, the 9-j
symbol is unchanged under the interchange of rows and co-
lumns (matrix transposition ) .2~ From these it is shown that
the 9-j symbol (6.1) has the same symmetries as that of
su(2).

VII. THE MATRIX R EXPRESSED IN TERMS OF A 6-/
SYMBOL

The operator (matrix) R is defined here as a quantity to
express a degree of overlap of a pair of coupled bases, one
specified by g and the other by 1/¢: The operator R is inter-
preted in the next section as the factorized S matrix that
describes the process {1.1).

We define the operator R by

R = Z l(jljz)jm>qF(jlj2j)q((j2jl)jm|’ (7.1)

Jm
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in which

F(jhhil)=(— l)j’+j2_fq—{X(ir)+x(1'z)—-x(;')}/z‘ (1.2)

The inverse of R is shown to be

(R~ = Z l(jzjn)jm>qF(j1j2j)—]q<(j1j2)jm|- (7.3)

jm
The R matrix in the case of ¢ = 1 implies simply the unit
operator.

It is shown from (7.1) that A, (X *)R=RA, (X *).
The operator R, defined by (7.1), corresponds to the opera-
tor R of Ref. 13.

The matrix element of R is expressed as
(RJ'Jz m, ’mm; = ((jbml’) (jZ’mZI) IRj'jzl(jhml) (jz’mz))

(7.4)
J

q

et 0, my<my.

As a special case, it follows that

(R (Jqu))'"'m1 =qm™"™, (7.9)
The expression of R, (7.8), differs significantly from that of
Ref. 13 as to g-dependent factors.

We modify the rhs of (7.6) using symmetries of the CG
coefficient, (3.3) and (3.4), to get the following.

The matrix element of R, (7.4), is invariant under re-
placement of labels (m,, m,, m,’, m,’) by (—m/,
~m,’, —m,, —m,) and under replacement of ( j,, j,,
my, my, my', my') by (o, j1s My, my', my, my).

(7.10)

The expression (7.8) actually fulfulls these symmetries.
Combination of (4.1) with (7.8) gives

lim ( —

S—

1)25+a+b+c+d[

aS+b S+e]
dS+c S+f
[2S+e+ f+ 1]
(2S5 + b +c]!
— (R ad);~—ce;—fcq—{x(b)+X(C)——x(e)—x(f)}/4

Xq(bc—ef)/Z(ql/Z —gq

——1/2)b+c—e—f.

(7.11)

We have described the relationship between R, T, the CG
coefficient, and the 6-j symbol in (4.1), (5.6), (5.7), (7.6),
(7.8),and (7.11).

)

{—m +m’+ (m+m')(m+m, )}/4(q1/2 _ q*”z)’"' —m T(jn,jzymumz»mxlymz'),

= ZF(jljzj) Gr1ja mi'my’| jm),
7

X(j2jlm2ml,jm)q (1.5

=3 (= D+ RIF(i o )
J

X (Jyjp mi'my’| jm), (i, jmymy|jm), .
(7.6)

In the last step, (3.4) has been used. Similarly, we express
the matrix element of R ~' in terms of CG coefficients. We
compare the result with the lhs of (5.6) to find that

((R7:) =1y’ = the lhs of (5.6). (7.7

As can easily be shown, the operators (R /) "' and R/ are
interchanged if the indeterminate g is replaced by its inverse
1/q.

We combine (5.6) with (7.6), using (7.7), to get

m>m,

(7.8)

The BE rule (5.10) has the following asymptotic limit:

SRDITFEZURD G T

X (a,c,g —zz—k|hg—k),
= (RMEZkk=d(a,ce—bb —d|he—d),.

e—dg—e (7.12)
Proof: In (5.10) we replace labels as z—S5 + z, k—>S + k,
g-S+8 b-S+b,e~>S+e d-S 4+ dand make S— .
The cases of ¢> 1, g <1, and g = 1 are treated separately.
Here, we give the proof only for the case of g < 1, for simpli-
city. We use (3.2b) for the first 6-/ symbol on each side of
(5.10), and use (7.11) for the other three 6-j symbols so as to
express the S— oo limit of (5.10) in terms of R and CG
coefficients. Notice that [2S + 2z + 1], for example, is of
the form g = S+2+ 172 /(g= V2 _ g1/2)  After rewriting ex-
pressions by the use of (3.1b), we obtain (7.12).

Viil. YANG-BAXTER RELATIONS IN TERMS
OF 6-/SYMBOLS

Itis shown here that one of symmetry relations for the 9-
J symbol generates YB relations for the IRF model and for
the vertex model.

Invariance of the 9-j symbol (6.1) under the third col-
umn being put onto the lhs of the first column is expressed in
terms of the 6-j symbol as

Z(_1)2z[2z+1][a i z][a € b{k b d}q—{x(z)+x(h)+x(e)+x(d)}/2

f z g

syl 100
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] q- {x(2) + x(8) + x(¢) + x(5)}/2

(8.1)
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The lhs is a reexpression of the rhs of (6.1). We have used
symmetries of the 6-j symbol to arrange labels suitable for
obtaining (8.5) given later. Let us define w and w’ (the sym-
bol w stands for a weight” and not for the Racah coefficient)
by
w(hyc,z,g;a.k)

=(—1)atk+h +zq(xtc> + x(8) —~ x(h) — x(2)}/2

XV[2h + 11[2c + 11[22 + 11[2g + 1]

a g z
X[k c h]’ (8.2)
and
w'(h,c,z,8a,k)
=Y¥[2h+ 11[2z + 1]/{[2c + 1][2g + 1]}
Xw(h,c,z.8,a,k). (8.3)

We express (8.1) in terms of w and w' as

Y wihczgak)w(gzbea, fIw (zedbk,f)

=Y w'(ghzek, flw(hcdza, fw(zdbeak).

(8.4)

In this relation, it is allowed to replace simultaneously all the
functions w by the corresponding w'. The functional relation
(8.4) is the YB relation for the IRF model exploited by Bax-
ter’: For the prescription to construct commuting transfer
matrices from w and w', see Ref. 7. In Ref. 18, the present
author discussed (8.4) withg = 1.

In (8.1) we put z-»S+z b->S+b c-S+g
d-S+d e-S+e g-S+g h—S+ hand make S— oo.
Subsequently, we use (7.11) to describe the asymptotic limit
of (8.1) interms of R. The casesof g < 1,4> 1,andg = 1 are
to be treated separately. It then follows that
2 (R ak)g—z,z—c (R af)z—— b,b—;(R kf)b—d,d—c

h—cg—h — z,e — z—cb—2z

g—he—g h—cz— z—de—z*

(8.5)

=Z (R kf)e—z,z—h (Raf)z——d.dAh(R akye—bb—d

In the case of g< 1, each side is equal to
( _ 1)b—d+h—gq—(b+d+h+g)/2(q1/2 _q—l/2)—2

. —25—1
X]lm qx(S+C)+X(S+e) 28

S— oo
S+b S+e a
X{S+d f S+ec
k S+g S+h],
If g > 1, expression (8.5) with g being replaced by 1/g gives
each side of (8.5).

The specific form of (8.5) is known as the YB relation
for the vertex model.®” The matrix element of R describes
two-particle scattering process (1.1). Beside ¢ the labels g, k,
and f act as parameters to specify w'”’ and R. However,
none of them could satisfy the additivity of spectral param-
eters.”

We compare (8.4) and (8.5) to find the correspondence

w' (he,zga,k)>(R™)E-575 . (8.7)

(8.6)

2404 J. Math. Phys., Voi. 30, No. 10, October 1989

This is in agreement with the so-called Wu-Kadanoff-
Wegner transformation.”>?’ In the present formalism, the
correspondence (8.7) is based on (7.11), and is linked ori-
ginally to the correspondence of the 6- symbol and the CG
coefficient (3.2).

Using symmetries of the 6-j symbol, it is shown that

w (he,zgak) =w(zghca,k) =w(z,chgka).
(8.8)

The symmetries correspond to the symmetries of R, (7.10),
which is compatible with (8.7).

{X. CONCLUDING REMARKS

We have discussed relations among CG coefficients and
6-j symbols (Racah coefficients, in the same sense) of the
algebra su, (2), and have shown that one of symmetry rela-
tions for the 9-j symbol, described in terms of three 6-/ sym-
bols, generates YB relations for the IRF model and for the
vertex model.

Asshownin (3.2), the 6-j symbol becomes the CG coef-
ficient in an asymptotic limit. This 6-j symbol becomes the
matrix element of R in another asymptotic limit, as shown in
(7.11). Manipulation of the algebra in su, (2) is remarkably
simplified by virtue of these relations among R, the CG coef-
ficient, and the 6-j symbol, together with the fact that the 6-f
symbol in su,_ (2) has simple dependence on ¢ in comparison
with CG coefficient.

Relations such as (3.5), (3.9), (5.8) (5.9), and (7.8)
were already given in Ref. 13. However, serious confusion
seems to exist in each of their expressions, especially as to g-
dependent factors. The expression of R we get in (7.8)
differs from that of Ref. 13.

It is hoped that many of the present results will hold in
various ‘‘quantum” groups, so far as the CG coefficient and
the.6-j symbol are properly defined. It is easy to extend the
present discussion to the algebra of su, (1,1) (Ref. 28), al-
though we do not discuss it here.
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An investigation is made of coherent states that differ from the usual ones in two ways: (a)
they are connected with the coset space G /H, where the stability subgroup H may be
noncompact; and (b) the notion of an H-invariant ray is replaced by the more general notion of
an H-invariant subspace. A general framework is given for vectorlike coherent states with the
help of the nonlinear realization technique as well as with the rigged Hilbert space theory. The
vectorlike coherent states are found for the Poincaré group and the hyperbolic coherent states

are found for the SU(1,1) group.

I. INTRODUCTION

The coherent states technique is a powerful method
widely applied to various branches of modern physics and
mathematical physics as well as to mathematics. It was ori-
ginated from the pioneering papers by Glauber' and
Klauder.” The concept was generalized by Radcliffe,® Pere-
lomov,* Thompson,® and Gilmore and co-workers®’ and
next extensively applied and developed by a number of au-
thors. An exhaustive review of the theory and applications of
coherent states as well as a reference list is given in the excel-
lent books by Klauder and Skagerstam,® Perelomov,” and
Hecht.'® We also should mention some works dealing with
different systems of overcomplete states: the continuous rep-
resentations of quantum states by Barut and Girardello,"’
Skagerstam,'? and Nieto. !>

In this paper we investigate the coherent states under-
stood in the spirit of the Perelomov definition but with some
generalization. In order to explain this fact let us recall the
definition of Perelomov: “The system of states
|¥,) = U(g)|¥,), where g are elements of Lie group G,
U(G) is an unitary representation of G in the Hilbert space
 and |¥,) is a fixed vector in 7, is called the coherent
states system.” Thus a coherent state |¥, ) is determined by
apoint x(g) of the coset space G /H, where H is the stability
subgroup of the ray |¥,). Now, because that vector lies in
the proper Hilbert space, the stability group H is thus com-
pact.'* As we will see below, the compactness of H is a very
convenient assumption for technical reasons. Although this
last requirement increases our difficulties, it is highly desir-
able since it drastically extends the applicability of the coher-
ent states method.

The aim of our paper is to propose a procedure for the
case of the noncompact stability group. An additional gener-
alization of the Perelomov definition we have adopted is the
replacement of the notion of the stable ray |¥,) by the stable
(H-invariant) subspace of 7 (see also Refs. 10 and 15-24).
The plan of this paper is as follows: In Sec. II we study prob-
lems connected with the noncompactness of H and we give a
framework for dealing with such a case. Section III is devot-
ed to a description of the vectorlike coherent states in terms
of the language of nonlinear realizations. In Sec. IV we inves-
tigate the vectorlike coherent states for the Poincaré group
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with the Lorentz stability group. In Sec. V we find the hyper-
bolic coherent states for the SU(1,1) group. In Sec. VI we
briefly discuss the results.

Il. THE EXTENSION PROBLEM FOR
REPRESENTATIONS OF G

To explain some characteristic features of the coherent
states with a noncompact stability group let us begin with an
elementary but very pedagogical example of the special nil-
potent group the (Heisenberg-Weyl*> group). The Lie alge-
bra of this group is generated by g, p, and &: [¢,p] = ie,
[é,g) = [é,p] = 0. The unitary representation of the Heisen-
berg—Weyl group, labeled by a real number A, is given via the
Stone?® and von Neumann?’ theorems by

U, (x,p,8) = expi(Ad] + pg — xp) ].

Here g and p are unbounded self-adjoint with domains dense
in the underlying Hilbert space 77, while 7 is the identity and
& = Al For simplicity we choose A = 1, i.e., & = I. Note that
the group space is the product S ' X R>.

Now, the “classical” set of coherent states is obtained by
choosing the compact phase group exp{(i¢) as the stability
group, by fixing its eigenvector, and finally by the action of
the operator U(x,p,¢) on this eigenvector. As a result one
obtains a set of states parametrized by the points of the coset
space S ! X R*/S'~R, i.e., by points of the plane (x,p).

Now, let us look for another choice of the stability sub-
group, namely, the subgroup generated by § and é:
exp[i(é] + pg)]. The eigenvectors of this group do not be-
long to the Hilbert space 7%, but rather to the space of tem-
pered distributions S’ [the space of continuous linear func-
tionals over some nuclear subspace S of 5% (see Ref. 28)].
They are simply the position operator eigenstates:
§|q) = q|9). Therefore we extend the unitary representation
of the Heisenberg—Wey! group from % to S’ with help of the
duality of S and S’. Finally, by the action of the extended
operator U on |g) we obtain the set of “coherent states”
|g + x), ¢ fixed:

expli(¢I + pg — xp)1lq)
=expli(¢ + xp/2 + pq) 1| + x);
we have ¢ = 0 without loss of generality. As the result we
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obtain again the eigenstates of §; they correspond to the
pointsof the coset space.S ' X R?/S ' X R' =R’ and lieoutside
the Hilbert space 57

Some remarks follow from the above example.

(i) The noncompactness of the stability group H causes
the nonexistence of H-invariant irreducible subspaces in
%.14

(ii) We have to extend the underlying space 5% appro-
priately as well as the representation U(G) in order to find
the H-invariant subspace.

(iii) By the group action on an H-invariant subspace we
obtain the set of generalized coherent states lying outside the
Initial representation space 5.

We are going to show that such a construction can be
done for many groups. As above, G is a Lie group, H its
proper subgroup, and U(G) is a unitary representation of G
acting in the Hilbert space 7. Both G and H may be non-
compact. Let us denote by DC 7 a set of differentiable (or
analytic) vectors of the representation U(G). For several
cases, the set D is nuclear so D', the set of all continuous
linear functionals on D, is a natural and minimal domain for
working with algebraic infinitesimal methods, especially if
operators with a continuous spectra should be diagonalized.
This is strongly related to the problem of subduction
U(G) | H with a noncompact H as well as with reduction of
U(H) to the block-diagonal form. Now, having the Gel-
*fand-like triple?® DC 7 C D' we can extend by duality the
representation U(G) to U'(G) acting in D’. As was shown
by Nagel and Lindbland,'* an unusual property of U’ (G) is
thatthesubduced representation U’ (H) = U'(G) | H,witha
noncompact H, contains, in general, a number of “redun-
dant” unitary as well as nonunitary representations of H
which donot appearin U(H) = U(G) {H. Only for compact
H do the representations U’ (H) and U(H) always have the
same representation content.’® In this latter case, H-invar-
iant subspaces always belong to 77, so there is no reason to
extend the representation space to D’; this is just the source
of the simplification in the case of coherent states with a
compact stability group. In the noncompact case we should
find first a nuclear set D for U(G). In Ref. 14 it was shown
that D is nuclear at least for unitary irreducible representa-
tions of a large class of groups; namely, for semisimple G
with finite center, semidirect product 4 X K, where 4 is Abe-
lian while K is compact, nilpotent G, and Poincaré-like
groups (with m?>0).

lll. THE VECTORLIKE COHERENT STATES

This section is devoted to giving a general definition of
the vectorlike coherent states and to studying their basic
properties. To do this we use the technique of the nonlinear
realizations of Lie groups of Coleman et al.?° and Salam and
Strathdee.>® They define the (left) group action on the quo-
tient space G /H using the decomposition of g =gs 4k,
where / belongs to the subgroup H, while g; ,,; belongs to
the part of G corresponding to G /H. In the following we will
denote g,y by £(x), where the x are coordinates in G /H.
The relation

g&(x) = &£(x"Yh(gx) (H
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defines the nonlinear transformation law for x, that is, a
transitive realization of G on G /H. With the help of Eq. (1)
it is possible to introduce a variety of realizations of G in the
associated bundles (G /H,V), where V is a representation
space for the subgroup H, by the following transformation
law29,30:

85(x) = £(x")h(g,x),
¢’ =D (h(g:x))d,
where ¢V and D(H) is a linear representation of H acting in
V. Note that contrary to the action of G on G /H the corre-
sponding action of G on V is not transitive; H acts on a orbit
in ¥ generated from a fixed vector, say, ¢°. Furthermore, if
the stability group of ¢° is the subgroup H ° of H, we conclude
that the manifold (G /H, V) splits into the sum of the mani-
folds (G /H, H /H °) with a transitive group action. Now, let
us define the “boost” from a fixed point (x°,¢°) of the orbit

(G/H,H /H?°) to an arbitrary one (x,4) by

8oE (") = £, 3

D(h )¢’ =¢.

Here h,, = h(g.4x°) [see Eq. (2)]. The boost g,, is de-
fined by Eq. (3) up to an arbitrary element of H°.

Let us assume that a unitary irreducible representation
U(G) of G hasin 77 the set D of differentiable (or analytic)
vectors which is dense in 7 and nuclear. So we can extend U
to U’ actingin D’ dualto D. Next, letaset of vectors | x%,¢%k )
form the basisin a H %-invariant linear submanifold of D . So,
under action of U'(H?),

U’'(h°)|x°%¢°%k ) = R,/(h%)|x°4° j). 4)
Here 5 °eH °and R (H °) isalinear représentation of H®. We
define

IX,¢,k >: = U’(gxdz ) |X0,¢O,k > (5)
Using Egs. (3)-(5) we obtain the transformation law for the

above vectors. First, let us note that the group element
h°(g,x,4), defined by

ho(gx.0) = 8:488xs = h 75 h(gX)hy, (6)
belongs to H °. So by the use of the famous Wigner trick we
have

U'(g)|x,4,k) = R/[h°(g.x,8)]|1x",D(h4)$(x) ).
(7

Here x’ is given by Eq. (1). Now we are ready to give the
definition of the generalized coherent states.

Definition: Let MC D' be a linear manifold invariant
under the action of the group H°CHCG, 1.e.,

U'(H®|x°¢%k ) = R,J(H®)|x°¢%)),
where |x%4°k ) forms a basis in M while R (H°) is a linear

representation of H °, but not the necessary unitary one. The
set of vectors

,x’¢’k > - U’(gx¢ ) 'x09¢07k )y
where x runs over G /H, forms the system of so-called vector-
like coherent states of the type [GDHDH®, U(G), D(H),
R(H?)]. Note that for compact H° = H and for a one-di-

mensional M C 7 this definition coincides with the Perelo-
mov one.

(2)
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Some remarks are in order. First, the system of vector-
like coherent states is not always overcompletein D '. A typi-
cal example was given in Sec. II: the set {|x) } of the position
operator eigenstates does not form an overcomplete basis in
S’.However, at least for semisimple H °, the system of vector-
like coherent states is the complete one. The operator

E = J d,u(x)f dﬂ(¢)2 (ijlx’¢’k ) <x:¢1il’ (8)
G/H H/H® &

where du(x) and du(¢) are the left invariant measures on
G /Hand H /H °, respectively, isaninvariant operatorifthere
exists a ¢ such that

RY(H®)PR(H") = . (9)

This holds at least for semisimple H ”s. Consequently, irre-
ducibility of U implies, via Schur’s lemma, that E~1, so
completeness holds.

In general, if there exists a ® satisfying condition (9),
the distribution

Cyy (xp:0,0): = {x, 4,k |p,8,))
behaves like a generalized reproducing kernel in the space of
the distributions {¥|x,é,k ).

IV. VECTORLIKE COHERENT STATES FOR THE
POINCARE GROUP

In this section, we are going to construct a less trivial
example, namely, we choose G = P (the Poincaré group),
while H = H® = L (the Lorentz group). In this case the
quotient space P /L is simply the Minkowski space-time. De-
noting by g = (A,a) a Poincaré group element, where the A
are the pseudorotations and the g are the translations, we see
that under the identification £(x) = (I,x) Eq. (1) takes the
form

(Aa)(Ix) = (AAx + a),

i.e., we obtain the standard Poincaré group action on the
Minkowski space:

x'=Ax+a. (10)

Now, to specify the coherent states, let us choose the
representation D(L) as the trivial one, i.e., D(L) = I while
the representation R (L) is assumed to be finite dimensional.
The latter one is denoted below as D(A). Finally, the irredu-
cible unitary representation U of P is taken as U™, where
the mass square m> > 0 and the spin s is fixed integer or half-
integer. So we have deal with coherent states of the type
[PDL,U™ ,D(L)].

The representation U™ can be uniquely extended®’
from the Hilbert space 57 to the space of tempered distribu-
tions S’ where it takes the famous Wigner form (we have
omitted the superscript prime at U)

U(A,a)|p,a;m,s)

= exp(iap) i D*(Rp,) .| AP, Tm,s). (11

Here ap = a*p,, where p,, is the four-momentum, and &*
denotes a representation of the SU(2) group labeled by the
spin value s, while R, , is the Wigner rotation.

Now, let us look for an L-invariant subspace M of the S

2408 J. Math. Phys., Vol. 30, No. 10, October 1989

To do this let us expand the base vectors |x°k),
k= 1,2,...,dim M, of M on the complete set of the vectors
|p,osm,s):

wk) = [dup) 3 wtporlpoms.

o= —5

(12)

Here du(p) = 6(p)5(p* — m?)d *p. Because of the assump-
tion

U(A0)|x%k ) = D,/(A)|x°)), (13)

we obtain from Egs. (11) and (12) the consistency condi-
tion for the expansion coefficients «(p) = [«, (p,0) ]:

«(Ap) =D(A“‘)a(p)@‘(RAp). (14)

The set of the vectorlike coherent states is now obtained
from a vector |x°k ) by the action of the unitary operator
Ulx):

Ix.k ) = U(Ix)|x%k )

=fdu(p) z exp(ixp) X «, (p,0)|p,o;m,s). (15)

Obviously we can choose x° = 0. It is a matter of direct ver-
ification that the vectorlike coherent states (15) are simply
obtainable from the vacuum state |0) by action of a local
field operator, say, ¢, (x). The coefficients «, (p,o), satisfy-
ing the consistency condition (14), play the role of ampli-
tudes in the Fourier expansion of ¢, (x). Consequently, the
scalar product of two coherent states gives in this case the
two-point Wightman function

(B (X)18,(1)
= (27)Y2( —id,)e( —i8,),A, (x—y;m),

where z denotes the Dirac conjugation of « and

(16)

A, (x) = (2m) _3J- du(p)exp( — ixp).

Concluding, the vectorlike coherent states for the Poincaré
group describe a free quantum motion of a relativistic parti-
cle with mass m and spin s.

V. HYPERBOLIC COHERENT STATES FOR SU(1,1)

As was claimed in Sec. II, for unitary representations of
semisimple groups with a finite center, the set of differentia-
ble vectors is dense and nuclear in the Hilbert space 7. The
simplest example is given by the special pseudounitary group
SU(1,1). Now, we construct for this group the set
of coherent states of the type (SU(1,1)2S0(1,1),
U®%, D[SO(1,1)]), namely, we choose G =SU(l,1),
H=H°=80(1,1), D(H)=1I, R(H®) =D, [SO(1,1)1,
and U = U ®*, Here SO(1,1) is the hyperbolic subgroup of
SU(1,1) while D; is a one-dimensional representation of
SO(1,1) labeled by the real number 2. The U ®* denotes the
unitary representation of SU(1,1) fixed by the real numbers
® and E,.** According to the standard procedure*” the base
vectors in the representation space of SU(1,1) can be chosen
as the monomials of two complex variables £, € = 1,2:

|®,m) =Nm<§,;z>‘°(2)ﬂ'+m

Here m is the eigenvalue of the generator of the SO(2) sub-

(17)
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group while the normalization factor N,, = 1 for the princi-
pal series of representations and N,, = [T'(m + Ey—®)/
T'(m+ E,+ ®+ 1)]"? for the other ones.*? Under the
global SU(1,1) transformation, §, behaves as a spinor:

() -G2)C)
§2 a § 2
with |a|? — |#|? = 1. The hyperbolic subgroup SO(1,1) is
generated by the differential operator K = (£, d;, — £, d,),
where d, =3/d¢..

Taking into account the homogeneity degree of vectors
in an irreducible representation space, we obtain

[PA) = Co (& + )G — 5T~ (19

as the solution of the eigenvalue equation K |P,A4)
=A1|P,A ),AeR. Here C; isanormalization factor. Now, we
can follow the usual procedure to construct the coherent
states. We use the following parametrization of the cosets
SU(1,1)/80(1,1):

(18)

SU(l,l)/SO(1,1)~{(Z f’)] (20)
@ 2Z

where weR, zeC, and |z|* — @® = 1. Let us begin with the
construction of the hyperbolic coherent states |®,4;z,0) for
the discrete series D+ of the unitary representations of
SU(1,1). Inthiscase, B, = — ®>0and m =0,1,2,... . Us-
ing Eqs. (18) and (19), we obtain
|¢,A;Z,(0) - U’(Z’w) |<I>,/l )
— CAiZM(z + iw)®+ i/l(z _ la))¢ — A

XEXP(1 —it,(Z— iw)/§,(z — iw) 1o+

X (14l (Z+ iw)/Ex(z — i0)1® 2 (21)
The right-hand side can be expanded with help of the for-
mula*?
(1—5P"9(1—s54s2) 7

o —-n—1
=5 e,

where F is the hypergeometric function. As a result we ob-
tain

|®A;z,0) = Cre” "T(—20) 'z +i0)* (2 — iw)* =" Y i"Z - iw)"(z —iw) ~"T(m —2®)"*T(m+1)7'"2
m=20

XF(—m, —® +id, — 20;2[1 — iv(z +2)]7")|®,m). (22)
The scalar product of two coherent states reads .
(®A"7,0'|®Az,0) = C,.C;T( =20 )w P~ Ix®+ Ay 2R _ ® —il’, — O + ik, — 2B;4(xp) "), 23)
where
w=zZ —zZZ +iw(z’ +Z) — io'(z + Z),
x=2Z 4+ 7z - 2wo’ — iw(z' —2') +iw' (z —2Z),
y=2Z' 4+ zZ = 200’ + iv(Z —7Z') — io' (2 —Z).
An analogous procedure for the principal and supplementary series gives
|®A;z,0) = C i+ 51 +iw(2+§)]"’[ - z+':wr[2+ lwr i pmom [E—{w]n[2+{w]m
Z— 1o zZ— 1w n=0 Z4iw Z— 1w
m=0
X(Eo —®tn- 1)<q> ;EO)N,,__I,,,F( —nEy+IiAEy— 9;2[1 —iw(z+2)]7Y)|®n — m). (24)

n

Here®? for the principal series ® = —§+ iy, yeR,,
—i<Ey<i, m=0, + 1,..., and for the supplementary se-
ries PR, —1<Ey<) |P+il<i—|E|, |m=0,
+1,4+2,...

To our knowledge, the hyperbolic coherent states for
SU(1,1) were not investigated in the literature [the elliptic
coherent states with the stability group SO(2) are exhaus-
tively discussed in Ref. 9; they were first introduced by Pere-
lomov* and Gilmore*].

VIi. DISCUSSION

As follows from the specific examples we have discussed
in Secs. I1, IV, and V, the properties of the introduced coher-
ent states strongly depend on the defining groups. This holds
because the class of noncompact groups is too rich to give
universal properties for the corresponding coherent states. A

2409 J. Math. Phys., Vol. 30, No. 10, October 1989

|

typical example is given in Sec. II: The position operator
eigenvectors |x) are orthonormal and form a complete (not
overcomplete) setin S, contrary to the coherent states with
a compact stability group. As a consequence, no representa-
tion of operators by symbols exists.

A somewhat different situation is the case of the vector-
like coherent states for the Poincaré group (Sec. IV). These
states are normalized to matrix elements of the projector on
the positive energy subspace (with a fixed mass) of the Hil-
bert space of square-integrable functions with respect to the
measure d “x. Furthermore, this sytem is also complete rath-
er than overcomplete.

Finally, the hyperbolic coherent states of the type
SU(1,1)/S0(1,1) (Sec. V) form a nonorthogonal and over-
complete set of vectors [compare Eq. (23)].

Summarizing, some properties universal in the case of

Papaloucas, Rembielinski, and Tybor 2409



compact groups do not necessarily hold for noncompact sta-
bility groups. Some possible relations between the group
type and properties of the vectorlike coherent states are un-
der investigation.

Now, let us discuss a possible physical application of the
introduced states. To do this, let us consider first a simple
extension of the example given in Sec. 11, i.e., the coherent
states for a special solvable group NN generated by §, p, é, and
H. The generator H, interpreted as the harmonic oscillator
Hamiltonian, satisfies [H.,§] = —ip, [Hp] =i, and
[Hie] =0. .

We choose the noncompact group generated by ¢ and 2
as the stability group H. Thus the stable vectors of A are the
position operator eigenvectors |x), i.e., they lie out of the
underlying Hilbert space of the unitary representation of N.
The set of coherent states has the form

|t.x + y) = explitH expliyp] x)

= explitH]|x +y) =|t,g),
i.e., they describe the time evolution of |g) in the Schro-
dinger picture. Consequently the scalar product of two co-
herent states {g',’|q,¢ ) is simply the propagation function
for the quantum oscillator between two space-time points
(¢',t’) and (g,2).

A quite similar situation arises in the case of the vector-
like coherent states for the Poincaré group (Sec. IV): The
coherent states defined by Eq. (15) are simply the relativis-
tic-covariant wave functions of free quantum particles with
spin in the coordinate representation. Therefore, their scalar
product (16) gives a two-point Wightman function of the
corresponding free quantum field theory.

The above examples suggest that in terms of vectorlike
coherent states it is possible to describe the quantum motion
of particles in homogeneous space-times M = G /H. A typi-
cal example is the de Sitter space-time SO(4,1)/80(3,1)
and the anti-de Sitter space-time SO(3,2)/80(3,1) and
their supersymmetric counterparts.®® In that spirit the gen-
eralized coherent states can be applied to the Kaluza-Klein
cosmologies—our investigations in this direction are in
progress.
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It is shown that the cocycles of extension of one massless representation of the Poincaré group
&#,in 2 + 1 dimensions by the tensor product of » massless representations are coboundaries
when the space of the representation is the space of the C*= functions on R? rapidly decreasing
at infinity and at the origin. As a direct consequence, the equivalence classes of formal
nonlinear representations of %7, with an irreducible physical representation as linear term are
isomorphic to the classes of extension of the linear term by its symmetrical tensor product of

order 2.

1. INTRODUCTION

It has been shown in a previous paper that the Poincaré
group & ;in 2 + 1 dimensions has nonlinear formal repre-
sentations as defined in the general theory of Ref. 1. These
representations started with massless representations as the
initial linear term and were indexed by distribution in
Z'(]0,1]) characterizing the classes of extension of the ini-
tial representation by its symmetrical tensor product.

Essentially the proof lies in recurrently exhibiting a par-
ticular solution verifying some conditions of support of the
nth obstructive equation, but we completely discarded the
possible contributions of the solutions of the homogeneous
equations. These solutions are nothing but the cocycles of
extension of the initial linear representation by its symmetri-
cal tensor power of order n. Their contribution will only be
effective if they are nontrivial cocycles. For, in the opposite
case, we can get rid off of them, at least formally, by a se-
quence of formal nonlinear transforms, each of which modi-
fies a given term of the formal expansion by a well-deter-
mined coboundary (see Appendix B). Since we are only
concerned with classes of equivalent representations, we
could then speak of the uniqueness of the representations in
Ref. 2.

The purpose of this paper is precisely to prove that this
situation is the actual one, at least if we conveniently redefine
the representations spaces. In so far as the spaces ., intro-
duced below densely contain the spaces &, of Ref. 2, we do
not find too high the price we have paid.

Strictly speaking, we should again prove the results of
Sec. II1 in Ref. 2. But the reader will convince himself that
the cohomological considerations of Ref. 2 are meaningful
for the new spaces provided we index the equivalence classes
by distributions in &' ([0,1]).

Let us begin now by recalling the basic factors about
& 5, its massless irreducible representations, and the coho-
mology of extensions concerned with it. R

Let M, be the three-dimensional Minkowski space, M,
its dual, C _ the future cone without the origin in M5, and @
the point of C with coordinates (1/2,0, — 1/2). With any
keC,, we associate A, eSL (2,R) such that

® Postal address: Université Paris VII-L.P.T.M., Tour Centrale-3éme
étage, 2, place Jussieu, 75251 Paris Cedex 05, France.
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k=A;"o, (1L.1)
where A, is given by
expt 0 l cosp sing
Ak. = . s
0 exp(—08il—sing cosg
eR, — 7/2 <@p<7/2. (1.2)

The Minkowskian coordinates of k are written in terms of
(L@):
ko = lexp( —2t), k, = lexp( — 2t)sin 2¢,

k, = — lexp( —2t)cos2¢. (1.3)

In the following we mark the point kof C, by k = (k,k,) or
the parameters (¢,¢) indifferently.

We define linear topological spaces .*,, #=0,1:
fltp)es , if:

(i)fA(t,cp) is C* in t,;

(i) f(t,p) = (sgn @)" f(t,p — m/2 sgn @) is C* in t,p;

(iii) for any integer r we have

grof ‘
h 21)" t, ;
S,g? (c ) 3tpa(pq ()| <
— w/2< @</
p+qsr

(iv) a sequence f,, (£,¢) converges to zero in % , if, for
any integer r

ar+ef,
lim sup  (ch2f)"|——= (t,q;)\ =0.
n— R ot? an"
—w/2<p<m/2
P+ g<r

% can be identified with the space of C* functions in R?
rapidly decreasing at infinity and at the origin.

&, is isomorphic to 7 if fe.% |, then exp(ip)fe.”,.
Consequently, if 7e.7;, exp( — ig)Te 7, 7 o(7,) is ob-
viously nuclear.

&, are K(M,,) spaces, with properties (P) and (N) as
defined in Ref. 3.

Let V, be the representation of #; in %, defined by

S(k) —exp i{a,k Ye"(A,k) (A 'k),

acR®> AeSL(2,R) (1.4)
where (a,k ) is the Minkowskian scalar product and
€(Ak) = sgn(6 — Brgp), A= ‘; g eSL(2,R) .
(1.5)
© 1989 American Institute of Physics 2411



Here, ¥, is the restriction to S, of the unitary massless
representation of &, with helicity 7/2.

We are looking for mappings Z(g)e
LS, e e, ,L,), geZ ; satisfying the following
cohomological equation:

Z(gg)=Z(®) + V,(Z©E)V . ., (8), 88€Z5,
(1.6)
where V, ..., (g) standsfor ¥, (g)® --- @V, (g). Similar-
ly we will use ., ..., instead of &, ®---®.7, . Here,
Z(g) defines an extension of Vv, by V,. ., (8). We are
interested only in nontrivial extensions and we will identify
two solutions of (1.6) when their difference is a coboundary,
i.e., a particular solution of (1.6) written:

Z@Q)=A-V, (@4V ', (8), AcL (S, ., 1)

Accordingly, we do not restrict the generality in assuming
Z(g) equal to zero on SO(2), the compact subgroup of
SL(2,R).
Lemma 1.1: Under this condition, the solutions of (1.6)
are identically zero when . + %, + - + %, =0, mod 2.
Proof: (0, — INeSO(2) and (0, — g0, —1)=g. A
repeated use of (1.6) gives

Z(g)=V,0,—DNZ@V,,. .., (0,—1)
= (=D

In the following, we shall find it convenient to associate with
Z(g) the distribution Z, (g)e.%;, ..., , defined by

(2, (&),/) = (Z@F) ), feFy. .y .
The cohomological equation (1.6) now reads
Zk((a)A) (a,,A’)) = Zk (a,A) + €xXp i<a,k >617(A)k)
XZy-n (@ AV L, (a,A) .

(1.8)
then

(1.7)

Let I', be the stabilizer of w in SL(2,R);
A, (A) = A AA L, belongs to T, and we have

(OyAk)(ayA) = (Aka,hk(A))(O,AAflk) B

Applying (1.8) to this identity, we get the following expres-
sion of Z, (a,A):

Z (@A) = Z, (A b (M)W, (O,A,)
~Z,(0A) V... (O,A,)
+ exp i{a,k Ye"(AK)Z, (0,Ar-1)
XV im0 ALV 0, (a,A) . (1.9)

This formula brings back the solution of (1.6) to the deter-
mination of Z_, (a,A) for acR*® Ael,. According to

Lemma 1.1, we are concerned only with
n+m+ - +7, =0mod2.
. TRIVIALITY OF Z(a,/)
Lemma 2.1: There exists Te.*, ..., such that
Z,(al)y=T—exp i(a,w}TV,;.l,.m(a,I) . 2.1)

Proof- 1t is sufficient to prove (2.1) for 5, =0,
i=1,.,n Indeed Z, (a,I)ef’m.,.,," and therefore
Z, (a,exp( — iZin,@;)€5¢...o. Furthermore, V,

L
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(a,I) does not depend on the 7,’s and commutes with the
multiplication by exp( — iZ]7,¢;).
Let us introduce
ad
by =

da

i

m(a9I)|a=0) ,u=0,1,2

The abelianness of the translations and Eq. (1.6) imply

(a)# -3 k,.’#)gv - (a)v -3 k,._v)g,, . py=0,12.

(2.2)

If (2.1) is true, we have

(a)ﬂ — 2{‘, k,.,”)Tz ic, .

Let us multiply the equation for = O by a function JSwritten
as

f=P0+2)kiiPi+z ‘kiiikj|PU+ o+ ﬁ |k:|R,

i<j i=1

(2.3)

where Py, P;,P;,...,R are polynomials in the components of
k,- - -k, , determined by requiring that

(1= Sik)
is also a polynomial in the components of k,,...,k,, . It is easy
to see that there exists such an f: the various polynomials
verify a homogeneous linear system which contains one
equation less than the number of unknowns.

The proof given in Ref. 4 of the divisibility of distribu-
tions by polynomials can be extended to the distributions of
F4...o with minor modifications. Therefore we can proceed
essentially as in Ref. 5 for proving (2.1).

Proposition 2.1: Each equivalence class of solutions of
(1.6) contains a cocycle equal to zero on the semidirect
product R*-SO(2).

Proof: We get from (1.9)

Z, (a,)) = A, —exp{a,k)A V' (a]),
A =(T—Z, (OA)V, ., (OA,). (2.4)

We shall prove that (4, f) is in &, for any f£.%°, .., .
This will be done in several steps, which adjust to the present
topological spaces the method of Ref. 5.
(1) (4, [f)is C* in t,p. For, on the one hand,
expt 0

0 exp(—1) ) ’
and on the other hand, the elements of .¥ S} (X by con-
struction, differentiable vectors of the representation
1 4

/R

M’
(2) (4, ) is C* in t,@. Indeed,

Z,0A,) =2, (O,

v, . (0’ cos @ sin @ )
" —Sing cos@
is replaced by
sing —cosg
s wW,... (0, )
(sgn @)V, Oisgn @ cos @ sin @
cosg sing
=V, . (O, . ) "
T —sing cosg (sgn @)
0 —sgn @ D
V.. (0, .
X T Ma sgn ¢ 0
G. Rideau 2412



By the action of

0 —sgng )
oon 0 ,
V"]l "In( Sgn ¢ 0
each f in %, .., becomes (sgng)” ™f= (sgn o).
Therefore

(Aksf) = (Ak9})
and we conclude as above.

(3) Let X be an infinitesimal generator of & ;. Then, for
each semi-norm ¢ on .%,,, we can find a semi-norm p such
that

(&
1 du
for some positive constant ¢!. This is true for r = O (cf. Ref.
5). We prove it for any 7 recurrently from the identity:

)<p(f)expc‘llu|,

r—1

V (exp uX)f—- d V (exp uX)dV,(X)f,

where dV, (X) is a continuous operator on 87 -
Similarly, for each seminorm g on .’ m---n,» We can find
a seminorm p such that

q(d Vo, (€XDP uX)f)

du’
<p (flexp Crlu|, f&5F, .,

for some positive constant C .
(4) Let &y be (d /du) Z(exp uX)|, _ . From the coho-
mological equation, we get

=V, (expuX)§ PV, ", (expuX),

where ¢ is a continuous mapping of %
defined recurrently by

(r) dV (X)g—(r‘l)

BT L L g
n"(X) y ,(\’l) = X
(2.5)

Proceeding as in Ref. 5, we prove that for each seminorm p in
& » we can find a seminorm ¢ in % such that

n Mn

for some positive constant ¢, .
(5) Let X be the infinitesimal generator of

)<q(f)ech,Iul

expt 0
0 exp(—108

and choose p( f) = | fw)|. With t = — ] log 2|k|, we get
from the above inequalities

(G (20078 o)

exp( — 1)
t 0
X Vm...""(o, cxp

0 exp(—t)l)]’f)}

<q,(f)exp y,|log|k|

for some semi-norm g, in %
stant y,. As Te.%], ..

-y, and some positive con-
sy WE have similarly

2413 J. Math. Phys., Vol. 30, No. 10, October 1989

d’ ( expt 0 .) )‘
T V,. . .,\0, )
‘( der ™™ 0 exp(—1t) f

<q,(f)expy,|loglk|| .

Using the estimate of (3) when X is the infinitesimal gener-
ator of the compact subgroup SO(2), we deduce that for

eachseminormpon %, .., , wecan find a seminorm g, (on
& -, ) such that
ds ( cosg sing ) )
V 0, . > <
p(d¢s TN —sing  cos @ S J<asa. ()

for some positive constant a;.
Piecing together all these estimates, we get finally

a r+s
)

dt’" dp
for some positive constant y, .

(6) Let P, be the generator of the time translations.
From (2.4) we get

<q,;(flexpy, |loglk||  (2.6)

i|k|dy — Ay AV, ., (Po) = & (Py) .
This implies, with |k| =} exp( — 2¢) that
i af+$ ar+s
—exp( —28) A, — A, dV,_ ... (P,
2 P 3 G ags e W (F0)
O LRy
—at'(9¢7s§k o
_iexp(_Zt) i C’(_2)9£
2 = ot —99p: ©

2.7)

Let us assume it has been already shown that for all
r<r,((3"+%/dt” dp*)A,, f) goes to zero faster than any
power of 1/|k| when |k| - « or any power of |k| when |k|
goes to zero. We will prove the same is true for
((@7%/3t" Ap*)A,, f). Let us denote by £ the right-
hand side of (2.7). By successive iterations, we get on the one

hand,
a r+s
( A1)
at" dp*

m—1

= 3 Uk]DP-™ET AV,
p=0

r+s
(2
at"dp*

and, on the other hand,

ar+s )
Ay,
(8t’8¢’ wf
ar s

== .k m
(ilk]) (at o

~ 2 GIKDP(EE V5251 (Po), f)

o (PP f)

Ay dV:;'I___,,n(PO),f) (k)™ (2.8)

A dV " (By), f)

(2.9)

for any integer m.
By definition of §, (P,),

a r+s
(ot s ),
The mappings

G. Rideau 2413



f-dVEr, (P, 65, .,
are continuous mappings of ', .., into itself. According
to (2.6) ((3"+%/3t" dp*)A,, f) behaves at most as |k|™
when |k|— o and |k| ™" for |k|-0. Combining all that
with the recurrence hypothesis, we get the conclusion we are
looking for.

(7) The continuity of the mapping f— (4,, f ) derives
from (2.8) and (2.9). Indeed, we have the estimates:

o)
Ay,
(6t’8¢s wf
m—1

<k (Y + Y K|
p=0

L3

X dVEZh-(Po), )], k> 1,
k| -2 arts 4 f)
K (c?t'é‘(p’ o
m—1
<K () 4 S k|
I=0
XIEX adv 25 (P, f)l, [kl <1,
where v’ contains only the derivatives

(3" T34, /t” dp*, f) for ¥ <r. Therefore we can get the
proof by recurrence.

Finally, we have still to prove the cancellation on SO(2)
of the coboundary generated by A4, , which is equivalent to
our statement: after substration of this coboundary from
Z, (a,A) we get an equivalent cocycle identically zero on
R3-SO (2). Now we have, for

cos 6 sin @

cos i’

€"(ku)A, - Vn_.}'n,. (0,u)

—sin 6

oo 6 L)
= (sgn cos(p + 8)) (T Z, (O’ 0 exp( —¢)
W o))
X Vﬂl'""b. (Oy 0 exp( —_— t)
cos(w, —8)  sin(w, — 0)
XV A0, - ’
. —sin(w, — 0) cos(w, — 6)
(2.10)

where w,, is given by

w,=¢+6, —p—1/2<0<7/2— @, (cos(g +6)>0),
w,=@+80—m 7>0>1/2— @, (cos(g + 6) <0),
w,=p+0+7, —m<O< —@—7/2 (cos(p + 0) <0).

Therefore, the last term written in (2.10) is equal to

sin ¢
ooy, )
L cos @

for |¢ + 0| <7/2 and to

cos @

—sing

(_1)17|+-“+7’”V.,h.--7] (0, COS‘¢ qu)D
" —sing cosg
for |¢ +6|>%/2. But in this case the factor
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(_ 1)7I|+"'+"1n

is compensated by the factor

(sgn cos(¢ + @))?. Thus we have
€'k A,-u V.1, (Ou) =A,.

From now on, we restrict ourselves to the constderation of
the only cocycles identically zero on R*-SO(2). According
to what we have just proved, the right-hand side of (1.9) is
then reduced to its first term.

lll. DETERMINATION OF Z,_(0,h),hel",,

We recall the two basic assumptions on the cocycle
Z(a,A): (i) Z(a,A) is identically zero on R*-SO(2); (ii)
7+ + " +7n,=0 mod?2, for otherwize Z(a,A) is
identically zero. Accordingly, we will have for acR’
h=¢€ly T|,e= +1,xeR:

From the cohomological equation, we get

(=0l 30))
= (S, Vo om, (0,

where the distribution S is given by

1 x
0 1

Z,(a,h) = Z,J,(O, b

1 x

L)), A

S(kyik,) = -2 Z(O ! x"k k)‘
1sevrsfrpy - dx [ y O 1 Eiaal ERAAS Lis¥ 0} I
and verifies the identity
(1 — exp i<a,a) — 2 k,->> Sik,,...k, ) =0. 3.1)
1

The cocycle Z,, (a,h) will be a coboundary if we can find
Tes;, . such that T verifies (3.1) and

(T9an\,...,n,,(X)f) = (S’f),

where X is the infinitesimal generator of

(3.2)

o
0 .

Following (3.1), the supports of S and T are contained
in the manifold ¢, = 0, i = 1,...,n. Thus, it is not restrictive
to assume that the test functions are identically zero (with
all their derivatives) outside some definite interval J of varia-
tions of each ¢, strictly contained in ] — #/2, + #/2[. Then
we perform the following change of variables (with absorp-
tion of the Jacobian into the distributions):

x; = exp( — ¢;)sin @,
@, eJCl —7/2, + 7/,
and we replace each ¥, by .’ , with the following defini-
tion:

Srx)ess,
when (i) f(r;,x;) is C* in r;, x;, and identically zero for
|x;/r:|>C,

r; =exp( — t;)cos @,

i=1,..,n, t,eR

G. Rideau 2414



au-{-lf

(ii) su Y2+xf'+(,f+xi’-)—l
% (i )P ax:zar:;

TpX;

< 0

u + v<p
(3.3)
Here, % f,l_ is also a K(M,,) space with properties () and
(N).In the following we use the shortened notation /5, ...,
for the tensor product & ® -*- @ .57 .
In the new variables, (3.1) and (3.2) now read

5. oT

x;—=8, T.Se(%7 .. Y, 34
Z ar,- ( T 77;.) ( )
where 7 is bound to verify, as S itself:
13 r?)T:O, ( x,?)T=o,
(1-% 3
(z x,r,)T: 0. (3.5)
1

We introduce spherical coordinates:
r,=Rcosf,_,,
r,=Rcos8,_,sin6,---sinb,_,,

0<8;<1/2

r,=RsinB, -sing,_,

i=2,.,n—1,

and we put
T=6(1-R)t, S=6(1—R)s.
Then we have from (3.5)
(fo)t:O, (x,co86, | +y,_,sinb,_)t=0,

1

(3.6)
and similarly for s. As for (3.4), it now reads
. d
—x,sin@, _1 €088, _)
[( x it 1 ET
"2 Yi ) d ]
—|t=s, 3.7
+ Z (siné?,-jq---sine,,_1 a0,

where the y,, i = 1,...,n — 1, are orthogonal linear combina-
tions of x,...,.x, _:

y, =X, cos 8, — x,sin 0,,
i—1
y;=x,sinf,--sinf,_,cosf, — Y x;cos6;_,
2

Xsin §;--sin @, _, cos §; + x; cos 6, _ | cos 6,

—X;,, 8in @,
n—2
Vo1 =X 8in@;sind, ,+ Y x;co86,_,
2

Xsin @;---siné, _, +x,_,cos6,_,. (3.8)

We denote by S, the set of equations (3.6), (3.7). We prove
now the following proposition.

Proposition 3.1: For any given s verifying (3.6), we can
find a solution ¢ of (3.7) verifying (3.6).

Proof: According to the second equation (3.5) and fol-
lowing the general structure of distributions over K(M,)
spaces with properties (P) and (N) (Ref. 3), we have the
finite expansion:
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1= t,. ., (010, I8P (x)) 87 (x,), (3.9)

where the “coefficients” ¢,..., (6,,...0,_) are distribu-
tions in &'([0,7/2]" ). Indeed, following (3.3) 1,,...,.
(6,,.-,8,_) is defined on a space of C* functions on
[0,7/2]"~" going to zero faster than any power of
6,,m/2 — 0, as 6, goes to zero or «/2. But this space is easily
identified to the space of C = functions on R” ~' identically

zero outside the hypercube [0,7/2]" ~ . Similarly, we have
5= 5,5 (0100, )0 P (x) 87 (x,),

Spr-p, (Orreens VD ([0,7/2]" 7). (3.10)

Substituting (3.9) and (3.10) in (3.6) and (3.7) we get a
system equivalent to S, and relating the unknowns
ty,.p, (01,0, _y) tothedatas, .., (6,,...0,_;).

The key of the proof of our proposition will be provided
by the following recurrence hypothesis.

Recurrence hypothesis: The proposition is true for all
systems S,, withp = 3,...n — 1.

We prove it now for p = n.

(1) Let N be such thats, , (6,,...,0,_,) is zero when
P» > N. We claim there exists a solution of S, with the same
property.

It will be convenient to write (3.9), (3.10) in the short-
ened form:

1= 1, (XpeesXy_ 108, -1 )EP(X,),

PN

5= 5, (XpeesXy_13010,6,_ 116D (x,,).

p<N

We get from (3.6)

(3.11)

n—1
P+ D(p+2),,, +(2 x?) L =0,

1

—(p+1cosb, t,,+sinb, ,y, ,t,=0,

(3.12)
and from (3.7) after using the last equation:
a
(p+1)(ae l—coto,,_l)tPH
d " Vi a )
+ n— + . N e
(y z a0, _, ™ sinf,,,..sind,_, d6,
Xt,=sinf,_,s,. (3.13)
Accordingly, we get for z,,
n—1
(z x?)tN':O’ Y1ty =0,
1
a " Vi d )
n— + . . — ¢
(y 2 a6, , T sind,,,.sind,_, 46, N
=sin 6, _,sy. (3.14)

As s, verifies (3.12) also, we have necessarily

n—1
(Z x?)s,\, =0, y,_sy=0.

1

Going back to (3.8), we conclude that sy, ¢y satisfy the
same set of equations s,# up to the replacementof nby n — 1.
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According to the recurrence hypothesis, we can find ¢, .
(2) The last equation (3.12) gives

N! cos 8, \*
In_x = .
(N—k!) \sing,_,

X‘iN,k +t?V—k’ k: 19-'-,Ny (315)
where 7y, is a distribution verifying
yﬁ-l?N,k =Iy- (3.16)

We need the following lemma.
Lemma 3.1: The distributions 7y, in (3.15) can be de-
fined in such a way that the distributions tg verify (3.12).
Proof: The distributions ¢ verify (3.12) if we have

Pru_1tve =Invs_ 1 (3.17)
n-l cos? @
Take ,?)—"“—z =0. 3.18
Nk 2+(ZX sn?g, M (3.18)
With ty = 8(y, _, )uy, we take 7, in the form:
Ty =(— l)k/k!(s(k)(yn—l Yuy + (— 1)k
ik/2}
X ¥ 0,8% 0 (y, )/ (k—2DY (3.19)
1

(3.17) is obviously satisfied. As for (3.18), we remark that
n—1 n—1
Y x=3 5
] 1
so that by (3.17) we get

n—2
?N,k—Z + COS2 en_l ( z Yf) ?N,k = 0
1
Substituting (3.19) in (3.20) and taking into account
n—2
(5 7=
1
we obtain
n—-2
(z ylg)vl-*'uN:O)
1
n—2
(2 yg)”m»l +v=0, I=1,.,, [—] .
T 2

But the distributions u, and v, are finite linear combination
of derivatives of §(x,)***8(x, _ ), so that the division by
the polynomial 2 ~ 7 is meaningful. Therefore, (3.21) can
be solved in term of u, and the resulting #y, verify (3.17)
and (3.18).

Let us go back to the main proof. If we substitute (3.15)
in (3.13), we get the same system for ¢ as for 7, with the
only following differences: (i) % = 0 by construction; (ii)
the right-hand sides sin 8, _ s, are replaced by distribu-
tions W, such that W, = 0 for p>N — 1. Therefore the exis-
tence of a solution 7z of S, for some N will result recurrently
of the existence of a solution for N = 0. But this is already
contained in the recurrence hypothesis.

Finally it remains to prove the proposition for n = 3.

We introduce, as above, the spherical coordinates R, §,,
6, and we put

(3.20)

(3.21)

z, = x, sin 6, sin 8, + x, sin 6, cos 8, + x5 cos G,,
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z=1Xx,c08 8; —x,sin &, + i cos 6,(x, sin 8,

+ x, cos 8;) — ix; sin 6,. (3.22)
Then (3.6) is written
(3 +22)t=0, z;t=0 (3.23)
and similarly for s. As for (3.7), it becomes
d . d ) =(d
zZ|——isin@,—|¢ (__
(ae, 236,) ' T \58
+isin 6, %) £ =2 sin O,s. (3.24)

2

According to (3.23), we have the following finite expansions
for ¢t and s:

t=38(z;)(18(D)) + 3 (2, 6P7(2) + 1,807 (2)),

p>1
5s=08(z3)s8()) + Y (s, 829 (2) + s, 80P (2)),

p>1
(3.25)

where ¢ ,s* belong to Z'([0,7/2]?) and §® 5P are
the derivatives of §(z) = 6(z +2/2)8(z — 2/2i) of order p
in z and Z, respectively. Taking into account (3.23), the de-
pendence of z, z; on 8,, 8, and the relations

z&(qu)(Z) — —p(S(P‘ l,q)(z), 25(p»q)(z) - _ q(s(pvq— l)(z)

we get after substitution of (3.25) into (3.24) and the re-
placement of 7} by v, =sin”6,t; and of sf by
uy =sin’ O,5F:

A +ising, v, _2sin’6, -
a6, a0, P+1 1
B v, ising, W, _2 sin’ 6, ur,
86, a6, r+1
(3.26)
and forp=20
ot dvit Gl v
d —isin62L+ ! + isin G, o
96, a6, a6, 96,
= — 2sin’ B,u, (3.27)

According to Appendix A, each Eq. (3.26) has at least one
solution in 2’ ([0,7/2]%). As for (3.27) it can be solved by
quadrature if we impose the supplementary condition

a
— (v —v;7)=0.
6, 1 i
Thus we conclude the proof of Proposition 3.1. As a mere
corollary of it, we can state the essential result of this paper.

Theorem 1: The extension of a massless representation

_of the Poincaré group in 2 + 1 dimensions with helicity /2,

7 = 0,1 defined in the space ., isomorphic to the space of
functions on R? with rapid decrease at infinity and at the
origin by the tensor product of n massless representations
with helicity 7,/2, i, = 1,..., defined in &, , is always tri-
vial for n>3.

Proof: According to (1.9) and Proposition (3.1), we
have
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Zg(a,A) =TV, .., (0,A,) — €"(Ak)
XTIV, ..., (O AA- IV 71, (0,A)

where T'in 7, ..., verifies (3.1).
Using the structure of T as displayed above, we show
that

TV, . (OAIEL (S s P ).

IV. APPLICATIONS AND CONCLUSIVE REMARKS

As pointed out in the introduction, the theorem above
has the following immediate consequence.

Theorem 2: The equivalence classes of the formal non-
linear representations of &7, with irreducible physical repre-
sentation as linear term are isomorphic to the classes of ex-
tension of this linear term by its symmetrical tensor product.

Proof* For the massive representations, we know from
Ref. 5 that any nonlinear formal representation is nonlinear-
ly equivalent to the representation itself. Similarly for the
massless representation with helicity 1/2 according to the
results in Ref. 2 and the present paper. So we have only to
discuss the case of the massless representation with helicity
zero.

We recall that a formal nonlinear representation is given
by the following expansion:

(a,A)

fK) - Vyla,A)f(k)
(Z2(a,A),Vy(a,A)f& Vo(a,A)f)

n-terms

+ Y (Zx (@A), Vo(aA)fe - @ Vo(a,A)f)-

n>2

Let us suppose we have built two representations with the
same cocycle Z2(a,A). Then the difference of the third
terms of the expansion is a solution of the homogeneous
equations, i.e., a cocycle of extension of ¥, (a,A) by its sym-
metrical third power. We know by Theorem ! that this cocy-
cle is a coboundary, so that we can transform the second
formal representation in an equivalent representation identi-
cal to the first representation as for the first three terms of the
expansion (see Appendix B). Then we know the difference
of the fourth term is a coboundary and another nonlinear
transform makes it equal to zero, etc. The infinite product of
nonlinear transforms we need to achieve the identification is
convergent in the space of formal series, for the nth term in
the product does not change the (n — 1) first terms of the
expansion: it defines a formal nonlinear transform which
identifies the two original representations. This technique of
proof has already been used in Ref. 6.

Remark 1: The set of nonlinear formal representations
of Z, we have just obtained appears to be a very restricted
set. But is would take a long time to exhaust all the possibili-
ties: we can take as a linear term a direct sum of irreducible
representations or of indecomposable representations.
Owing to the nonlinearity, the resulting nonlinear represen-
tations cannot be deduced from the nonlinear representa-
tions built for each component separately.
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Remark 2: The theorem cannot be extended to the
spaces &, of Ref. 2. The point is that the dualof & ...,
contains distributions of infinite order. Consequently expan-
sion (3.9) is no longer finite but must satisfy the rather
strong condition of local finiteness. Let us consider the case
n = 3. We can proceed as in the third part of the proof of
Proposition 3.1, so that we have finally to solve the system
(3.26), (3.27) with w0 in £'(]0,7/2[?). Let us take as
data:

ut =a,8(p+ w,)8(0, —7/4), p>1, a,€C,

u0=0, up_‘ =0y p)l)

in the variables 8,,0, = log 1g0 /2 (see Appendix A). The
requirement of local finiteness is obviously verified. Then we
have, with { = 6, + iw;:

4a ez T\
T e RN L)l

+ WD, p>l,
vy =W (6, p>l,

where W are antiholomorphic function in the strip
B=107/2[ XR_.

The local finiteness of expansion (3.9) means that for a
given compact K in B, the restriction of v, to K is identically
zero for p sufficiently large. Therefore, we have on X for such
D

W, =(da,/m(p+ D) + e )2~ /4 —ip) ™",

The uniqueness of the analytical extension contradicts the
antiholomorphy of W * on B. Thus although we can solve
(3.26), (3.27), the solution must be rejected because it does
not verify the local finiteness condition. Thus we have a
counter-example to Proposition 3.1.
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APPENDIX A: SOLUTION OF (3.26)

First we replace the test functions /by sin &, fand the
variable 8, by w;:

@, = log tan 8,

The space & ([0,7/2]?) is mapped onto the space .5, (B) of
C= functions on R? identically zero outside the strip
B =[0,7/2] X R_ and going to zero at infinity on the lines
6, = Cte with all their derivatives faster that any power of
exp @,. The topology of .| (B) is defined by the family of
semi-norms:

o eR_.

au-#-!jf (9

.(Al1)
30 do (

“f”p = wngB exp( — pe,) 1p@1)

u+ v<p

Then we have to prove that, for given u;* in | (B), the
following equation:
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W,y 4
= — exp @, + exp ( — @,)) "3
o p+1( p v, P D)

Xu,t, =06 +iw,
has at least a solution v, , in . (B).

According to Cor. 4, chap. 18 in Ref. 7, itisequivalent to
prove that if 4, = df, /3¢ goes to zero in £, (B), then f,
goes to zero in &, (B).

Following Ref. 8 we have

=t (282D s 10, ®,
e £—§

where @, (£) is some antiholomorphic function. But by de-
finition, A, (¢',£') is orthogonal to any antiholomorphic
function on B, in particular to 1/(£ — £') when £¢B. There-
fore @, () is identically zero outside B and the uniqueness
of the analytical extension implies @, (£) = 0. Thus we can
write

_ 1 hn(gl’z’) I 2
fo= | Mgl

1 ( h, (& +77,§+7'7)d
— Ui

= —— dr.
7 Jc 7
Accordingly, we obtain with 7 = p exp(ia):
( ) 9
exp( — pw
ARG FY R
1 7/2 cos @
<— daf p dp exp(p sin a)
T J—a/2 0
Xexp( —p(§ +77.—§—17))
2i
au+vh _
X |[=—=—=—( +n +‘)‘.
96" 3o, S+né+7

But we have

1 /2 cos 2 1
— daf pdpexp(ppsina) =—,
T Jonn o 2p

so that we get

Wfall, <172p1|R11,
and f, goes to zero in ¥ [(B) with h,,.

APPENDIX B: DEVICE USED IN PROOF OF THEOREM 2

For the sake of completeness, we give here the general
device used in the proof of theorem 2 (see Ref. 6).
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Let G be a group, V(g) a representation of G in some
linear topological space E. We consider the nonlinear formal
representation of G given by the expansion:

© n-times
V@ -3 Z" ) Vg fé---&V)f, geG, feE,
2
(B1)
where as usual & denotes the projective tensor product and

n-times

Z" (g) is a linear mapping of E® --- & E into E.

p-times

Let A be a mapping of E&® -+ & E into E. We consider

the nonlinear mapping of E into E given by

p-times
fop=f+Af& - &f (B2)
This nonlinear mapping has a formal inverse:
p-times
f=p—Ap& - &@p + . (B3)

Substituting ¢ to fin (B1) by (B3) and transforming the
resulting expansion by (B2), we get a realization of the for-
mal representation in term of @. In this realization, the
(p — 1) first terms are unchanged and the pth term is written

times

.
ZPg)+A—V()AV(g™ N & & V(g™")

as it is shown easily by direct calculation.
Using successive transforms as (B2), we can drive out
all the coboundaries in (B1).
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Microscopic collective nuclear models with horizontal mixture

G. F. Filippov and A. L. Blokhin

Institute for Theoretical Physics, Kiev-130, 252130, Union of Soviet Socialist Republics
(Received 28 June 1988; accepted for publication 10 May 1989)

By accounting for the difference in the spin and isospin projection among nucleons, the
Sp(6,R) dynamical symmetry of the nuclear collective model is amplified in parallel with a
horizontal extension of the instrinic shell structure. The generating kernels for the extended
symplectic model basis functions are constructed in the form of a shortened coherent state.
Analytical expressions for the microscopic Hamilionian matrix elements, including central and
tensor interactions, are obtained between the coherent states indicated.

|. INTRODUCTION

The problem of calculating the Hamilton operator ma-
trix elements with respect to the basis functions of symplec-
tic and unitary group irreducible representations (irreps) is
of permanent importance in the theory of systems with a
finite particle number.'-"* The field of corresponding phys-
ical applications covers collective motion studies,* ' effec-
tive Hamiltonian construction,*®'~'® nuclear and atomic
spectroscopy,®®*'>!? and other branches. The most compli-
cated part of the problem indicated is to determine the po-
tential energy operator matrix elements; reaching this stage
several researchers reject the indispensible microscopic ap-
proach in favor of the phenomenological Hamiltonians in
the polynomial form of the Lie algebra genera-
tors, 4810121617 The nresent paper realizes a program of
constructing the generating kernel for the matrix elements of
two-body interaction operators (central and tensor forces)
between the symplectic nuclear model states admitting var-
ious (both regular and irregular) occupation of the valence
nucleon shell. As one can note, the composing of intrinsic
subspace by means of several shell occupations essentially
amplifies the model basis compared with the conventional
Sp(6,R) model.* Really, the complementarity between the
intrinsic and collective motion®? requires the whole space of
states to be made up of different Sp(6,R) irreps. Following
Park et al.,'? we suppose that making use of the basis states of
asingle Sp(6,R) configuration is no more successful even for
the s-d shell, so the exit through the light nuclei region with
realistic Hamiltonians needs mixed representation calcula-
tions. The assumption is based on essential physical argu-
ments. First, the dominant SU(3) irrep spans up to 80% of
the full shell basis in the beginning of the 2s-1d shell. This
result of Akiyama et al.>® with a microscopic Hamiltonian
affirmed the significance of intrinsic configuration mixing
for light and medium nuclei. The analogous conclusion was
stated by Draayer et al.?! who had diagonalized a semiem-
pirical Hamiltonian for *°Ne in the space of mixed Sp(6,R)
representations. The experimental data for the systems of
18-20 nucleons?* also testify that the quantity of collective
bands in real spectra notably exceeds the one irrep predic-
tions. Then, the intrinsic SU(3) symmetry is characteristic
only for the nuclei with rotational spectra. The intrinsic
symmetry of the coupled rotor—vibrator-type corresponds to
the higher dimension unitary groups and hence the space of
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states for such nuclei occurs to be reducible with respect to
the SU(3) group. The idea was successfully realized in phe-
nomenological interacting boson approximation with
SU(6) symmetry.”*** And, finally, one notes that the
Sp(6,R) configurations are inevitably mixed by the spin-
orbit and tensor interaction.

In the version of the symplectic model developed below,
the transfer to the mixed irreps results from the dynamical
symmetry extension. The latter is achieved by dividing the
nucleon system into four interacting subsystems according
to the spin and isospin projection of nucleons. The basis
states of every subsystem are transformed by the Sp(6,R)
irrep, and, consequently, the dynamical symmetry of the
whole system is determined by the direct product. The ex-
pansion of the latter, besides the dominant Sp(6,R) irrep,
incorporates representations with the same number of quan-
ta in the lowest shell state. Besides the vertical mixing of the
SU(3) irreps within the Sp(6,R) one, the discussed exten-
sion of the Sp(6,R) model space fixes the horizontal mixing.
Such mixing is necessary to set a correct structure on the
low-energy spectrum region.?! So one may expect the collec-
tive model with horizontal mixture to improve the descrip-
tion of the real nuclei by revising the conception of the intrin-
sic motion.

As a chief tool to obtain the explicit analytical formulas
for the matrix elements of the physical operators, we utilize
the generating kernel technique.>”'* Section 11 begins with a
review of some results from Refs. 5 and 7 on making use of
shortened coherent states as the generator functions in the
framework of the Sp(6,R) model with the regular occupa-
tion of the valence shell. Thereupon the extension scheme is
considered in its application to the generating kernels for the
basis state overlaps and kinetic energy matrix elements.

In Secs. I and IV an algorithm to calcunlate the gener-
ating kernel for the two-body central interaction operator
matrix elements is developed. In Sec. V the previous results
are modified for the case of tensor nuclear forces. In Sec. VI
the formulas derived are detailed for several cases of physical
interest. Section VII contains the conclusion.

Il. GENERATING INVARIANTS OF EXTENDED
SYMPLECTIC MODEL
The version of the generator function method used in

the present paper was developed by Vasilevsky ef al. in ap-
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plication to the conventional Sp(6,R) model. Théy pro-
posed to make use of a shortened coherent state as a generat-
ing kernel for the basis states of the symplectic group irrep.
The shortened coherent state, in contrast to the general case,
is constructed over the lowest SU(3) irrep only by means of
the raising generators of the Sp(6,R) algebra.”® Hence, it
contains nine generating coordinates versus twenty one for
the “true” coherent state. The basis states may be selected
out of the coherent state (henceforth we omit the word
“shortened’ ), generally speaking, by performing reiterated
differentiation with respect to the generating coordinates.
By taking the matrix elements of the physical operators
between the coherent states, one obtains the corresponding
generating kernels which depend only on the set of the gener-
ating coordinates. Then, either the standard method of solv-
ing the Hill-Wheeler equation'® or the above pointed differ-
entiation routine reduces the problem to the usual
diagonalization of matrices.

The generator function technique is quite practicable to
obtain analytical expressions for the matrix elements of var-
ious operators between the many-particle oscillator func-
tions with arbitrary values of quantum numbers. Seemingly
it is simpler, at least for highly excited states, than the gen-
eral approach based on the fractional parentage decomposi-
tion,”®?” on account of the latter needs recursive calculations
with a large set of Wigner coefficients of the symmetric and
unitary groups. Besides, as it was noted in Ref. 7, there exists
a way by using the generating kernels to estimate an asymp-
totic behavior of the corresponding matrix elements at the
number of oscillator quanta increasing to infinity, and con-
sequently, to eliminate the convergence problem for the os-
cillator expansion. However, in the case of essentially anti-
symmetrized spatial Young pattern, or, which is the same,
an extremely irregular shell occupation, making use of the
parentage coefficients is vital to construct the coherent state.
So we leave the latter case beyond our discussion and appre-
ciate the necessity of a generalized algorithm reasonably
compound of both the approaches.

Following Refs. 5 and 7, Sp(6,R) irrep coherent states
that generate the oscillator basis can be constructed over the
oscillator SU(3) multiplets:

|bju) = exp{Trace(bX*)Hu) ,

where A* = ||A} ||, r, s= 1,3 is the symmetric matrix of
collective quantum creation operators (here

2.1)

A~ A—1
AT = z aifag
i=1

for the system of 4 nucleons, &, are oscillator quantum
creation operators), b= ||| is the symmetric matrix of
collective excitation generator coordinates. The latter are,
generally speaking, complex variables. Nevertheless, to fit
the generator function one always may assign real values to
them. Let the ket (2.1) belong to the [0,0,0;] irrep of
Sp(6,R) group. If this state is treated as a generating invar-
iant for the oscillator basis of the minimal approximation of
generalized hyperspherical functions method® (i.e., for col-
lective wave functions of fixed O(4 — 1) symmetry
[ /1./2/]), the symplectic and orthogonal group irrep in-
dices relation® is written as
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o, =1fi+i4-1), i= 13
The SU(3) multiplet |u) quantum numbers are defined, be-

sides the f; indices, also by means of SU(3) DSO(3) reduc-
tion ones:

Nmin =.f] +.f2 +f2‘3’ A =f‘l _f‘2’ K =.f2 _f;’ LMa ’

where N, is the total number of quanta, (Au) is Elliott’s
notation for the SU(3) numbers,’ LM and a are the values of
orbital angular momentum, its projection and multiplicity
index, respectively. The u = (u,,u,,u;) symbol denotes an
orthogonal matrix composed of three vectors of the Carte-
sian axes orientation. The initial orientation u = E (where E
is the unit matrix of the third order) determines the lowest-
weight state of the (Au) irrep. Three independent generator
coordinates, parametrizing the matrix, provide the reduc-
tion onto the SO(3) group, e.g., by means of the Peierls—
Yoccoz projection technique.?®

We introduce, following Filippov ez al.,” the single-par-
ticle states

(r|n,v,u) = (7/2ml) ~1/2L,

1 3
Xexp(——z—rz) I &, (), (22

k=1

where n={n,n,,n;} are the occupation numbers,
n=n; + n, + nz,nl=n,!nInY §, is the spin—isopin function
with projection values v = {o7}. The distance scale is cho-
sen normed to the oscillator radius 7, = y#/mw. If the nu-
cleon shells are filled in a regular manner, i.e., the valence
nucleon state is expressed through the Young pattern, fully
symmetrized over the antisymmetrization due to a fixed spin
and isospin projection, then the single-particle kets (2.2)
form a Slater determinant of the whole system state. So the
partition numbers f; are identified with the total numbers of
quanta along the Cartesian axes. By passing to Jacobi co-
ordinates in Eq. (2.2) one isolates the center-of-mass factor.
The translationally invariant part of the Slater determinant
coincides with the SU(3) irrep generator function |u) of Eq.
(2.1).

Now we proceed to abandon the operator form of the
Sp(6,R) irrep coherent state (2.1) in favor of the coordinate
form. Let us denote the eigenvalues of matrix b of the collec-
tive generator coordinates by 3, ,, and f3;. Then the coher-
ent state of the Sp(6,R) irrep with quantum numbers

1 +14 - 1]

is expressed through the translationally invariant part of the
Slater determinant composed of the single-particle orbitals

(r|b;n,v,u) = exp{ — r'b(E — b) ~'r}(r|n,v,u) (2.3)

and supplied with factor IT, (1 — B,) ~ *°*. (The superscript
T with vectors and matrices means their transposition).
Such a state is defined by three Sp(6,R) quantum numbers
and nine generator coordinates. Three of the latter are re-
sponsible for the intrinsic state description, and the other for
the monopole and quadrupole collective excitations.

As far as the generator function for the basis state is
identified with the coherent state, the matrix elements of an
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arbitrary operator F between the coherent states, i.e.,

(Bsiv|F |bu)
are treated as the generating kernels. We denote the corre-
sponding generating coordinates of the coherent bra and ket
in a different manner to emphasize that conjugated bases are
yielded by the independent generator functions.

For a single or two-particle operator F the calculation of
the matrix elements between the determinant functions (f);v|
and |b;u) can be performed according to the Lowdin algo-
rithm.?® Describing nucleon interactions through effective
two-body potentials we assume that to calculate such matrix
elements is quite sufficient for solving the problems of practi-
cal significance. We put off the construction of the potential
energy operator generating matrix elements until the next
section and now turn to the case of one-body operators.

The coherent state overlaps

{b;v|b;u)
are the simplest generating matrix elements. They contain
information on the structure of the basis functions and nor-
malization coefficients. Analytic expressions for the over-
laps are to be found’ by generalizing the Elliott formula' for
the overlap integrals of definite SU(3)-symmetry oscillator
functions:

VIALLILALLD

= (ulvx)f'_fz([uluzl[Vlvz])fzﬁf’, (2.4)
where {u[ £, f> /31) and (v[ f, £> f3]| are the Slater determi-
nants composed of the corresponding one-particle kets (2.2)
and bras. (Square brackets henceforth symbolize the vector
product.) Note that a linear transformation of the coordi-
nate system extends the lowest SU(3) irrep coherent state to
the Sp(6,R) irrep one.

Every overlap of oscillator orbitals (2.3)

(b;i,v,v|b;n,v,u) = (b;i,v|b;n,u)é,,

implies the integration of an exponential factor

exp( —r"Br),
B=E+b(E—-b)" '+b(E—-b)"".

(2.5a)
(2.5b)

One can perform a linear coordinate transformation

x=B"% w=B"'" v=B Y% (2.6)

conserving bilinear forms

There oscillator reper matrices u’ and v’ are no longer or-
thogonal. To make the Elliott formula (2.4) applicable one
employs the Gram—Schmidt orthonormalization technique
presented as a triangular transformation

u=u"¢, v=vV"E, (2.7)
where € and € are the upper triangular matrices, u” and v”
are the new orthogonal ones. The next calculations will need
only diagonal elements of the transformation matrices:
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, , u¢u' k ‘(ulu’u')i
€ =[ujl, € :_[_1’3]_’ 33 =#,

Juf | [[wiu;]] (2.8)
. N 020 | R (O
En=1Ivi|, Ep=—="— &3=——"=T—.

Ivil [{viv2]l

The determinant form of the Sp(6,R) irrep coherent states
employed and the condition that nucleon shells are regularly
filled allow us to obtain the |b;u[ £, f; £;]) determinant com-
posed of orbitals (2.3) from the |u[ f; /> /3]) determinant
using a simple substitution for the parameters of one-particle
states (2.2):

(2.9)

After performing an analogous substitution for the bras, one
reaches the expression sought for

(vl £, £ 1 bul £ 44D
= (V' [ALLIWALLD
X|B|_A/2(611611)f'(€22€22)f’(€33§33)f3’ (2.10)

where the multiplier depending on the matrix B determinant
represents the Jacobian of transition (2.6) to spatial coordi-
nates x. Taking the relations (2.4), (2.7), (2.8), and (2.10)
into account, we obtain

(v £, £ 1l Ibul AL A]D
= [B| =4 (ujvi)/ %
X ([uiw3 ] [vivi]) 2~ (mjusus) (vivivy) )5,
(2.11)

where the parentheses with two vector arguments indicate a
scalar product, and those with three vector arguments indi-
cate a mixed one. Choosing the new notation

A = B|[E —b||E —b| = |E —bb|=D(bb), (2.12a)

M =A(ujv])=A-v]B u,, (2.12b)

X =A-([uju;][vivs]) = |E — b||E — b|-v]Bu,
(2.12¢)

(it is easily seen that A, .#, and %" are polynomials on the
matrix elements of b and b), using

(rjn,v,u) — €7 €53 €53 {(x/n,v,u") .

(uiuzu3) (viv;vy) = [B| ™!
and excluding the center-of-mass motion by normalizing

factor A'/2, we come from (2.11) to the Sp(6,R) [0,0,05]
trrep coherent state overlap

M IH

(byvbu) =X %~
Af. +(1/2)(4—1)

(2.13)
Formula (2.13) derived in Ref. 7 is applicable if nucleon
shells are occupied in the regular manner. But the regular
occupation is preferred only for the lightest nuclei; an in-
crease in the nucleon number results in holes in the shell
configurations being energetically preferred.***! To incor-
porate the irregular shell occupation, as it was discussed in
the Introduction, one has to account for the horizontal mix-
ing.

The extended symplectic model proposed in the present
paper describes nucleon systems with horizontal mixture in
an open shell. Realizing it, one preserves some advantages of
the above considered variant of the Sp(6,R) model with reg-
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ular shell occupation: the usage of a generating invariant in
Slater determinant form and, consequently, the existence of
a simple transformation connecting the Sp(6,R) and SU(3)
coherent states. In the extended model the system of 4 nu-
cleons is treated as divided into four interacting subsystems,
each of them containing nucleons in a fixed spin—isospin
state v. The subsystems are built up in a regular way; the
corresponding intrinsic configuration is characterized by the
total numbers of quanta f,,, f,,, /,; along the oscillator axes
[in the extended SU(3) model Elliott indices (4,u,)
= (f1 — Sz, for —[.3) aresufficient].

Some comment is required for the previous paragraph.
Note that every subsystem is unambiguously characterized
by the fully antisymmetric spatial Young pattern. For the p-
shell the space symmetry coincides with the intrinsic state
U(3) partition [ f,, f,, f.; ]. For the higher shell one classi-
fies the oscillator quanta, generally speaking, by several par-
titions. Henceforth we consider the subsystem v imparted by
afixed [ f,, f,, f.3 ] partition and, consequently, the whole
system labeled by a set of four partitions. The latter condi-
tion is based on a physical assumption of the relatively weak
coupling of subspaces with the fixed partition set. Really,
one can divide the full Hamiltonian as follows:

H:H0+2Hv +Hres ’

where H, is the Sp(6,R ) invariant contribution of the entire
system, H,, are the corrections due to the independent sub-
systems, and H,, is the residual term corresponding to the
interaction of the subsystems. Contrary to the other terms,
H,,, is originated only by the valence nucleon interaction
and, for that reason, is expected to be rather small. Hence the
cross matrix elements between the states with different parti-
tion sets take a nonzero value only on the smallest term of the
Hamiltonian.

The formulas for coherent states and their overlaps in
the extended model generalize formulas (2.2)-(2.13) quite
easily. The single-particle kets of the intrinsic state of the
subsystem v are obtained from states (2.4) by replacing the

oscillator reper matrices
(2.14)

The matrix u, is supposed to be constructed from the vector
columnsu,,, u,,, u,;. The bras undergo an analogous modi-
fication. The collective matrices B (2.5b) remain un-
changed, reflecting the physical assumption about the defin-
ing role of the intrinsic configurations in the structure of a
nuclear system. If necessary, an additional mixture in collec-
tive occupation may be injected into the model without spe-
cial difficulties (but this will cause an extraordinary calcula-
tion inconvenience in applications to the concrete nuclei).

Returning to the extended Sp(6,R) model generating
kernels we generalize formula (2.13) according to the
scheme (2.14):

u-u,;  (r(nv,u) - (rln,v,u,) .

Hw/” -Cvl ~fvzvc,y -{:vz —Jf

Aﬁ + (/234 - 1)
M, =0V, "B 'u, =M, (byvbu), (2.15b)
X', = |E —b||E — b|-v,Bu,; =K, (b,v;bu) , (2.15¢)

(b;v|b;u) = , (2.152)
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where

fi=Xfu i=13.

Now we deal with the kinetic energy operator ?’matrix
elements. Let us denote by a the set of the quantum numbers
of a normalized basis function. Using the virial theorem for
the harmonic oscillator, one can deduce

(@ T)ay = — (#/2m){@| p2la)(1 —26,,)  (2.16)

to connect the desired matrix elements with the elements of
squared hyperradius operator

) A 1 A 2
=g - (5
i=1 i=1
A formula for the generating kernels of the p* matrix in the
Sp(6,R) model with a regularly occupied open shell was also
derived in Ref. 7. Generalized to the broadened model, it
looks like

Bvlolbw) = { /i + /2 +£i 4304~ 1)
+3 o =) aiylnmm
+3 U —fw%ln X

3

+ (fvl + A—;-l) 3‘9}/-111 A(r)}

y=0
(2.17a)
) = MAA = b+ YEw( = )b+ 7Ew)
M, (YEEyYEE)
(2.17b)
7y < KAAZPb 4 yEw( = )b+ vEw)
K, (yEE;7EE)
(2.17¢)
Ay <RI =pb+yE(—pb+yE)

D(YEVE)
where the functional dependence of M, K, and D was de-
fined by (2.15b), (2.15¢), and (2.12a).

lIl. POTENTIAL ENERGY MATRIX GENERATING
KERNELS. EXPONENTIAL GENERATING FUNCTION
FOR PARTIAL EXPANSION

In the present and subsequent sections we derive analyt-
ic expressions for the generating kernels of the matrix of
Wigner nucleon-nucleon interaction operator

A~ , — A2 ~
U = z woexp[_ﬂ"‘ r;) ]E Z Vir,—r),

i< 2 isj<d
3.1)

where ¥ is a parameter settling the interaction range. One
can generalize the following results to the case of potentials
summing several Gaussian functions in a trivial manner. To
work with the potentials including other radial dependence,
one has to integrate over the parameter ¥ with a definite
weight function.
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In accordance with Léwdin’s algorithm,?® we write the

two-body operator U, matrix elements between the determi-

nant functions (l;;vl and |b;u) in the form of

(byv] U, |b;u) = (b;v|bsu)

XS w[WE M -WsN], (32a)

Wi(y)= J-f dr dr,p,(ryry) p,(ryry)
xexp[ — —721 (r, — rz)z] , (3.2b)

Wan = [ [ drdep. e purar)
xexp[ — —72-/— (r, — rz)Z] , (3.2¢)

where Wt (v), W () are the integrals of direct and ex-
change nucleon interaction between the subsystems v and #,
p, (r,r,) is the single-particle spatial density matrix in the
subsystem v.

We guess the construction of density matrices of single-
particle orbitals (r|b;n,v,u,) and (b;n,v,u,|r) to be inexpe-
dient, because the latter are nonorthogonal, if the quantum
numbers n and i belong to the same shell (in the case v#£v
the orbitals are orthogonal like the corresponding spin—iso-
spin functions). So we prefer to orthogonalize the employed
orbitals beforehand. Then their overlap matrix becomes dil-

t,.=0,7,,
1/(un ll )1/2 (ll v:'ll )/(“n V" )l/2(un V )1/2
®, = 0 (v )/ v ) 2 (uy v ) V2
0 0

agonal, providing undoubted advantages for further trans-
formation.

To solve the stated problem, we use the technique of
partial expansion generating functions applied in Ref, 7 to
the SU(3) model. One can present the single-particle states
(2.2) as a derivative of an exponent with respect to the com-
ponents of the vector parameter t, = {¢,,,%,,,2,, }:

(rinvu,) = 7734 D(nyt,)
xexp{ — € + 2r"u,t, —ir?}, _,, (3.32)
a n,a n;a My
ottty
The expression (3.3) makes use of the generating func-
tion for Hermite polynomials. A passage to an analogous
representation for the single-particle orbitals of the symplec-

tic model takes place as a result of the spatial transformation
(2.5)-(2.9)

D(nt,) = (2"nl)~1/2 (3.3b)

(r|bn,vu, ) ~¢, 773/*D(n,t,)

xexp{ — 2 + 2x"ujt, —ix*}, _o . (3.4)

The factor depending on the elements of the triangular ma-
trix €, is omitted in formula (3.4), because it contributes
only to the coherent state overlap [see (3.2) ], but the subse-
quent calculations involve the direct W £ (¥) and exchange
W . () integrals.

We define the new generating parameters {7,,,7,,,7,; }
= 7, by the following triangular transformation:

(3.5a)
(uyy v/ (uy vy, )2
(uv2vv3 )/(“v3vv3 )1/2 . (3.5b)

1
(v )/ (uiyvy) 2

Replacing in the formula (3.4) the differential operator D(n,t, ) (3.3b) by the operator D(n,r, ), we create new single-

particle orbitals

(rbnvu, )~ 734 D(n,r,) exp{ — £ + 2xTult, — i X7}, _o

It seems instrumental to pass within the exponent to parameters r, simultaneously with the oscillator reper transformation

which sets an invariant image of the vector u’t,:

J— — (4
U, =v/o,, U,»r =u’t,,

(rbnvu, ) ~77%*¢, D(nsr,) exp{ — (U,7,)> +2x7U,1, — 1 x*}, _, -

(3.6a)
(3.6b)

In the last relation the orthogonality of the matrix u” was used. In the same way we define the new bras

( b;i,vu, |r) ~73"%, D(f,0,) exp{ —

V, =va,
1/(uvlvv1 W2 — v/ (V) R (s v )2
a)v — 0 (uvlvvl )/(ll" V )I/Z(u V" )1/2

0 0
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(Vvo'v)z + ZXTVVUV - % x2}‘w,,=0 ’

(3.7a2)
(3.7b)
(U vy )/ (u vy )2

(v )/ (v 2 . (3.7¢)

(uv3vv3 )/(“v3vv3 )1/2
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The matrices U, and V, may be treated as consisting of
vector columns

”
vl

= _—_—’
(u), vy, )12

u

vl

A2
Uv3 = _I-I-TI—/Z, Uv2 = [Vv3 Vvl] H
(w3733 (3.82)

v

v v
vl = 1/2°
(uyyviy)
”

u1/3
Vy=—— V,=[UsU,],
TSI
which, as is easily seen, are connected by the reciprocity
relations

(Uvivvk) = 5ik! lyk = 1’3 . (38b)
The matrices
P,= kaVka’ PZk = VkaZk (3.9a)

of the outer products of vectors U, and V , are projection
ones:

Pvink = Pviaik’

; P,=> PL =E.
k
Equation (3.9¢c) may also be written with the help of reper
matrices
UV, 7=E. (3.10)

One can show the orthogonality of orbitals (3.6b) and
(3.7a). Really,

( b;i,v,v, |bn,vu, ) ~7>2D(n,1,)D(n,0, )

PZPT =PLs,, (3.9b)

(3.9¢)

dex exp{ — U,7,)2— (V,0,)?

+2xT(U,r, + V,0,)
- x2}|'r,/=0'v=0 .

Integrating and utilizing Eqs. (3.8), one gets

( b;ii,v,u, [b;n,vu, ) ~8,:.8,: 0,5 -
The single-particle spatial density matrix built on Slater de-
terminants of the orthogonal orbitals (3.6b) and (3.7a) be-
comes additive with respect to single-particle states:

pv(xbe) = z D(nv’Tv)D(nviov)

v

va(x17x2;TV’cv)|1‘v=0’v=0 ’ (311a)

where n, are the quantum numbers of the occupied single-
particle orbitals of the subsystem v,
PV (xlaxz;‘rv ,0", )
=73 exp{ — (U,7,)?— (V,0,)?
+2x{U,7r, +2x]V, 0, —1(x} +x3)}. (3.11b)
The partial expansion generating function (3.11b) of
the density matrix of the subsystem v contains six generating

parameters. Obviously, the generating functions of direct
and exchange integrals obtained by substituting (3.11b) into
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(3.2b) and (3.2¢) transform into 12 parametrical ones. Ex-
plicit integration taking (3.6) into account leads to
B[

Wt(y)=—121
# = B BT

X;;DWMJmmJJMMwmeQ

v v

Xexp( — Y5Q*Y,), (3.12a)
where Y is a block vector
U,
V,o,
Y, = ve | (3.12b)
V.o,
Q+* are the block matrices
q q9—E —gq —q
Q+ = q—E q —q —q ,
—q —q q q—E
\—q —q q—E q
(q —q —q ¢q—E
o-=| "¢ 9 F 4 g
—q 4q—E q —q
&—E —q —q q
q=1ly(B+yE)~" (3.12d)

To derive (3.12), the well-known integral® was applied:

. , 172
fdy e~ Y Cy+2ly _ (%) exp(z"C™'z),

(3.13)

where C is a positively defined symmetrical matrix of nth

order, and |---| are the determinant bars. Taking (2.5b),

(2.12a), and (2.17b) into account, one notes that
Bl _ A

B+7vE[  (1+7)°A(p)

Equations (3.12) and (3.14) generalize the result of Fi-
lippov et al.” for the SU(3) model with regular shell occupa-
tion to the extended Sp(6,R) model. The presence of 12 gen-
erating parameters makes the differentiation of the
exponential generating function on the right-hand side of
(3.12a) sufficiently complicate. It seems expedient to trans-
form the expression obtained to reduce the number of gener-
ating parameters. The next section deals with such a pro-
gram.

(3.14)

IV. POTENTIAL ENERGY MATRIX GENERATING
KERNELS. DETERMINANT GENERATING FUNCTION
FOR PARTIAL EXPANSION

As one sees by analyzing formula (3.11b) for the partial
expansion generating function, the possibility to occupy
each of three Cartesian axes with oscillator quanta is pro-
vided by two generating parameters. We define a new gener-
ating function so that the & th axis occupation numbers n,,
are generated only with the help of one parameter g,

k=ﬁ)
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Py (XX35G,) = Y 8,1 "8, "8, "

XD(n,7,)D(n,c,)
Xp, (X, X357,

T,=0,=0" (41)
with arbitrary non-negative integer numbers n,,n,,n;. Here
the generating parameters are collected not in vectors, as in
the previous discussion, but in diagonal matrices

Gv = diag(gvl ’gv2 ’gv3 )‘
Using formula (3.3b), we rewrite (4.1) as follows:

1 a \’ al
P (X1,X5,G,) = CXP{T(&_ ) G, T..v}

va(xlix2;‘rvyolv) |1'v:°'v=°' (42)

On the right-hand side of (4.2) we denote such variables as
gﬂ]:

v

=1(E+n), o, =iE—m),

and define the vector differential operator

one obtains

G2 i
1 v 4

i=-—

2\ i

ure

9
M
Then (4.2) passes into
P (X, X,G)
=é¥p, (X, X6 + /2, § —1/2) lg—n—o-
One can deduce from (3.13) if C=E

(4.3)

eiZ =7 n/2 f dy exp( _ yZ + 2yTz)' (4'4)

The operator transformation (4.4) is justified when the op-
erator % is restricted with respect to the norm in the investi-
gated function space. In our case the functions (3.11b) are
analytic, and the transformation (4.4) really takes place.
Performing it on the right side of (4.3) and substituting the
auxiliary vector y as a block

(%)

2 2
puxixsG) =7 [ [dg an exp[ —g ot [—1— U,G(E + m')] - [L V,GA(E — in')]
V2 V2

1 ., 1 b 1
+ ZXIT[E U,G* (& + in )] + ZXZT[EVVGL”@ —im )] - (x3 +x§)].

Returning to the variables

T, =—— GIAE + i), o,

V2

we write down the result for the generating function

N3
. (X,%5,G,) = (‘:7_—) (818283 )~!

= L le/Z(g' — ;.,]') ,
2

XJ- fdfv do, exp( —20.G, ',)

va(xl’x2;TV’0V) . (4'5)

The generating functions (4.1) and (3.11b) happened
to be connected by the integral transformation (4.5), ex-
cluding the superfluous generating parameters. By analogy
to (4.1), we define, on the basis of (3.12a), the generating
function for direct and exchange integrals

B
By ET 2 2 2 [T8w"8u
XD(n,t,)D(n,0,)D(R,7;)D(,0;)
xexp( —YLQ*Y,,).
Then, using (4.5), (3.10), (3.12), and (3.13), we can write
W *(7:G,.G;)

W * (Y;GV’GC/ )

B|'/2
B + yE|'?|ST,Q* (G,,G,)S,;|"?|G,G, |
(4.6a)
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|
where S_; is a quasidiagonal matrix

U,
v,
S, = u, , (4.6b)
A\
Q* (G,, G,) is a block matrix [see (3.12¢)),
Q*(G,,G;)
o r,°7 (o) o)
—1
=Q* 4 rvo g 8 I‘;,O_T , (4.6¢)
o o) r,-! o)
r,=uvGyv,, I,=U,G,V,”. (4.6d)

Taking into account [see (3.10)] that
|Sv§’| = 1’

we focus on the transformation of the determinants
|1Q* (G,, G;)| and |Q(G,, G,)|. Really, these determi-
nants have the 12th order, while the other ones in Eq. (4.6a)
have the third order, in accordance with the physical space
dimension. We use the Q™ (G,, G; )| example to consider a
possible way to decrease the order of the determinants of
interest. The initial form, as one can see from (3.12) and
(4.6¢), is
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q q—E+T, -7 —q —q
q—E+T,~! q —q —q
|Q*(G,,G;)| = ., (4.72)
—4q —4q —q 9—E+T;
—q —q ¢—E+T,7" q

With the help of linear operations on block lines and columns that leave the determinant value unchanged, one transforms

(4.7a), for example, to

JE—T, T—T,- 7T o E-T, 7 o

Q" (6.6 = 0 JE_T,”'—T,"" o E—_T,! 7
v E-T, 67T o q q
o E-T,7! q q

The form (4.7b) is fitted better than (4.7) to the Schur’s algorithm reducing the calculation of the 2nth-order determi-

nant to nth-order ones™

é g = |A|]|D — CA™'B|. (4.8)
Using formula (4.8) and taking identity
(E-TI, HYQE-T,'—T, " YE-TI, Y= —(UHV,"+UH,V, "), (4.9a)
H,=G,(E-G,)™' (4.9b)
into account, we obtain a sixth-order determinant
IQ*(G,,G;)|
=_2E-T,'—I,7'|RE~T, '—T;7"
v (V.H,U,"+V,H, U, ™' q (4.10)

Application of formula (4.8) together with the identity
RE-T,~'—T,7
= —1G,|7'G;|T'[E—-G,|[E—-G,]
X|V,"UH, + H;V,U, |
transfers (4.10) into
Q7 (G,,G;)|
=(—- 1)2|Gv|2|Ga|2|E - G,,|2|E - Galz
X|E+ (U H,V,” +UH,V,")q
+ (V,H U, + VaHanT)QI~ ' (4.11)

Substituting (4.11) into (4.6a) and remembering a defini-
tion (3.12d), we reach the following result:

W*(G,,G,)
|B|1/2
" |[E—G,||[E—-G;]

X IB + YE + %(UVHVVVT-{— U;,H;,V;, T)

+—72’-(VVHVUVT+ V,H,U,7)|~ V2 (4.12)

Using the generating function for Laguerre polynomials

€x —= = a(2),
1—g p( P

we rewrite (4.12) in the form of
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- (UVHVVVT + U;H{,V;, T) - (VVHVU‘VT+ V{,H;,U‘-, T) -

(UVHVVVT + U;,H;,V;, T) -

r
W*(rG,,G;)

= |B| 12 ; Zn: I;Igvk"kgwcﬁk

<2l =iz ) (i)
\ " om, ) ™\ am,

X|B + 7E + %(UVHVVV T4 UH,V,T)

+§(VVHVUVT+ V.H, U D "2y 4o
(4.13)

In Eq. (4.13) H,, and H,, (the elements of diagonal matri-
ces H, and H,, ) are treated as independent variables, in con-
trast to Eq. (4.12) where these symbols denoted the definite
functions (4.9b) of the parameters g, and g, .

Comparing (4.13) with (3.12a), one gets the desired
formula for direct integrals

Wy

d a
- B " L" ( B )Ln- ( B H )
1Bl ; ; I;:I *\ oH,) ™ JdH,

v

X |B + 12/-(E +UHV, "+ UV,

+%<E +V,HU, "+ V.HU, D)~ 2|, 4 0.
(4.14a)
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The exchange integrals need a more complicated expression:
W
=121 S = g o)
51 £ 3 ke~ 3o

X[(E+UHV,”+ UHV,T)
X (E+ V,HU, T+ V,HU,")|~'/2

d d

X |B + %(E +UHV, T+ U HV,)!

+ %(E + V‘.,ﬁU;,T+ VVHUvT)_1|—1/2lH =H
(4.14b)

In Egs. (4.14), we introduce the symbols for generating pa-
rameters simplified as compared to (4.13). One can write
these equations in another manner using the projection ma-
trices (3.9)

|
Wi =83 SIL ( ) (_ ?.)
v .,v .‘V ™ "\ 9H,
Y 1 1 —-172
X|B+L 3| ( o+ H )P + Py + -+ H |(Py + Py ) S (4.152)
1
Wan =B Y STIL (— 9 )L (_ ?,)
v e & L1 9, ST\ GH,
1 —-12 1 - - —172
X\ [(7+H) vl+( +H1>P z[( +H1) v +(7+H1)Pw ”
1
x[p+L{s[(F+ e (G Rl
2 2 1 vl 2 1 )
1 —1] —1/2
+%{ [7 )vz +( +H:)P ” Hy=H,=0" (4.15b)

Equations (2.15a), (3.2a), and (4.15) solve the prob-
lem of constructing the generating kernels of the Wigner
interaction matrix in the extended symplectic model. As one
can see from (4.15), the sought for generating kernels are
obtained by the differentiation of the corresponding deter-
minant generating function of partial expansion with respect
to, generally speaking, six parameters. (In the case of identi-
cal subsystems vand ¥, three independent generating param-
eters are sufficient, as will be shown in Sec. VI.) Equations
(4.15) are much simpler than (3.12) with the exponential
generating function: moreover, their determinant form
makes them similar to (2.22) and (2.24). The similarity
becomes more manifest if one notes that “extra” vectors U,
and V,, [see (3.8a)] always may be excluded from (4.15)
by means of unit expansion (3.9¢), and the matrices P,,, and
P, ; may be expressed using the initial generator coordinates
and the blocks (2.15):

Pvl = A
M

—1/2 T —1/2
B~ Y%y, v B2,

v

va — |E_bHE“‘b| B!/2
X,

The correction of Egs. (4.15) for potentials with spin—
isospin dependence and their subsequent analysis in the
limiting cases of physical interest will be presented in Sec.
V1. And now we proceed to generalize the result of the pres-
ent section on static nucleon interactions possessing no
spherical symmetry.

T pl/2
Vi3 “v3B .
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V. POTENTIAL ENERGY MATRIX GENERATING
KERNELS. TENSOR INTERACTION

Let us consider a two-body tensor interaction operator
in the A4 nucleon system

U,= 3 Vi, —1)5,, (5.1a)
i<j<A4
a (Sir; — 1) (Spr; — 1)
= 3 371 J J21 Jr SI,S~
i (r, — r.)2 ( J)
3 S +8r 1 )? ]
=1L —(S; +8S)%|, (5.1b
> (r oy )2 (S; +8;) ( )
where V(r; —r;) are the two-body potentials [see (3.1)],

S; and §; are the spin operators of ith and jth nucleons.
Transfering the correction on isospin dependence to Sec. VI,
here we deal only with the contribution of unit spin nucleon
pairs. In accordance with the radial dependence of the po-
tential (3.1), we define direct and exchange integrals as fol-

lows:

3 aN (=

-——Z-(S(l):,_)'l—"> J,, dVJJdrler
Xp, (r,F)p; (r,ry)

tvv(r)

Xexp[ ¥ (r; — )% + k(r, —rz)]

k=0

1
——Z—(S(l))zW;;(r), (5.2a)
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2 oo
W ()= —-%—(S(l)-j—k) f dyffdrldrz
Y

Xp, (l'l,l'z)P.-, (r2’r1)

Xexp[ —% (r; — 1) + ik(r,

—US(HPW L), (5.2b)

where S(1) is a unit spin operator, and k is the independent
vector generating parameter. The introduction of parameter
k (Ref. 34) allows us to generalize the results of Secs. IIT and
IV to spherically nonsymmetric potentials.

The problem (5.2) will be solved if one finds analytic
expressions for the integrals

W i(yk) = J f dr, dr, p.(ry,r)p, (rr;)

Xexp[ — —721 (r, — )% + ik(r, — rz)] R
(5.3a)

W (vk) = J J dr,dr,p, (r,r;) p,(ryry)

XCXP[ — %‘ (r,— rz)z + k(r, — rz)] s
(5.3b)

precisely up to the second order of infinitesimal k. Substitut-
ing in (5.3) the spatial density matrices represented as
(3.11), one obtains

| B 1/2 D
T —a1/7 (nvyfv )D(nvyo'v)
B+ yE|'/2 Z 2

X D(ny,7;)D(n,,0;)

Wk(rk) =

Xexp[ —-YLQ*Y,, + K"Z*Y,,

where Z* are block row matrices

+ =(z,iz,—z,$z),
z=E—2q=B(B+yE)".

(5.4b)
(5.4¢)

Passing from the representation (5.4) which is based on
the exponential generating function to the representation
with the determinant generating function, one has to inte-
grateover ., ., T;, 0; [see (4.5)]. The presence of a term
linear in Y, within the subintegral exponent causes, accord-
ing to (3.13), enormously complicated calculations of ad-
joint matrix to Q* .

However, it can be noted that to solve the stated prob-
lem, one does not need exact analytic expressions for the
integrals W % (7,k). The necessary precision O(|k|*) would
be maintained, if within the exponent one replaces

KTZ*Y > — VYL (Z*)TRKTZEY . (5.5)
Really, the terms of odd order with respect to k disappear
when integrated with an even weight function
exp( — YL Q*Y,,); and in the second order in k the Taylor
series of the left- and right-hand side exponents of (5.5) co-
incide. By taking the structure of the matrices (3.12c) and
(5.4b) into account one notices that an admissible expres-
sion for exp(} k”zk) W % (7,k) can be derived by replacing
in (3.12a)

Q* -Q=* (k),

where the matrices Q* (k) are to be obtained from Q*
replacing blocks

q—q(k) =q+zkk"z.

Making an analogous replacement in formula (4.11), we

1.7
__2_]( Zk] ’ (5-42) generalize (4.15) to
S |
W (k) = exp — L KTB(B + /E) k1B
xS 3 I L« (———‘7 )L( )|B+yE
m my v aHk * aHk
+%Z [H, (P, + PT) + H,(P,, + PT) ] [E + (B + yE) “'BKk™B]|~"|,, _z _o, (5.6a)
[
W (rk) = exp[ — —kTB(B + 7/E)“k]|B|”2
XZEHLn (- a )Ln (_L) 2[(—+H1)Pvl+(—l—+~I)P‘I] B
n, n, k * aHk Vk aHk i 2
- —1
X|B+7’E+%[‘)’E+(B+7’E)_'BkkTB]”Z(2 +H, )Pw +(%+H,')Pw]
1 1 ~ -1 — 12
p(emee o (gene ]
1’ k=M=
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As a matter of fact, we note that Egs. (5.6) can be ob-
tained from (4.15) with the same precision of O(|k|*) by a
simple substitution

B—B— L BKk"B.
4
So the direct and exchange tensor interaction integrals
are written as

W () = ——(sm—)fdr @Ko

—3SHPWE W, (5.7)

where the functions W £ (7,k) have been defined in (5.6).

In the last section of the present paper the results of Secs.
II, IV, and V are generalized to a more realistic situation
when the potential magnitudes depend on the nucleon pair
spin—isospin numbers; the cases of closed shells and regular-
ly filled open shells are considered in the symplectic and
unitary nuclear models.

VI. GENERATING KERNELS OF REALISTIC NUCLEAR
HAMILTONIAN MATRIX

Let the nucleon potential of a realistic Hamiltonian take
a form of

A~ 1

Vc(r) — wC2S+I,2T+lexp(_iych).@S@T’
sT=0 2
(6.1a)
A 1 ~
V=Y w! exp( - —;— ;/,rz)Q’TS, (6.1b)
=0

where S and T are the nucleon pair spin and isospin,

is the tensor operator, Z° and Z T are the projection opera-
tors. The results of Secs. II, IV, and V allow us to infer that
the investigated Hamiltonian (without Coulomb interac-
tion) matrix elements between the generating invariants of
the extended Sp(6,R) model take the form of
(bsv|H ) = (bv|T + U, + U, |bu) ,

(B3| U, [bu)

—(bv|bu)22W o (Ve)

(6.2a)

So+a Tr+7 2
X z [Cl/Zal/ZaCl/Zrl/Z'r]
5T=0
+T+1,,25+ 12T+ 1
Xg T .

(bsv| U, [bsu) = (b;v|b;u)

(6.2b)

=zz (So"*‘&lW}g,w(?’:)'SU‘l'&)ls:l
g v

3 -~ . T+ 7
X(—+‘70') 2 [Clitins it
4 7=0

(6.2¢)

where g is the interaction type symbol ( + 1 for the direct
interaction, — 1 for the exchange one), {o7} and {57} are
the spin and isospin projections of an individual nucleon for
the subsystems v and ¥, respectively, C/™ is the Wigner

Jimy jym;
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coefficient of the SU(2) group. The integrals W¢_(») and
W ., (y) are defined by Eqgs. (4.15) and (5.7). The matrix
elements of the tensor interaction integrals between the unit
spin basis states [see (6.2¢) ] may be calculated by means of
the Wigner—Eckart theorem.?® Equations (2.16) and (2.17)
indicate the way to obtain the matrix elements of the kinetic
energy operator 7.

The calculations of the characteristics of the concrete
nucleon system on the full basis of the extended symplectic
model are expected to be an extraordinarily difficult prob-
lem. Nevertheless, one can often meet some applications of
physical interest (for example, studies on magical nuclei,
“breathing,” quadrupole, and “presession”” modes in de-
formed nuclei, nuclei with mixed shell configurations in the
unitary model, and so on) where only separate details of the
immense world of nuclear motion are observed in their
brightest, exposed form. In such cases it is sufficient to em-
ploy only a part of the available basis, then Egs. (6.2) be-
come simplified and make practical utilization easier.

(A) The simplest problem in the framework of shell
treatment seems to be the description of nuclei with closed
nucleon shells (light magic, etc.). The potential energy oper-
ator includes only the central interaction.

We make use of Egs. (4.15). Then, using the summation
formulas for generalized Laguerre polynomials,>®

Lk| (xl)Lk2 (x2)LkJ (x3) =L 3, (X, + x4+ x3),
ki ka, k20
ki+k,+ky=n

(6.3a)
S Lix)y=L;*'(x), (6.3b)
k=0
we note that
a a
L (-, (-
2 ST~ 3 ) )
o (_ 3 a4 a)
"\ 6H, IH, JH,
a a Jd
><L3_(— — — ), 6.4
Y\ 6H, O6H, JH, (©4)

where N, is the subsystem v upper shell number connected
with the total numbers of quanta by the relation
N, + 3)!
Fo =_(__+_), k=13.
(¥, — H3
Redefining the generating parameters

H=%+%(H1+H2+H3),

(6.5a)
h1=H1—H2,h3=H2—H3,
one notes that
1
723 +H,) (P, + P,
=HE+1h (P, +PL)—} hy(P,; +PX
—4{(h ~m)E, (6.5b)
8+8+8_8 (6.5¢)

GH,  OH, 0H, O0H’
Substituting (6.4), (6.5b), (6.5c) into (4.15a), one obtains
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d 4
% (7) l l N, aH N, aH

XIB + Y(H+FI)EI_‘/2|H=I~1=1/2 .

Finally we pass to one generating parameter H + H- Hand
derive using (3.14):

3 3
W*t(y)=L3 (———)L3 (__)
~M=Lv\~25) "\ " om

( A )1/2
X
(1 + yH)*A(yH)

H=1

(6.6a)

Similarly, an answer for the exchange integrals follows from
(4.15b):

=i (-3
WW(’)’) —LNV( oH N, 9H

1 A )1/2
XF( (1 + v/H)*A(y/H)

Equations (6.6) reproduce the result for closed nuclear
shells in the Sp(6,R) model obtained by Vasilevsky et alillt

. (6.6b)

H=1

_a_a_a)
dH, O0H, OH,

d J 9
g )T
X[ M\  6H, 6H, OH, Z I;I

¥

W, () = [L |

v

where the symbol 2] means a summation only with respect
to occupied states of the open shell of the subsystem v. Note
that in the scope of the conventional Sp(6,R) model the
integrals of direct and exchange interaction are defined by
the similar expressions, contrary to the extended model
where the calculation of the exchange integral is much more
difficult [cf. (4.14)].

By annihilating all elements of the collective generator
coordinate matrices b and b, except b, , and b, ,, the Sp(6,R)
generating kernels are reduced to the Sp(2,R) limit of Filip-
pov et al.>’

The conventional Sp(2,R) model, or, that is the same,
“the stretched Sp(6,R) approximation,” '*'? is used to de-
scribe the longitudinal quadrupole vibrations.

(C) The light and medium weakly deformed nuclei ad-
mit the SU(3) model description' of the low-energy spec-
trum region. The Hamiltonian matrix elements in the ex-
tended SU(3) model are obtained by annihilating the
matrices b and b in Egs. (6.2) and subsequent projecting
onto the states with fixed angular momentum value.

The expressions for the direct and exchange integrals in
the unitary model are much simpler than in the symplectic
model. This circumstance makes it possible to apply the ex-
tended SU(3) model as a first approximation in studying
nuclei with the horizontal mixture of the open nucleon shell
configurations.

2430 J. Math, Phys., Vol. 30, No. 10, October 1989

is seen that the Hamiltonian matrix elements in this case do
not depend on the oscillator repers u,, v, orientation, re-
flecting the symmetry inherent to the situation.

(B) The structure of the light and almost magic medi-
um nuclei is often defined by the regularly occupied nucleon
shells. An admissible quantitative description of such nuclei
is achieved in the standard Sp(6,R) model. The Hamilto-
nian matrix elements on Sp(6,R) irrep coherent states can
be obtained from corresponding formulas for the extended
model by passing to reper matrices U and V universal for all
subsystems. Then instead of six generating parameters only
three are necessary:

|+H, +H,-H, k=1,3.

As a result of the condition (3.10), we can justify the matrix
identity

_1 1
HP = —P,.

Utilizing the identity together with summation formulas
(6.3), we pass from (4.15) to expressions for the direct and
exchange integrals in the Sp(6,R) model:

+ 3 T - aizk)]

L( B az%k)]

X (H\H,H3)"¢~ V|B|'”*|B +—72LZH¥(P1 +PD 7m0
{

(6.7)

r
Vil. CONCLUSION

In the present paper the extended version of the sym-
plectic and unitary nuclear models is proposed, in the frame-
work of which one can develop consistent microscopic re-
search of the nucleon systems with an arbitrary occupation
of the valence shell. We have considered the structure of the
extended Sp(6,R) model coherent states generating the ba-
sis of many-particle oscillator functions and constructed the
microscopic Hamiltonian (including central and tensor nu-
cleon interaction) matrix elements between these states.

The application of the symplectic model with horizontal
mixture appreciably broadens the group of questions in the
microscopic theory of collective motion of nucleon systems
to be investigated (note that the results of the present paper
may also be generalized to the other many-body quantum
systems with characteristic shell structure, for example,
atomic ones).

The possibility is provided to study the dynamics of pas-
sages between the different shell configurations of valence
nucleons, the influence of these passages on atomic nuclei
shape and spectra.

The extended unitary model is accomodated to describe
the low-energy region of the spectrum. The comparative
simplicity of the model enables us to expect a greater number
of analytic results of its utilization, for example, the con-
struction of effective nuclear Hamiltonians. It seems possi-
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ble to apply the unitary model to microscopic substantiation
and correction of the phenomenological nuclear shell theory
predictions, for example, the shell state occupation
scheme.?*! We note that the model indicated realizes a mi-
croscopic approach to describe the same processes as the
interacting proton and neutron boson model with a dynami-
cal symmetry group SU(6) ® SU(6) proposed by Otsuka,
Arima, and Iachello®® for even-even nuclei. Therefore the
extended unitary model may be transformed in order to pre-
dict microscopic values of the interacting boson model pa-
rameters and to estimate the calculational precision of the
model.

The determinant form of the Hamiltonian matrix ele-
ments obtained in the paper allows a generalization to higher
dimension models, Sp(2d,R) and SU(d), d > 3. These mod-
els may be useful in studies of unified, both collective and
intrinsic, nuclear dynamics.
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Radiative transfer theory for inhomogeneous media with random extinction

and scattering coefficients
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The small-angle scattering approximation of the scalar radiative transfer equation is examined
in the case where the extinction and scattering coefficients have a component that is a
deterministic function of position along the propagation path and a component that is a
random function of position transverse to the propagation direction. It is found that the
resulting stochastic radiative transfer equation can be reduced to a system of two stochastic
integrodifferential equations for the average and fluctuating components of the radiant
intensity. The system is solved to yield two transfer equations: one that describes the average
radiant intensity and one that describes the spatial correlation function of the intensity
fluctuations. The integrodifferential equation for the average intensity is then solved and
applied to a simple propagation scenario; it is found that the fluctuations in the extinction and
scattering coefficients reduce the effects due to the average values of these parameters, and also
that the effect of these is greater near the point of observation than near the point of
transmission of the radiation. An approximate solution is also derived for the equation giving
the correlation function. The equations developed here should find application in problems
involving short wavelength electromagnetic wave propagation through media possessing
variable characteristics of turbulence and turbidity, such as in plasmas, the atmosphere, and

the ocean.

I. INTRODUCTION

Radiative transfer theory, which deals with the propa-
gation of “intensities” (i.e., photometric intensity, neutron
flux intensity, etc.) began as a phenomenological theory
based on observations of light propagation in foggy atmo-
spheres published by Schuster in 1905." Since that time, ra-
diative transfer theory and its attendant equation, the radia-
tive transfer equation (RTE), have gradually been put on a
more rigorous basis® and have found application in several
diverse areas such as atmospheric and underwater visibil-
ity,? optics of papers and photographic emulsions,* and the
propagation of radiant energy in turbulent plasmas,’ plan-
etary atmospheres, stars, and galaxies.® Also, because the
RTE is equivalent to the Maxwell-Boltzmann collision
equation used in the kinetic theory of gases, it has also been
applied to many problems in kinetic theory’ and in neutron
transport theory.®

Until very recently, in all of the applications of the var-
ious forms of the RTE, an important aspect seems to have
been overlooked that can be characteristic of many propaga-
tion problems: in particular, many random propagation me-
dia that are characterized by quantities (in general, func-
tions of some random process, e.g., scattering and
absorption) that can themselves be random quantities, the
statistics of which are spatially inhomogeneous throughout
the medium. The significance of this circumstance seems to
have first been noted by Levermore and co-workers®!° and
Vanderhaegen'"'? in the analysis of transport processes in
random binary mixtures.

The random nature of the scattering media, usually
characterized in transfer theory by spatial averaged extinc-
tion and scattering coefficients, may be such that these coef-
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ficients themselves are random functions of position and
thus also have spatially fluctuating components that can be
characterized by prevailing statistical parameters. For ex-
ample, in the case of imaging through atmospheric aerosols,
the concentration of the aerosols can have significant vari-
ation across the propagation path, thus adding a fluctuating
component to the average extinction and scattering coeffi-
cients that would normally be used in the RTE. Or, in the
case of neutron propagation through bulk media, the media
may have some random distribution of scattering character-
istics that can give rise to a scattering coefficient character-
ized by a spatial average over the media with a spatially vary-
ing component. The same scenario can be envisioned in the
case of turbulent plasmas. Such circumstances suggest that
one should consider the various forms of the RTE with ex-
tinction and scattering coefficients that are random func-
tions of position in the propagating medium and modify
these forms accordingly.

It is the purpose of this paper to introduce stochastic
extinction and scattering coefficients into one form of the
RTE, viz., the well known small scattering angle approxima-
tion, which finds use in atmospheric and underwater image
propagation as well as propagation in turbulent plasmas.
The treatment given here is a more general analysis of a more
restricted form of the RTE equation than given in the work
cited above.®"'? In Sec. II, Gaussian random functions are
introduced into the RTE for the extinction and scattering
coefficients and the resulting stochastic RTE is reduced to a
system of two stochastic integrodifferential equations that
describe the average and fluctuating parts of the radiant in-
tensity. Transfer equations are then obtained in Sec. III that
describe the propagation of the average intensity and a statis-
tic of the random intensity, i.e., the spatial correlation func-
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tion of the intensity, where the statistics of the propagation
parameters are given by spatial correlation functions of ex-
tinction and scattering that are taken to have a §-function
component in the direction of propagation. These transfer
equations are then solved in Sec. IV; an exact solution is
obtained for the average intensity, the properties of which
are expounded upon, and an approximate solution is derived
for the intensity correlation function. Finally in Sec. V, it is
discussed how this stochastic approach to radiative transfer
theory can be applied to situations more general than those
described by the assumptions made here (i.e., Gaussian sta-
tistics of the random extinction field and & correlation in the
propagation direction) and to less restricted forms of the
RTE.

Il. DEVELOPMENT OF A STOCHASTIC RADIATIVE
TRANSFER EQUATION FOR SMALL SCATTERING
ANGLES

In an inhomogeneous medium void of volumetric
sources, a radiance distribution function (specific intensity)
I(R,n) at a point R in the medium describing transfer in a
direction specified by the unit vector n is described by the
general form of the RTE, viz.,

n-VI(R;n) + e(R)YI{R;n)

= f os(Rim;n") I(R;n' ) dow, 2.1
47

where £(R) is the position dependent extinction coefficient

and o4 (R;n,n’) is the position-dependent generalized vol-

ume scattering cross section normalized such that

f ogs(Rnn")dw = 1, 2.2)
4T

where dw is an element of solid angle subtending the scatter-
ing angle defined by n and n’. The scattering cross section is
related to the more fundamental scattering coefficient o(R)
and the scattering phase function f(n,n’;R), also taken to be
position dependent, through the relationship

o5 (R;n,n’) = o(R)f(n,n’;R) /4. 2.3)

Considering highly anisotropic scattering cases where the
scattering takes place predominantly in the small solid angle
about the direction n, in particular, when the condition

ngf Yos(Rnn')do<l, y=cos™'(nn'), (2.4)
41

is satisfied, one can expand the unit vector n into its perpen-
dicular component n, and its longitudinal component n,,
where n, =~ 1 since

no=v(1 =) =1 [n, /21
because |n, | is small. Upon further assuming that one can
write

Sf(nn';R) = f(n, —n;R),
and noting that this function gives an appreciable contribu-
tion to the integrand on the right side of Eq. (2.1) only for

[n, —n;{<1, Eq. (2.1) can be transformed to its small-an-
gle scattering form, i.e.,
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[i +n,V, + £(r,2) ]I(r,z;nl )
dz

=J1fas(r,z;]nl —n; |} (r,z;n] }dn], (2.5)

where R is decomposed into its transverse and longitudinal
components, r and z, respectively. This form of the RTE,
along with its prevailing assumptions, finds considerable ap-
plications in problems involving electromagnetic wave prop-
agation in random media.

Let £(r,z) and o(r,z) be random functions that are tak-
en to be written in the form

e(rz) = (e(2)) + &(r,2), (e(r,z)) =0,
a(rz) =(a(2)) + a(r,z), {(o(r,z)) =0,
(e(2)).(a(2)) > |E(r,2),|a(r,2)],
where the ensemble averages (---) are deterministic func-
tions only of the longitudinal coordinate z, and the fluctuat-
ing parts, £(r,z) and 6(r,z), are zero-mean Gaussian ran-
dom functions only in the variable r but can also have
deterministic factors in the coordinate z. Substituting Eq.

(2.6) into Egs. (2.5) and (2.3) and rearranging terms yields
the relationship

RI =3, 2.7

where R and 3 are, respectively, the deterministic and sto-
chastic radiative transfer operators defined by

(2.6)

RI= [i +n,'Y, + (e(z))]l
Jz

—jj (os(z;|n, —n}|))] dn; (2.8)

and
M= —E(rz)]+ ff Fs(r,z;ln, —m|)I'dn], (2.9)

where I=I(r,z;n, ) and I'=I(r,z;n; ). Averaging Eq. (2.7)
and noting the deterministic nature of the operator R simply
gives

R = (), (2.10)

the formal solution of which yields the average intensity (I )
and can be taken to define that quantity. Decomposing the
total intensity into its average and fluctuating components,
viz.,

(2.11)

and substituting this expression into Eq. (2.7), averaging,
and using Eq. (2.10) yield the fact that (7 ) = 0 and thus
(I)=0.

It now remains to develop an expression for the random
part of the total intensity, viz., I(r,z:n . ), that together with
Eqgs. (2.10) and (2.11) will give a closed system of equations
for the problem. Solving Eq. (2.11) for 7, applying the opera-
tor & to the result, averaging, and employing Eqgs. (2.7) and
(2.10) yield

R =T — (T).

I(r,z;n,) = (I(r,z;n,)) + I(r,zn,),

(2.12)

Robert M. Manning 2433



Consider now the term (37 ). Substituting Eq. (2.11) into
Eq. (2.9), averaging, and using the fa_gt that
((r,z)) = (G(r,2)) =0, onefindsthat (J7 ) = (31 ).Thus

RT = I — (3T ). (2.13)

Equations (2.10) and (2.13) form a system of stochastic
integrodifferential equations that collectively form the sto-
chastic radiative theory to describe propagation problems in
situations where the extinction and scattering coefficients
are Gaussian random functions. The system of equations

(2.10) and (2.13) can be solved for (I') and T; in the latter

case, since I is a random function, one can only obtain ex-
pressions of the various statistical quantities that govern the
intensity fluctuations. This forms the subject of the following
section.

11l. SOLUTION OF THE SYSTEM OF STOCHASTIC
INTEGRODIFFERENTIAL TRANSFER EQUATIONS
A. Transfer equation for the average intensity

The solution of the system of equations commences with
the first equation, i.e., Eq. (2.10), which, written out in full,
is

[g— +nV, + (6(2))] {I(rzn,))
Iz

- f (05 (z|n, —n!])){I(r,zn]))dn;

— oo

= — <?:(r,z)7(r,2;ﬂ1 )

+ J-J os(r,z;in, —ni| yI(r,z;n! Ydn! ). (3.1)

Since no random function in the variabie n, has been ad-
mitted into the problem, it is permissible to apply the Fourier
transform in this variable to the equation. Thus, defining

(J(r,z;q)) = JJ-(I(r,z;nl))exp( —iqn, )dn,,

-~ 00

} (3.2)
J(r.z,q) = jﬁ( r,z;n, Jexp( — ign, )dn,,

— @

Eq. (3.1) becomes

[;z v, -5— + <e(z)>]<J(r,zq)>
— (Z5(2,9))(J(r,z;q9))
= ($(r,z0)T(r,zq)),

where
$(r,zq) = — &(r,2) + Zs(r,zq),
(25(z9)) = (0(2)) P(q,2),
S5(rz;q) = &(r,2) P(q,2),

(3.3)

(3.4

P(q,z) = — J-ff(nl,z)exp( —iqen, )dn,.
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Since £ and ¥ < are Gaussian random functions, so, too, is ;Z
One can now employ the Novikov theorem '’ to evaluate the
product (¢(r,z;q).7(r,z;q)). This theorem states that for a
zero-mean Gaussian random function f(R) and a corre-
sponding functional G[f],

(f(R)G[f]>=f f (f(R)f(R’)><6fR,> R,

where 8/8f(R’) is a variational derivative and the integra-
tion is taken over the entire space that defines R. It is at this
point where the statistics that govern ¢ enter into the prob-
lem. In the case of the right-hand member of Eq. (3.3), ap-
plication of the theorem gives

($(r,z)d(rzq) = f f J B,(rr'zzq,4q)

57(r,zq)> o
OANBD Vg gz dg, (3.5
X<5¢(r’,z’,' rdzda,  G3)

where
B, (rr'z,z;0,q) = ($(r.zq)4(r',2:q))

is the spatial correlation function of the linear combination
of the random propagation parameters. Asshown in Appen-
dix A, for a statistically~homogeneous (in the coordinate r)
correlation function of ¢ that has a §-function component in
the longitudinal z direction, and with the help of Eq. (2.13),
one finds that

((r,z;0)T(r,z,q)) = 4,(0,2,9) (J(r,zq)),

where 4, (r —1r',z;q) is the two-dimensional (transverse)
correlation function related to the full three-dimensional
one, ie., By(r —r',z —z';,9.q'), via

(3.6)

L

Ay(r—r'zqq) = f B,(r—r'z—24,q)dz,
° (3.7a)
where
A,(r—r',225q,4q")
=A4,(t—-r)—A4,—-r)P(q,7)
— A, (r—r')P(q,2) + 4,,(r —1')P(qz)P(q,2),
(3.7b)
with
Ay(r—r,zq,q)=4,(r—r,zz4q,9q)
and
Ay(r—r'zq)=A4,(r —1',z,9,9)

which relates the two-dimensional correlation of the com-
posite random function @ to those of the fundamental extinc-
tion and scattering parameters.

It is very important to note that use of the §-correlation
assumption, as pointed out in Appendix A, places specific
requirements on the spatial extent and level of the fluctu-
ations £(r,z) and &(r,z); in particular, letting /, and L, de-
note, respectively, the smallest and largest spatial extent of
the fluctuations, and letting £ = 27/A be the wave number
of the wave field of wavelength A, sufficient conditions to be
satisfied are A €/, L> Ly, Aa <1, and

(E(r,2)P).((ar2))) €1/(kL,),
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where L is the total length of propagation and a is the coeffi-  ty field that results from the extinction and scattering pa-

cient of absorption, a = (&) — (o). rameter fluctuations incorporated in the volume scattering
Substituting Eq. (3.6) into Eq. (3.3) gives an equation  factor H,(r — r',z;|n, —n;|), which is given by

closed in the quantity {(J(r,z;q) ). Taking the inverse Fourier

N . . . o l 2 z
transform of this equation yields a radiative transfer equa- (r,zn,) = (_) JJ A, (r,z;q)exp(in, q)dq. (3.9)
tion for the average radiant intensity, viz., s 27 $rm

[ f_ + 10,49, + (£(2) >] (I(rzn,)) Before di§cussing the solution c?f Eq. (3.8‘), Egs. (2.1Q) and
az (2.13) will now be solved to give a relation, companion to
w that of Eq. (3.8), governing the correlation of the intensity

- JJ(US (z;n, —n])){I(r,zn]))dn] fluctuations 1.
_:’ B. Transfer equation for the correlation of the intensity

7 4 38 fluctuations
- f f H, (0], —ni]) {I(rzn)))dni, (3:8) The second equation of the system obtained in Sec. IT is,
i upon using the definitions of Egs. (2.8) and (2.9) in Eq.

where the source term is the scattering of the average intensi-  (2.13),
)|

oo

[532 +n,'V, + (£(Z)>]7(r,2;nl ) — J:[(US(Z;‘nl — n{))I(r,zn] )dn;

= —E(r,2)I(rzn) + Jf Fg(r,z;\n, —n}|)I(r,z;n] )dn] + (E(r,2)I(r,zzn, ) — JJ gg(r,z;n, — n1|)7(r,z;n1 Ydn]).

(3.10)

As was done with Eq. (3.1), this equation can be Fourier transformed with respect to the variable n, . Thus, remembering the
definitions of Eq. (3.2), one can transform Eq. (3.10) and rearrange terms to obtain

arzq) _ Nr,aJ(r,Z;q)

Jz Jq

where, in addition to the quantities already defined,

($(z50)) = — (e(2)) + (Z5(z9)).
The formal solution of Eq. (3.11) is a random function and it is therefore desired to obtain some statistical characterization of
it, e.g., the correlation function

B, (r,r;z;q,,q,) = (7(1'1;2;‘11 )7(1'2,2;‘12) ).

Togetan exp~ression for this function from Eq. (3.11), one writes Eq. (3.11) in the variables r, and g,, multiplies the resulting
equation by J(r,,z;q,), and adds to this result an identical equation with the subscripts of r, and r, and those of q, and q,
interchanged. Writing the total Fourier transformed intensity in terms of its average and fluctuating parts, ie.,
J(r,z;q) = {(J(r,z;q) ) + J(r,,2;q,), this entire result can be simplified to give

9B(r,,r52,4,,9,) - _ i[v d

a
o+ vrz' ‘—]BJ(rl:l'z;z§Q1"12) + ((6(z,4))) + ($(£4:)))B, (r,,r;2,q,,9,)
oz dq, dq,

+ (a’(rpZ;%)j(rz,zQ‘h))(J(l'nZ;‘ll)) + (‘;5(1'1,2§‘I1)7(1'2:2;%)7(1'1’2;‘11))

+ <¢~5(r2,2§‘I2)j(1'1,2;Q1 N J(ruza,)) + <$(rz:Z;Q2)7(r1’Z;Q1 ).7(1’2,2;(]2) ). (3.12)

One must now find expressions for the ensemble averages of the products that appear in the last four terms of Eq. (3.12).
As shown in Appendix B, one can derive the following relationships making use of the Novikov theorem and the results of
Appendix A:

+ {$(za))T(r,z;q) + ¢(r,z,9)J(r,z0) — ($(r,zq)T(r,z,0)), (3.11)

($(r1,2:0)T(r,500)) = A, (1, — 1,5,0,,0,) (J(r,,20,) ), (3.13)
<$(r2a2;q2)7(r1»Z;Q2)> = A, (r, — 1,2,q,,4;) J(r,,z;q,)), (3.14)
(&S(rl:zﬂh)7(r2s2;Q2)7(r1:Z;Q1)> = [A4s(r) —r2,2;0,,q2) + 4,(0,2;q,) | B, (1,,522:0,,92), (3.15)
<‘Z(T2,2;Q2)7(l'1,2;‘h)7(r2,z§(h)) = [d,(ry — 1,2,65,9,) + 445(0,2;,q,) ] B, (r(,r552,q,,4,) - (3.16)

If, in addition to the assumption introduced earlier of homogeneity of the statistics of #, one admits the additional assumption
that isotropy (in the coordinate r) prevails, i.e., 4, (r, — 1,;2;q5,q,) = 44 (¥, — 15;2,q,,4,), one obtains, after substitution of
Egs. (3.13)-(3.16) into Eq. (3.12) and a rearrangement of terms,
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] ( ] a) ]
g v.2Z ,v. 2 B
[az+' . an+ " P +2(e(2)) |B,

=((2s5(zq)) + (s (z9,)))B, + [A¢ (0.z;q,) + 2A¢(r1 — I'yl) + A¢(092;Q2)]BJ

+ 24, (r; — ryz;q;,q,) (J(r,z;q,)){J(r22;q;))-

(3.17)

It is now desired to relate the correlation function B, to that of the intensity fluctuations

B, =B,(r; r;zn,  n,)= (T(r,,z;nll )7(r2,z;n12 ).

From the second relationship of Eq. (3.2) and the definition of the correlation function B,, one has the Fourier transform pair

B,(r,r;z,q,,q,) = ff ff B, (r,rpyz;n  ,n;; )exp( — iqn;; — ig;n; )dn; dn,,,

— o0 —

(3.18)

1 4 o0 o0 ‘ .
B/ (ry,ryzn,,n,) = (77;) J:[ jJ. B, (r,,ryz,q,,9,)exp(iq,*n,; + iqx*n;; )dq, dq,

—w — o

that exists between the correlations of J(r,z;q) and the random intensity component I(r,z;q). Thus applying the inverse
transform of Eq. {(3.18) to Eq. (3.17) yields a transfer equation that governs the correlation of intensity fluctuations, viz.,

)

[3% +nj, 'V.-, + nlz‘vrz + 2<€(Z)>]Bl - ff(a’s (z;ln“ —nj, |))B,(n11 )d“h

- oo

- f f (05(5n,; — s |))B(ng, )dn), — ” H,(0zjn,, — n},)B, (), )dn]

- fo JJHqs (r; — ryz;(n, —nj,|, [n, —nj,|)B,(nf,n},)dn}; dnj, — IJ H, (0,z;|my, —n,|)B,(n},)dn},

— o — o0

- 2f f f Hy (6, =tz —ni |, [ng — 0% (a0 )) (TG, ) Ydn, nls,

~ o — @

where, for the convenience of notation, B,(n])
=B,(r,r;zn ,n,), etc, and {I(n),))={I(r,,zn})),
etc., Hy,(r —r',z;|n, —n||) is as given in Eq. (3.9) and

Hy(r, —ryzn,,n;,)

1 SCrr
(TS [t -rma

— o — o

Xexp(ig,n,, + iq,n;)dq, dq,. (3.20)

The interpretation of Eq. (3.19) is straightforward; the
second and third members on the left side of the equation
describe the average contributions of the scattering into the
direction n,, and n,,, respectively; the fourth and sixth
members describe the contribution that the fluctuations of
extinction and scattering have on radiation propagating into
the directions n,; and n,,, respectively; and the fifth member
gives the effect of the cross correlated fluctuations at two
points r, and r, of the extinction and scattering on propaga-
tion into the directions n,; and n,,. The source term of Eq.
(3.19) is the cross-correlated fluctuations of scattering and
extinction at r, and r,, due to the average fields (/(r,,z;n))
and (I(r,z;n},)), into the directions n;; and n,,.
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(3.19)

—

IV. SOLUTION OF THE TRANSFER EQUATIONS FOR
THE AVERAGE INTENSITY AND THE CORRELATION
FUNCTION OF THE ASSOCIATED FLUCTUATIONS

The solution to Eq. (3.8), the stochastic transfer equa-
tion for the average radiant intensity, is straightforward.'*
Fourier transforming the equation with respect to the vari-
ables r and n,, solving the resulting first-order differential
equation via the method of characteristics,'* employing Eq.
(3.7b), and rearranging terms yield

F(x,L;q)

L
= F(x,0;,q9 + KL)eXp[ — f {{e(2)) — 4,..(0,2) }dz
0

L
+ f {(o(2)) — 24, (0,2)}P(q + w(L — 2),2)dz
0

L
+ f A,,(0,2)PYq+ k(L — z),z)dz], (4.1)
0
where
1 4 o0 o
{I(rzn)) = (—) _U J f F(k,zq)
2
Xexp(iker + igqen, )dk dq (4.2)
Robert M. Manning 2436



and L is the total propagation distance in the turbulent medi-
um. As can be easily seen from this solution, the form is
analogous to that of the well nonstochastic small scattering
angle case, and thus possesses the same overall properties,
but with some obvious differences in its composition. The
first two terms in the exponential of Eq. (4.1) indicate that
the random fluctuations of the extinction and scattering
within the medium, characterized by the two-dimensional
correlation functions 4,, and 4,,, tend to negate the effects
presented by the attendant average quantities, i.e., {(£(z))
and (o(z)). The implications that this has on particular
propagation problems are specific to those problems and will
be left to future investigations dealing with these specific
problems. However, a simple generic example will be given
here that demonstrates the implications that result due to the
two major aspects that have been incorporated into the pres-
ent theory, i.e., the random fluctuations of the extinction and
scattering parameters and the variations of these parameters
along the longitudinal propagation path.

At the outset, consider, instead of the radiant intensity,
the illumination distribution S(r,z) at a point r a distance z
from the source. In the case, for example, of a narrow direc-
tional beam of electromagnetic radiation undergoing strong

anisotropic scattering, which is that assumed to prevail in

the small scattering angle case here, one has

S(r,z) =J (I(r,z;n, ))cos(n, -Q)dQ
47

sz([(r,z;nl ) >dn1,

where () is an element of solid angle centered at r extending
toward the source. Applying this to Eq. (4.2) gives

(4.3)

S(r,z) = (%)ZJ.J-F (x,z;0)exp (iker)dk. (4.4)
T

— o

Thus one now need only consider the simpler case of Eq.
(4.1) evaluated at @ = 0 and still have a physically meaning-
ful quantity.

Let the scattering and extinction take place along a frac-
tional length A of the propagation path that begins at some
intermediate point z, and let (¢(z)) and (o(z)) as well as
the fluctuations in these quantities, represented by the two-
dimensional correlation functions 4 (0,2), i)j = £,0, be con-
stant over the length A. Such a distance can be modeled by

(£(2)) = (e)4(2), (o(2)) = (0){(2),

A;(0,z) = 4,;(0){(2),

5(2) =0(z — z,) — Oz — (2, — A)),
where ©(z) is the Heaviside function and, by construction of
the problem, 0 <z, < L — A, where the origin is taken to be

placed at the source of radiation. Applying these restrictions
and Eq. (4.5) to Eq. (4.1) yields

(4.5)

F(x,L;0) = F(K,O;KL)CXp[ —(e)A+4,.(0)A

Zo + A
+ {(o) — 24,,(0)} f P(k(L — 2))dz

Zy + A

+4,,(0)
Zo
Let the scattering phase function f(n, ,z) also be constant in
the region A and, to keep the problem simple, let it be given
by]6
fn) =4a,W,exp( —a,nl), 4.7
where W,, is the single particle albedo and a, ~D %/A%fora
particle of diameter D scattering radiation of wavelength A.
Substituting Eq. (4.7) into the last relation of Eq. (3.4) and
evaluating the integral in the polar plane of n, gives

P(q) = W, exp( — ¢°/4a,,). (4.8)

Substituting Eq. (4.8) into Eq. (4.6) and performing the
integrals yield the result

P3x(L —-z))dz]. (4.6)

F(x,L;0) = F(x,0;kL)exp [ ( — () + 4., (0))A + 7 Wp/2C,(x)){((o) — 24,,(0))(P(C, (k) (L — z,))
—D(C, (1) (L — 25 — A))) + (WoCi (k) /Cy(k))A,,, (0) (P(C, (k) (L — 25)) — P(Co (k) (L — 2, — AIN}],

(4.9

where (- -) is the error integral, C, (k) =x/(2V/a, ), and C,(x) =x/Vv'(2a, ). Two extreme cases of this situation will now

be considered where k>0 as well as C,, C,> 0 is assumed.

Taking z, = 0 places the scattering layer at the source of the radiation and, when the condition L> A prevails, one finds,
by the fact that (- - ) ~ 1 for large values of its argument, that Eq. (4.9) becomes

F(x,L;0) = F(k,0;kL)exp[( — (&) + 4,, (0))A],

(4.10)

showing that only the k-independent extinction modifies the propagating spatial spectrum F(x,L;0). However, at the other
extreme where A = L — z,, i.e., where the scattering layer is at the point of observation, Eq. (4.9) becomes

F(x,L;0) = F(x,0;kL)exp [ ( — (&) + A, (0))A + (V7 Wo/2C,(x))

X{(<U) —24,, (0))P(Ci(x)L ) + (WoCi(k)/Cr(k))4,, (0)P(C, (k)L )}],

(4.11)

which shows the large effect on the modification of the spectrum F(«,L;0) which, via the relation of Eq. (4.4), indicates that
the illumination distribution is broadened. Thus, as is well known, the scattering layer has its strongest effect when the layer,
in particular, the fluctuations A;; of the scattering parameters, is close to the point of observation.

The solution of Eq. (3.19) is not so straightforward and an approximate expression will be derived. The form of Eq.
(3.19) is not amenable to the Fourier convolution solution that was applied to Eq. (3.8) due to the presence of the termr, —r,
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in the arguments of two of the H, factors. However, if one limits the desired solutions to those values of r, and r,, wherer,,

where p, is the characteristic length

r2 <pc1

scale of the fluctuations A;, one

can assume that

Hy(r —r',zn, —n]|)=H,(0,zn, —n]|) thus lending to Eq. (3.19) a solution (albeit, an approximate one) via Fourier
convolution and the method of characterisics as used earlier. The result is

L
G(xkL;q1,9;) = ZL A44(0,2,q,(2),02(2) ){ F (1,29, (2)) ) (F (k2,20 (2)))

L
XeXp[ - f {2(e(z)) — (a(2)) (P(q;(2'),2) + P(ay(2),2)

— (44(0,2,q,(2')) + 24,(0,2,q,(2),42(2)) + A¢(0,Z';qz(2')))}dz']d2’

where

(4.12)

1 8 oo o0 -] -] . . . .
B, (r;,ryzm .0, ) = (—2'7';_‘) Jffffff G(x,,k,,2,q;,q,)eXp (ir°k; + iqy*ny; + iry’Ky + igy'ny, )dr, dny, dr, dny,,

- 00 — @ — o0 — ©

with q,(z) = q, + «,(L — 2) and similarly for q,. The prop-
erties of this solution will not be dealt with here; its analysis
would be greatly facilitated if the form of the correlation
functions 4; is known, which, of course, is specific to the
particular propagation problem.

V. LIMITS OF APPLICABILITY OF THE RESULTS AND
THEIR POSSIBLE EXTENSION

Summarizing the assumptions made throughout the
foregoing, the results obtained here hold for scattering me-
dia characterized by overall propagation parameters that are
taken to be zero-mean Gaussian random variables that are &-
correlated in the direction of propagation and propagation
situations that are described by the small-angle scattering
approximation to the radiative transfer equation and, of
course, satisfy the restrictions attendant in the use of § corre-
lation. Such scenarios are applicable to many propagation
problems. There are, however, two major extensions that
can be made to the theory. The first logical step would be to
apply the small-angle scattering formulation, i.e., Eq. (2.5),
to situations where the medium fluctuations are governed by
arbitrary statistics rather than the special Gaussian case con-
sidered here. This, of course, prohibits the use of the Novi-
kov theorem and requires the use of an approach based on
characteristic functionals of the propagation statistics. Re-
tention of the assumption of the §-correlatedness of the me-
dium fluctuations could be justified since the requirements
of the small-angle formulation are a subset of those of & cor-

i

B,(rr';2,2:q,q') = B, (r —v',2,2;4,q")

(4.13)

—

relation. This will form the subject of a future publication.

The second extension would be to employ the full form
of the radiative transfer equation, i.e., Eq. (2.1), in a similar
analysis. One would necessarily need to use an approach
different to the one given here since the use of the causality
condition, employed in Appendix A, Eq. (A4), which great-
ly facilitated the analysis there, is no longer valid. In fact,
questions of causality in general could be expected to ham-
per such a development. It is possible to simply introduce
stochastic descriptions of extinction and scattering coeffi-
cients into the well known treatments of Eq. (2.1) in an
analysis involving characteristic functionals. This, however,
will require further investigation.

APPENDIX A: DERIVATION OF EQ. (3.6)

The evaluation of the Novikov theorem in this case is
facilitated by first applying the realistic assumptions that
(1) statistical homogeneity in the spatial coordinate r of ¢
prevails and (2) that the resulting correlation function is -
correlated in the longitudinal z direction. The latter assump-
tion places restrictions on the fluctuations of the medium."’
These conditions, which are sufficient ones, are A</,
Ly L, Aa<],and ((&(r,2))?),{(6(r,2))*) €1/(kL,), where
a = {€) — (o) is the coefficient of absorption, L is the total
distance of propagation, L, is the largest spatial extent of the
fluctuations (sometimes called the outer scale), /, is that of
the smallest spatial extent (sometimes called the inner
scale), and k is the wave number, k = 27/A, where A is the
wavelength. Thus one has the following development:

=B, (r—-rzz)—B, ,(r—rz2)P({2)— B, (r—r,22)P(qz) + B, (r—r,z2)P(qz)P(d,2)
={4,.(r—r'zz)—A,(—rzz)P(q2) —A4,(—rz2)P(qz) + 4,,(r—r,z2)

X P(g,z)P(q',2')}6(z — 2'),
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where the definition of $(r,z;q) from Eq. (3.4) was used in
the expansion of the correlation function B, thus giving rise
to the corresponding correlation and cross-correlation func-
tions By, for i,j = £,0. The §-correlation component is then
factored out of the B, functions giving rise to associated two-
dimensional correlatlon functions 4 ;. Noting that the abso-
lute z dependence exists in the factors P(q,z), one can define
a composite two-dimensional correlation 4, (r —r'z,2;
q,q’) to represent the quantity within the braces of Eq. (A1).
Integration of Eq. {Al) over the coordinate z' gives Eq.
(3.7a).

Substituting Eq. (A1) into Eq. (3.5) and performing
the 2’ integration gives

($(r,z;q)T(r,z;q))

8J(r,z;9) . g
A,(r— 7 zq, )( >d dq.
” R L vy s

It now remains to determine the average of the variational
derivative as indicated in Eq. (A2). To this end, one must
now consider the second equation of the system of equations
obtained in Sec. I, viz., Eq. (2.13). Using the definitions of
Egs. (2.8) and (2.9) in Eq. (2.13) and applying the Fourier
transform defined by Eq. (3.2) [for the same reasons it was

(A2)

Jr,zq) — J(r,0:q)
= — if v,-MdZ’ +f ($(250))d (r,2';q)dZ
0 aq (1]
+J $(r,2;q)J(r,2;q)dz
0

- f (d(r,2;q)7(r,2';q))dz. (A3)
0

Formally, one can solve this equation iteratively and find
that the quantity J(r,z;q) is a function of the coordinate z for
only those values z’ such that z’ < z. The values z’ of z, where
Z' > z, do not enter into the solution. Thus fluctuations of the
composite propagation parameter ¢(r,z;q) at positions z’' <z
can only influence the quantity J(r,z;q); for the variational
derivatives that must be considered in the sequel, this *“‘cau-
sality condition” implies
8J(r,z;q)

Sé(r',z2'.q")
Taking the variational derivative of Eq. (A3) and employ-
ing the fact that

=0, Z>z (A4)

allowed to be applied to Eq. (3.1) ], solving for the derivative Sp(rza) _ 5(r—r)8(z—2)8(q—q), (A5)
dJ(r,z;q)/dz, and integrating along the z coordinate from O 84(r',2';q")
to z, one obtains one obtains
]
6J(r,z,q) _ _if V. (SJ(r:z’,q’) ) » Jw(z 51(1',2 OJ(rz"q) .
5¢(l‘ ,Z 5 z aq (5¢(l‘ »Z 53q ) 5¢( Z I’q
+ [[oe = - 8- o) + b ———g((:;z D1z
J [(50 —1)8(2" —2)6(q— q)T(rz";q) + (r,z":q) %E-z—’:—))”dz (A6)

Finally, noting that the variational derivative desired in Eq.
(A2) is related to the one given in Eq. (A6) via the relation

8J(rzq) _ . 8J(rzq)

5(r'zq) 7-z 84(r.ziq)
and using the fact that the first, second, fourth, and sixth
terms of Eq. (A6) converge to zero upon evoking the limit

irldicated inEq. (A7), axld that the fifth term gives zero since
() =0, thus making (/) = 0, one obtains

(A7)

8J(r,z;q)
64(r',z;q')
=lim | &6(r,r')o6(2"

Z—z )y
=6(r—-r)b(q—q')J(r,zq). (A8)

Taking the ensemble average of this expression, substituting
the result into Eq. (A2), and performing the required inte-
grals, one obtains the result of Eq. (3.6) noting that the
quantity 4,(r —r’,z;q,q') becomes independent of the ¢’
variable.

—2')Y6(q — q')J(r,z";q)dz"
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APPENDIX B: DERIVATION OF EQS. (3.13)—(3.16)

The derivation of Eq. (3.13) commences with the Novi-
kov theore~m, which, in the case of the §-correlated random
functions ¢, gives

(B(r, 20T (r12:0,))

= ff A, (rr',z;q,q)

< 6{("2,2;(12) )dr’ dq'.
5¢(r',z,q')
This expression can also be obtained directly from Eq. (A2)
by evaluating J at the points r, and q,. One must now evalu-
ate the indicated variational derivative. This, too, can be ob-
tained directly from a previous result in Appendix A, in par-
ticular, Eq. (A8), simply by letting r = r, and q = g,, viz,,
6J(r2,2,q,)
56 (r',z,q")
Taking the ensemble average of this result, substituting it

into Eq. (Bl), and performing the required integrations
yield

(BI)

=8(r, —1')d(q, — q)J(ryzq,). (B2)
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(B(r1,2:0))T(r2,2:q,) ) = Ay (r) — 15,2,0,,0,) (J(r2,2:0,) ),

which is the result of Eq. (3.13).

Equation (3.14) follows similarly and can be obtained
from Eq. (3.13) by a simple transcription of r, and r, and q,
and q,.

The derivation of Eq. (3.15) requires one to employ the
Novikov theorem once again, which gives, for the §-correlat-
ed assumption made in the foregoing,

((r1,2:0)T(r22;0,) 7 (r,,2;q,))

= JJ‘A¢ (ry —r',2;,q,,4,)

X < 6{7(1'2’Z~QQ2')J(1"1:Z;Q1)} > drl dql
54(r',.z;q")

Expanding the variational derivative of the product and us-

ing the result of Eq. (B2) yield

8{J(r,,z,0)T(r,,z,0,)}
56(r' z:q)
= 8(r, — 1')8(q, — q)T (1,50, T (r),230,)
+8(r,—1)8(q, — ¢)T(r,,z,)T(rz0,).  (B4)

Substituting this into Eq. (B3) and performing the integra-
tions and using the various definitions given earlier give

($(r,z:0) T (r,2:0,) T (r1,z;4,) )
= [A¢ (r, —r,2q,,9;) +4,(0,z;,q,) |
X-Bj(rl,rz;z;ql’qz)’

(B3)
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which is Eq. (3.15).

Equation (3.16) follows a similar way and can be ob-
tained directly by transcribing r, and r, and q, and g, along
with the application of the assumption of isotropy of the ¢
statistics.
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Intervals of electrohydrodynamic Rayleigh-Taylor instability.

l. Effect of a tangential periodic field
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The intervals of electrohydrodynamic Rayleigh-Taylor instability influenced by a periodic
tangential field are considered. It is shown that a linear model of the interface is governed by
Hill’s differential equation. Characteristic values and intervals of stability are discussed. The
special case of the Mathieu differential equation type is obtained.

|. INTRODUCTION

Problems of electrohydrodynamic stability have been
considered by many authors. (See Melcher, "> Woodson and
Melcher,> Mohamed and Elshehawey,*® Elshehawey,” El-
shehawey et al.® El Dabe et al.,” and Mohamed et al.'®!! and
the references therein.) There are some physical situations
when one needs a limited band of wavenumbers to achieve
instability; at the same time, for values of wavenumbers less
or greater than this band stability is required. For example,
in biophysics'? the cell membrane is formed by a number of
adjacent cells if they are subjected to a periodic field. Also,
the membrane breaks down if a field at a given strength is
applied to it. Also, if a force varying periodically with time
acts on a mass in such a manner that the force tends to move
the mass back into a position of equilibrium in proportion to
the dislocation of the mass, one might expect the mass to be
confined to a neighborhood of the position of equilibrium. In
particular, once the force is strong enough to achieve this
effect, one would expect a stronger force to be even more
efficient for this purpose. An increase of the restraining force
may cause the mass to oscillate with wider and wider ampli-
tudes. The theory of the intervals of instability provides the
precise description of this phenomenon.

In the present paper, we shall confine ourselves to giving
a general description of the so-called regions of absolute sta-
bility since in most previous cases, the results are based on
numerical computations.

{l. FORMULATION OF THE PROBLEM

Consider two semi-infinite dielectric inviscid fluids sep-
arated by the plane y = 0. The upper and lower densities of
the fluids are p® and p'", respectively. The fluids are in-
fluenced by a periodic electric field

E,=E*E,(t)e,, f E?(t)dt=0, (2.1)

o

where e, is the unit vector in the x direction. We shall con-
sider all “functions E 3 (¢) of class P which are defined by

[ [ ez e =1,
0

where p = 1,2,3,...,0r p = . If p = w0, (2.2) means that

(2.2)

® On leave from the Department of Mathematics, Faculty of Education,
Ain Shams University, Heliopolis, Cairo, Egypt.
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max|E} (1) = 1. 2.3)

We assume that E 2 (¢) is continuous except for a finite num-
ber of points, where E } (¢) may have a jump. We dimension-
alize the various quantities using the characteristic length
L = (t/p"g)"'? and the characteristic time (L /g)'/%. The
motion considered here is irrotational and there exists a ve-
locity potential ¢ such that v = Vg.

The velocity potential ¢ satisifies

F2PpRW  G2g@.
+ = 0 2.4
ax* a? (24
such that
|V$@| -0, asy— o, (2.5)
V6P| -0, asy— — . 2.6)
The surface deflection is expressed as
y=£&(x,1). 2.7)
Then,
n=VF/[VEVF]"?= —£,(£2 +1)" %,
+ (£ 4+ 1) %, (2.8)

is the unit normal n to the surface, and F = 0is the equation
to the surface of separation. '
The condition that the interface is moving with the fluid
leads to
§i— O+ VE =0, aty=¢ (2.9)
We assume that the quasistatic approximation is valid
and we introduce the electrostatic potential ¥V such that
E®W = E*E (t)e, — VW2, (2.10)

Therefore, the differential equation satisfied by ¥+ is
the Laplace equation

d Z\I/(ZL(]) P ] 2\1/(2),(1)
ax? * ( )

along with the following boundary conditions.
(i) The tangential component of the electric field is con-
tinuous at the interface

nA(E? —EY) =0, at y=¢, (2.12)

which leads to
§x(\ll;2’~\llﬁ”)+ (Y& -9y =0, at y=£ (2.13)
© 1989 American Institute of Physics 2441



(ii) The normal electric displacement is continuous at
the interface y = £(x,¢):

n(Z?E? — €VEV) =0, at y=¢ (2.14)

and hence,

J

£, (EPWD _ g@ngdy _ (g2 ‘I’ﬁz) — &V )
—EE*E(D(ED — &), at y=§,

where €+ is the dielectric constant.
(iii) The normal hydrodynamic stress is balanced by the
normal electric stress. The balance condition is then?

(2.15)

D —pg® + (1—p)E + 1" — pd®”) + 1B — pgP")

=6 (1+EDTPH E*E(N @0 WP — VW) — @ WP VW) 4@ WP - w

+ 26, E*Ey (1) (EP W — eV W) —2£ (PP WP — gV WD WD) 4 £2 EEZ (1) (8P — &)

— ZE*EO(t) é—i(g—(Z) \I/f) — v ‘Pil)) +§i(g—(2) \I/)(‘Z)2 - \I/)(‘l)z) __é—i(g(Z) \I;;Z)Z — & \I/J(,I)z)

—2E3E*Ey() (8P WP — eV WD) 4 2£3 (P WP WP —EVWD WD) + O(£D), at y=E(x.0).

Equations (2.4)-(2.16) will be solved using the method
of multiple scale.”
We introduce the scales X,, and T, defined by

T, =¢€"t

We may also expand £, V2", and ¢® in the form

X, =€"x, 2.17)

3
§(x’t) = z €n§n (Xpo X1 Xy T, Ty, T3) + 0(64)’ (2.18)

n=1

3
\I/f,“’“’(x,y,t) = z eV (X, Xy, Xp3 9 T, Ty, T)

n=1

+ O(eh), (2.19)

3
¢£2),(l)(-x:y9t) = 2 En ¢:-2),(1)(X0’ Xl’ XZ; y’ TO: Tl’ T2)

n=1

+ O(€*). (2.20)

We now substitute from Egs. (2.18)-(2.20) into (2.4)-
(2.16) and equate coefficients of like powers of €.

The problem considered here is the intervals of the lin-
ear electrohydrodynamic stability of a single interface
stressed by a tangential periodic electric field. The effect of
nonlinearity on the problem at hand will not be discussed
here and will be the subject of a subsequent paper.

The solution of the first-order problem for traveling
waves with respect to the variable X, that decays far from the
interface is

& = D(X,X,; Ne™™ + D(X,, Xp; t)e ™ **%, (2.21)
WP = [{E*Ey() (€2 — &)/ (é® + )]

X [D(X,, X,; t)e* %o~ & _De-*b—k]  (2.22)
WD = [[E*Ey (1) (€? — &V)/(&? + &V)]

X [D(X,, X, t)e* o+ _De-ih+k]  (223)
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(2.16)
{
- __l_ja_D_eikX.,—ky__l_@e—"ka—"y, (2.24)
k ot k ot
14D ; 14D _,
(D - O pikkotky | T o= kKot ky 2.25
et Y at 22
8D k
ot (1+4p)
KE**E}(1)(8? —&"y?
X|1—p+k? < D=0,
p+KE-+ @ 1 &M
(2.26)

As a special case of Eq. (2.26), which is the well-known
dispersion relation, if we replace the periodic electric field by
a constant field, we obtain the same result given in Ref. 4 for
the linear system, where

K. =+p — 1(cosh §; — sinh ),

sinh 6 = az/2{p — 1,
a; = E*Z(éﬂ) _ 211))2/(?2) + é(l))_

ill. THE HILL EQUATION
We put Eq. (2.26) in the standard form
2
—"at’,_’+ [A+Q(01D=0, (3.1)
where
A=[k/A+p) (1 —p+k?), (3.2)
Q) =BEZ(), (3.3)
2 #2022) _ 21)y2
_KETEIE) i m=0m,  (34)

(1+p)(E + &)
where A is a parameter depending on the ratio density p and
wavenumber k. Here, 8> 0 and Q(?) is a real periodic func-
tion of ¢ with period 7.

Here, we determine the values of A for which the solu-
tions of the Hill equation (3.1) are stable. (See Refs. 14-17
and the references therein.) Following the methods of Mag-
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nus and Winkler,'® one can show that for the given Hill
equation (3.1) there belong two monotonically increasing
infinite sequences of real numbers

Aoy A1y Aggenns (3.5)

ALALA AL (3.6)
such that Eq. (3.1) has a solution of period 7 iff A =4,,
n=0,1,2,..and asolution of period 27 iff A =4 [, n = 1,2,
3.

The A, and A |, satisfy the inequalities

Ao<A <A ) <A <A, <A i<A <A< < (3T)
and the relations
limA{~ V=0,
- (3.8)
lim (42)~!'=0.
The solutions of (3.1) are stable in the intervals
(Aod 1), (A3A41), (AzAdl), (A4,43), ... (3.9)

At the endpoints of the intervals (3.9) the solutions of
(3.1) are in general unstable: This is always true for A = A,.
The solutions of (3.1) are stable for A=A4,,, 0r
A=Ay, 42 ff A4 =A2,,, and they are stable for
A=A5, ,otdA=A4}  ,iffA;,  , =43, , Forcomplex
values of A, Eq. (3.1) always has unstable solutions and it
cannot happen since p and k are real here [see Eq. (3.2)].

The A, aretheroots of A(4) = 2and the A | are those of
A1) = — 2, where

A(4) = Dy(mA) + D5 (mA). (3.10)

The intervals of instability ( — o0, 4,) will always be
present (the zeroth interval of instability) and we define
(41, A}) as the first interval of instability.

We observe that neither an interval of stability nor an
interval of instability can ever shrink to a point. The intervals
of stability can never disappear, but two of them can com-
bine to asingleoneifd,,,, =A,,,, 0145, =45,
However, the interval of instability (with the exception of
the zeroth intervals) may disappear altogether. This takes
placeif Q(#) = 8 E? (t)is a constant (i.e., for the case of the
constant tangential electric field given in Ref. 6).

A region in the real A, S plane will be called a region of
absolute stability for functions of class p if for any point in
this region (3.1) will have stable solutions for all functions
Q(t) =B E%(t),where E}(t)belongs to the class p.

Let n =0, 1, 2,... . The region of absolute stability for
the functions £ (¢) of class 1 is bounded by the curves

Bosr = £ [4(n+ 1) VA /7]cot[mfA 72(n + ],
n*<A<(n+1)3

B,= +2A(1 —n/fA), A>1, n>l,

A=0, for n=0(e,p=1+k?).

(3.11)

and is such that none of these curves is contained in its interi-
or.

The open region bounded by the curves (3.11) is maxi-

2443 J. Math. Phys., Vol. 30, No. 10, October 1989

mal; for any point outside or on the boundary of this region,
there exists a function E} (¢) of class 1 such that not all
solutions of (3.1} are bounded. Also, let m be a real variable,
0<m? <1, and let

7/

X E=I J1 = mZsin %s ds.
(0]

(3.12)

/2
M=f __a
o J1—m%sin®s

Then the curves defined for n =0, 1, 2,... by
Bui1 = 837120 X n+ 1M [M*(m?*—1)

+ 2ME(2 — m*) — 3E?*]/?, (3.13)
Apiq =477 (n + 1) (M (m* - 1)
+2ME], A>0, (3.14)

bound the region of absolute stability of the functions of class
2. The boundary points do not belong to the region since for

A+BEL) =47 X n+ 1)’ M*(1 + m?)
— 87 X n+ 1)°m*M?

Xsn#(2(n + 1) Mt /7), (3.15)

the differential equation (3.1) has only one periodic solution
(and therefore, at least one unbounded solution).
The periodic solution (with period 7 or 2 7) is

T=2(n+ 1)Mt /7, (3.16)

where sn 7 is the Jacobian elliptic function with module m
and period 4M.

Also, for the functions of class «o, the region of absolute
stability is bounded by the curves

(/ln+1 +ﬂn+1)]/2 tfan[1r\}1n+1 +Bn+l/4(n+ 1)]

= (/{‘n+l _Bn+1)1/2

Xoot[mfA,,, —B., /4(n+1)],

where n =0, 1, 2,... and where the region does not contain
any of these curves in its interior. If one of the square roots
should be imaginary, the functions tan and cot have to be
replaced by the corresponding hyperbolic functions, i.e.,

Dp =snr,

(3.17)

Et4> (1 —p + k2)2(é(2) + g(l))Z/kZ(g(Z) _ g(l))‘t‘ (318)
Also, if @ and b are real numbers and
<A+ BE(n)<b?, (3.19)

then the solutions of (3.1) will be stable for all possible
A + BE(t) satisfying this condition iff the interval (a?, b )
does not contain the square of an integer.

IV. THE MATHIEU EQUATION
Ifwetaked = [k /(1 +p)] (1 —p + k?)as (3.2) and

E} (1) =cos 2t (4.1)
2 20212) 2(1)y2
2(1 +p) (82 + &") 2
Eq. (3.1) becomes
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3D
at*
which is the Mathieu differential equation.'®
According to the Floquet theorem,'” the general period-
ic solution of the Mathieu differential equation given by
{4.3) can be written as

Dp(Xl’ Xz, 1) =F1(X,,X2)e'“H(t)
+ F,(X}, Xy)e “H( —1), (4.4)

where H(t) is a periodic function in ¢ of period 27 or m;
F,(X,, X;), F,(X,, X,) are arbitrary constants; and u is a
parameter given by the relation

sin? jum = A(0)sin? }m/4 . (4.5)

Here, A(0) is an infinite Hill determinant depending on 4
and ¢ (see Ref. 18) and takes the form

A(0) =1 — A2 cot imA /4JA (A — 1). (4.6)

It is seen from Eq. (4.4) that if 4 is pure imaginary, the
solution for D, will be bounded as ¢— o and the system is
stable. The characteristic curves of the Mathieu functions
and the regions of stability and instability are discussed in
Ref. 18. In the (4,q) plane, the regions in which the values of
A and q yield imaginary values of u are the stable regions.'®
On the other hand, if  is real, the solution for D, will tend to
o0 aSt— 0.

The unstable regions [in the (4,g) plane] are the re-
gions in which the values of A and g correspond to real values
of u; the boundary curves of these regions are symmetric
about the A axis. On the other hand, we assume that

g= —k2E** (@ —&"/2(1 +p)(e? + &)

are small (which is a good approximation to high-frequency
fields or large wavenumbers). Then following Morse and
Feshbach!® one can show that the solution of Eq. (4.3) will
be bounded at #— « provided that ¢ and A satisfy the in-
equality

4+ {A —2gcos 2t 1D =0, (4.3)

4 — N1 —A)g+ A1 —-A1)>0 4.7)

or

k4E *4(@.(2) _ E—(l))4
(1+p)2(E + &)

+ 324(1 —A)>0.

16k 2E*2 (8?9 — &M)2(1 —A)
(1 +p)(é(2)_+_g(1))

(4.8)

Also, if BE3(t) + A>0and
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JW[BEE,(:) +A]%ar
0

(el o]

_1[rQ) ]4, (4.9)
21T

then the solutions of the Mathieu equation (4.3) are stable.
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Global solution of the Boltzmann equation for rigid spheres and initial data

close to a local Maxwellian
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In this paper, which is an extension of the previous paper of one of the authors [ Arch. Rat.
Mech. Anal. 102, 231 (1988) ], a global existence theorem is presented for the Boltzmann
equation for initial data close to a local Maxwellian of a special type. Contrary to the previous
result, the global existence is proved for rigid spheres and “hard” potentials with angular

cutoff.

I. INTRODUCTION

After recent results of DiPerna and Lions,'? the main
problem of the Boltzmann equation, i.e., the existence of
global solutions, seems to be solved. On the other hand, the
problem of the uniqueness of the solution is open, and the
asymptotic behavior of the gas density has been only partial-
ly investigated in a recent paper by Arkeryd.®> These facts
still make different approaches justified.

In the present paper we consider a particular case when
initial data are not small but close to a given local Maxwel-
lian. We prove global existence and uniqueness for a corre-
sponding initial value problem. The paper is a continuation
of the previous paper of one of the authors* when similar
results were obtained for soft interactions and Maxwellian
potentials with angular cutoff.

In the present paper we consider a gas of rigid spheres.
Since, as it was observed earlier (cf. Illner and Shinbrot®),
rigid spheres create some peculiar technical difficulties, we
begin with the analysis of the Boltzmann equation for
“hard” potentials with angular cutoff. Then, the rigid
spheres result is obtained as a limit of solutions for hard
potentials. The proof of existence is similar to that used in
Ref. 4 and is based on the Kaniel and Shinbrot iteration
scheme.> What is worth noting is the fact that although we
start with initial data close to a Maxwellian there is no trend
to equilibrium. This shows a substantial difference between
local and global Maxwellians for which the trend to equilib-
rium always holds.

Il. THE BOLTZMANN EQUATION

Our aim is to solve an initial value problem of the non-
linear Boltzmann equation. In the absence of an external
force field and with initial data defined in the whole space
this problem can be written as follows:

g—{—i-v-gradxf:J(ﬁf), xeR> wveR? tR™, (la)
S(x,0,0) = @(x,0). (1b)

For gas particles interacting by cutoff potentials or rigid
sphere interactions the collision operator J can be split into
gain and loss terms:
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af
at
where

+vgrad, f=Q(LS) —fR(S), (2)

0L kot = | BGO/ ()8
D
+ f(v)g (v} ) ]dv, de db, (3)
R(f) =j B(q,0)f(v,)dv, de déb. (4)
D

Here (v,v,) and (v',v]) denote the precollisional and post-
collisional velocities of the two colliding particles and
g = v, — v is the relative velocity. Here ¢ = 7 — 26 is the
scattering angle of the binary collision and ¢ is the azimuthal
angle of the plane in which the collision takes place. Conse-
quently D = R*x {0,7/2] X [0,27].

To begin with, let us give essential notation and prelimi-
nary results. First, let us denote

FExur) = flx + vtu,t).
Then Eq. (1) can be written as follows:

/i #p# #

7+f RA(H)=07(L 1), (5a)

F#(0) = p(x,p). (5b)

Following the approach of Kaniel and Shinbrot we will solve
Eq. (5) by the iterative scheme,
#

ol
TH:‘R#U«"_I)=Q#(1"_.,1n_1), (6a)
a #

;t" FuFR*(,_ ) =Q%(u, ), (6b)
1,(0) = u,(0) = @(x,). (6¢)

To begin iterations we need a pair of functions (/,u,). Fol-
lowing Kaniel and Shinbrot we say that such a pair satisfies
the beginning condition if

0< (D) < (1) <uy (1) <up(2).

Itis well known from the results of K aniel and Shinbrot®
that if >0 and (/,,u,) satisfy the beginning condition then
the sequence of iterative solutions /, is increasing and u,

decreasing and both converge (in the L' sense) to a mild
solution of (5).
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11l. GLOBAL EXISTENCE FOR HARD POTENTIALS

In this section we shall prove that for initial data close to
a special local Maxwellian it is possible to construct two
functions u, and /, which satisfy the beginning condition. As
we know, local Maxwellians are given in the form

o(x,0,t) = 27T) > *nexp( — |v — u|?/2T), (7)

where n = n(x,t), u = u(x,t), and T = T(x,t) are the fluid-
dynamical parameters denoting the mass density, mean ve-
locity, and temperature of a gas (for a general discussion of
local Maxwellians see Truesdell and Muncaster’).

For the purpose of this paper we shall assume u and T to
be constant and n = n(x) = exp( — ax?). Hence our local
Maxwellian has the form

w(x,0) = c exp( — ax?)exp( — fv?). (8)

Given a steady Maxwellian o in the form (8) we want to
solve the Cauchy problem (5) in space L (R ), or strictly
speaking, in the subspace {f(x,v)eL '(R®): 0< flx,v)
<cw(x,v) } with an initial value @(x,v), whichis close tow in
the sense that

(1 —olxv)<exv)<(l 4+ €)w(xw), (9)

with € sufficiently small.

As we know from the previous section, the essential step
in solving the Cauchy problem (5) is the construction of the
beginning condition. To this purpose, let us set

uf (x0,0) = (1+ e(D))o(x),
1§ (x0,1) = (1 — e(D)o(xp),

where the function €(¢) will be specified later.
Due to (8), we obtain for any constants ¢, ¢,, ¢;, and ¢,

o #(Cll() + Cotl,C3ly + Cauy)

(10)

= (cily + coue) R # (3l + cyuty). (11)
Applying (11) to the iteration scheme we obtain
IF(=¢ +j [1& ()R #(ly)(s)
0
— 1 ()R #(uy) (s) ] ds,
(12)

Wt () = ¢ +f [43 ()R * (u0) (5)
0

—uf (IR # (1) (s)]ds,
so that /, — /, and u, — u, satisfy the following equations:

(h=1)*

=@ —1F (1) —J 1¥ ()R #(uy — 1,) (s)ds
0

_J (, - l())#(S)R #(u())(s)dS,
o

(uy — u|)#(t)

=uf (1) —¢p— f uf ()R #(ug — 1)) (s)ds
(4]

, (13)
—f (y — ) * ()R * (1) (5)ds,
(4]

In order to prove that Eqs. (13) possess positive solutions it
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is sufficient to show that the following inequalities hold:

t

uf (1) — @ —f ufF ()R #(uy— 1)) (5)ds>0  (14)
0

and

p—1F (1) —f 1¥ (R #(uy— 1) (5)ds>0.  (15)
0

Recalling the definitions of #J* and /¥ and (9) we shall ver-
ify (14) and (15) if €(¢) satisfies

6+df €(s)(1 + () )F(x,v,5)ds<e(t), (16)
(¢)
where d is a given constant, €(z)<1 and
F(x,p,t) = f B.(0)g“~ " exp( — alx — gs|*)
D
X exp( — Bv?)dv, df de. 17

To prove that inequality (16) has solutions we first have
to analyze the function F(x,v,t).
Lemma 1: Let B, (0) satisfy the “cutoff”” hypothesis

/2
J B (8)db<c. (18)
0

Then for hard interactions 4 <5 < < the following estimate
holds:

sup f lF(x,v,r)drgc,,(j '(arz + )@ —mva a’r)“/" (19)

xR/,
o

for every #,,¢,>0 and ¢, independent of s.
Proof: First, let us observe that

—alx —qt|* — Bo}
= — [(at’ + B¢ — 2(axt — Bv) g + ax® + Bv’]
— _ [(at2+/3’)'/2q— (axt — Bv)/(at? +ﬂ)'/2]2
—afB(x +v)/(at* + ).
Using this equality and estimate (18) we get
F(x,,t)

— fﬁs (O)q(s—4)/s
D

Xexp( — a|x — gs|*)exp( — Bv? )dv, d6 de
exp — af(x + vt)?
(at®+B)

x [ oo [ L@ =B
R? (at2 +B)1/2
Because (s — 4)/5 < 1, we can use the triangle inequality:

(Ja| + 6 DCP7<lalC =Y 4 b |97

to estimate the last integral, obtaining

<C(at2 +B)(2—2:)/:

dq.
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g — (axt — Bv)? ]
arpe |4

(s—4)/s

Jq(s 4)/sexp

q— (axt—pv)
(a1 B
(axt — Bu) (““’/‘}

g — (axt —pv) |
Xexp_[ (at2+ﬁ)1/2
_ (s —4)/s
_(ai__% exp( _qz)dq

+f q(s—4)/s exp( _qZ)dq
RY

(s — 4)/5)

(axt — Bv)
<c( + ‘(atZ +B)1/2

Hence we obtain
F(x,v,t)
<e(l + |(axt — o)/ (at? + Y267
X(at?+p) ="
x exp{ — @B (x + vt)*/(at® + )}
= P(x,p,t)(at® + B) ~ 27, (20)

where
P(x,0,t)
=c{(at’ + B)* =" + [(axt — Bv)/
(at?+ B2}
Xexp{ — af(x +v)*/(at® + B}

Using inequality (20) we get

f |F(x,v,r)dr

) (s—4)/s
< {f P(x,0,r)Y6—9% dr]
1,

0

4/s

[ sl

To end the proof we have to show that the integral of
P(x,v,t) is bounded independently of s. Indeed

1 (s—4)/s
{J‘ P(x’v,r)x/(s —4) dr]
t(l

gc[J‘[l(ozr2 +8 ! dr](x—“)/s + c[f'

— afis(x + U,-)Z ] r}(: 9/
(s —4)(ar + ) ‘
The first term in the right-hand side is bounded. To prove
that also the second is bounded we make the following esti-
mate:

pv)
(ar’ + B)*2

Xexp[
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| (axr — Bv)/(ar* + B)*?|
Xexpl — aBs(x + vr)2/(s — 4)(aP + B)]
<(alx|r+ B v])/(ar + B)*"2
Xexpl — aps(|x| — [v|r)?/ (s — 4) (ar’ + B)]

= 2 {Ux] = oI/ (@ + B}
dr

Xexp[ — aBs(|x| — |v|r)*/(s — 4)(ar* + B)].
With this inequality we obtain:
" (axr — Bu) [ — afs(x + vr)? ]d
f @+ B @ rpl”

<f exp[ : apsr’ ]d r<e,
e w s —

which shows that also the second term is bounded.

Using the above lemma we can prove the following
theorem.

Theorem 1: Let 4 < 5 < oo. There exists €(t) which satis-
fies inequality (16). Then /, and u, defined by (10) are the
beginning condition for the system of equations (6) and the
limits of sequences /, and u,, coincide, i.e.,

lu =15 =0

for every ¢>0.
Here, as in the rest of the paper ||- || denotes the L ' norm.
Proof: Let us consider the following auxiliary problem:

(21

w, (t) =2e+MJK,,(z,u)w,,(u)du, (22)
0

where

t 4/s
K,(tu) = —78—[_]. (arz+ﬁ)‘“+2)/4dr+n"/4] ;
u u

The integral kernel K, is bounded and continuous. Thus Eq.
(22) has a bounded, differentiable solution. Differentiating
this equation we obtain

w, (1) =MJ —
0

'2 —(s-+—2)/4d
du ot L(a +h) ’

4/s
+ n"/“] w, (u)du

(s+2)/4

(at +8)
n—9/4%/4

Then integrating by parts we obtain

Muw, (1).

w, (1) = 26M——-[J (a,-2 +A —(5+2)/3 g,
+n—s/4]4/s
!a { —(s+2)/4
+Mf—[J(aR+B) s+2)/4 g,
o dtlJ.

+ n_’/“]“/’w,’, (u)du. (23)

Equation (23) implies that w, (¢)>0, thus w,(t) is an in-
creasing function of t. Hence tending with ¢ to infinity we
obtain from (22),

w"(t)<26MJwK"(u)wn(u)du. (24)
(4]
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Now, if 7, (,5) is the resolvent kernel associated to K, (,5),
[7(1,5) is the resolvent kernel associated to K(z,s)], the
method of successive approximations leads to the following
bound for the solution:

o

w,(H)<w, () =26(1 +J
0

<2e(1 + fw y( oo,S)dS).
0

On the other hand, Corollary 1 of Ref. 8, p. 53, ensures that
S&y(e0,8)ds is bounded. Hence, choosing € sufficiently
small we can make w, (¢) < 1.

Integrating (22) by parts we obtain

V. (o0 ,s)ds)

(25)

w,(t) =2+ 2eM [J (aP +B) S+ gy
0

+ n- s/4]4/s

n

M +MJ U (ar +B) ~“ D% dr
wn 0 u

+ n- s/4]4/2w; (u)du'

— s/4

Since w;,, is positive we can drop the term n to obtain

w,(1+M/n)

! a/s
>2e+ 2eM [j (ar’ + )~ G+ dr]

0

! ! 4/
+MJ [J. (arz-f-ﬁ)”(”zmdr] w’, (u)du.
0 u

Then, due to Lemma 1, we have

w,(1+M/n)>2e+ ngf F(x,v,r)dr
¢, Jo
+A—4 U F(x,v,r)dr]w;,(u)du
Cp 0 u
>2e + A—IJ F(x,pu)w, (u)du
c, Jo

t
>2€ + —Ai f F(x,v,u)
2(:,, 0

Xw, (1)1 +w, (u))du.

Choosing M such that M /4c, >d [cf. (16)] and n>M we
obtain:

w, () >€+ df F(xpu)w, (u)
0

X(1 4+ w, (u))du.

Therefore, if n > M = 4c,d, w, (1) satisfies inequality (16).

From Egs. (6) it follows that ||/]|(¢) and ||u] () are
bounded. Then subtracting (6b) from (6a) and tending with
n to infinity we get the inequality

(u — D¥(1)<co(x,v) f Jlu— 1|
0
XJ Bs (B (x —grv))dv, dOdedr. (26)
D
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Applying to (26) the Holder inequality and using (18) we
obtain

lJu =10

<CJ_ e — ]| (rYF(x,v.r)dr
0
T 4/5
<c¢ [J (e = 2] (r)"* dr]
0
¢ (s—4)/s
X U F(x,p,r)”¢—9% dr]
0

4 4/s
<c [f (Hu—l”(r))‘v“dr] .
o

Hence by the Gronwall lemma we get (21).

IV. EXISTENCE OF SOLUTIONS FOR RIGID SPHERES

The analysis made in the preceding section does not take
into account the rigid spheres model. In fact, for s = o in-
equality (16) does not hold for any €(¢). On the other hand,
the smallness condition (25) holds also for s = . This en-
ables us to hope that the result which is true for s < o0 can be
extended to rigid spheres.

To solve the initial value problem (1) for rigid spheres
let us take initial data in the form

(I — e)w(x,v)<p(x,v)< (1 + &) w(x,0), 27

where €, is given by the following expression:

€ '=2sup exp{M [f (ar +B) 6+ gr
s 0

+n- 5/4:|4/s}.

Let us now introduce a sequence of collision kernels which
approximate the rigid sphere kernel:

B, (g,0) = A cos @ sin g ~ <Pt = (28)

and let f, (x,v,t) bea solution of the Boltzmann equation (1)
with collision kernel (28) and initial data (27). Then the
following lemma holds.

Lemma 2: The sequence f, (x,v,t) is a Cauchy sequence
in L '(R ©) for every 0.

Proof: Let us denote by Q, and R, the collision opera-
tors whose kernels are given by (28). Then for given n,m>n,
with m > n, we have

fEm =¢+£Q#(,fn,f,,)(s)ds
~ J:ff(s) RF(f)(s)ds,
fEm =¢?+£Q,’;f(fm,fm)(s)ds
—Llf,ff(S)Rf(fm)(s)ds.
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Subtracting these two equations we obtain <2 f 6 ' [Q,’f.( Forf) = QR f) 1(s)ds|dx dv

J- | frr = Fu|F(Ddx dv
Rh

v2f |[ 1oz
— Q¥ S f)](s)ds

| Consider the first of the above two integrals:

I:‘:(fm!fm) _Qf(f;x!f;t)](s)ds dxdv

<2
Rﬁ

dx dv. (29)

f f [QE(fmr [) — QE (L0 f) ] (8)ds|dx dv<c dxdvf ds| f% —ffl(S)f dv,g' ~ o (x — gs,,).
R°lJo R® o R?

We split the last integral into two parts corresponding to |v| > # and || <#. Then we obtain

R* o} > n (4] R

<CJ- dxj dv w(x,0) J- dv, g~ =P ™ exp( —ﬂvf)<cf dv exp( — Bv*)<cexp( — Bn’/2).

R* lol>n R} fol>n

For the part with |v|<» we have
f dxf dvf ds| f% — ff*|(s)f dv,g' ~ P " (x — gs,w,)<c(l + n)fdsJ dx dv| f7 — f¥|(s).
R* jvl<n 0 . R (i} R®

To estimate the second integral in (29) we utilize the fact that f *(x,0,8)<2w(x,0). Then we proceed as follows:

Ln Lt[Qﬁ(fn’fn) — Q¥ f,) ] ()ds|dx dv

t
<c | dx dvj dsJ dv,|g' —exP(—m) _ gl —expC= 6 (x — g5, ) w(x,v)
0

R®

2
<Cf dXdUCXP(L)J ds exp( — a|x — gs| )qf dglq—P(—m) q~exp<_nz>|exp( —4Bq )

<CJ dq‘q exp{ — m?) q—exp(—n)lexp( B‘I)

In the above inequality we used the fact that  To estimate the second integral let us observe that for g>1

Bv? + Bv?/2>B4*/4. For the last integral we have we have ¢* ~ '<pg”* ',p> 0. Then
_ 2 © . N _ 2
J' dq‘q—exp(—mz) _q—exp(—nz)lexp( Bq ) f dq(qZ—exp(—m-) _q2—exp(-n’))exp( Bq )
R? 4 1 4
= 47 ® dq(qz—exp( —m?) :Jw dq qzwexp(~n3)
3] 1
2 _ p2
_q2—exp(—n3))exp(_ﬁq ) X(qexp(fnl)fexp(-mz)_l)exp( Bq )
4 4
t . . o _B 2
=47TJ- dq(qZ—exp(—m‘)_qz—exp(—n’)) <[exp(—n2)—exp(—m2)]f dqq3exp( 44 )
[+] 1
- Bq2) J“’ 5 exo( — Summarizing all the above estimates we obtain
X ex +47 | d xpl—mH
P( 4 1 q(q

[QECfnf)
_qz_exp(unz))exp( _fqz) J;(b‘J(;
— Q¥ S, f) ) (s)ds

. ‘ P X [exp( — n®) —exp( — m?)].
f dg(q* (=) — g (=" yexp (Tq) Hence from (29) the following estimate can be derived:
0

<j1 dq(ql—exp(—m:) _qZAexp( —nj)) ||fm _.f;1“(t)<C'CXP( - anZ)
0

. . dx dv<c
The first integral can be evaluated straightforwardly,

<clexp( — n?) — exp( — m?)}. +c(1 +”)J; Vfon = Sull(s)ds.
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Applying the Gronwall lemma we have

| frn = full(8) <c exp( — an?)explc(l + n)t].
Hence tending with #, to infinity we obtain the assertion of
the lemma.

Now we can prove our main result.

Theorem 2: Let f(x,v,t) be the limit of the sequence
Sy (x,v,t) which exists due to Lemma 2. Then f(x,v,t) is a
unique solution of the Boltzmann equation for rigid spheres.

Proof: First, we will show that f{x,v,¢) solves the Boltz-
mann equation in the sense of L !, To this end let us observe
that since £, {x,0,0) <2e(x,v}, then also f(x,v,1) Rw(x,v).
Hence we have

‘ fEWD —¢—f J#(£ ) (8)ds
0

A0 —<p—-fo J#(f,f)(S)ds—(ff(t) —9

fJ#(f,f)(s)ds
0

y

—f Jf(f,.,fn)(s)dS)
0

<IF#F@-rEol+

—f JE S L) (9)ds
0

The first term tends to zero by definition. To prove that the
second term converges to zero we have to apply similar esti-
mates as in Lemma 2, but with m = 0.

To show that f(x,v,t) is a unique solution of the Boltz-
mann equation for rigid spheres let us assume that there
exists another solution g(x,v,z) for which the estimate
g(x,v,t)<cw(x,v) holds. Then subtracting g(x,v,t) from
S(x,v,t) we obtain

(=@ * (D) <coxD) j 1~ gl
(¢]

XJ B, (Dw(x — gryv,)
D

Xdv, d6 de dr.
Applying the Holder inequality we obtain:
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|f—sgll(<e| ||f—gl(rF(xp,r)dr
0
¢ 4/s
<e| [[0r—ghnpar]
t (s—4)/s
X[f F(xu,r)¥¢—% dr}
($]

t 4/s
<CU (lf—sgl(ry* dr] .
0
Hence by the Gronwall lemma we obtain

| f—gll(r) =0.
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ERRATUM

Erratum: The hyperspin structure of unitary groups [J. Math. Phys. 29, 978

(1988)]

Christian Holm

Institut fiir Theoretische Physik A, TU Clausthal, 3392 Clausthal, Federal Republic of Germany
(Received 4 April 1989; accepted for publication 19 April 1989)

Since the publication of the above article subsequent re-
search,! motivated by a comment of Borowiec,? has shown
that the hyper-Christoffel connection [p. 979, (2.9)] does
not transform like a connection, and even worse, does not
exist for most geometries. Subsequently formula (2.11)
should be ignored.

From the metricity condition (1) [p. 984, (4.2)] only
follows that w® , = 0, it is not equivalent to (1). This in turn
invalidates the lemma of Eq. (4.5), as well as Egs. (4.8) and
(4.11). The existence question of a torsion-free metric con-

2451 J. Math. Phys. 30 (10), October 1989

0022-2488/89/102451-01$02.50

nection is dealt with in Ref. 1. There it is shown that a gen-
eral Bergmann manifold does not possess such a connection.

Nevertheless such a connection does exist for the geom-
etry of the unitary groups, so that the main results of the
paper remain valid.

'C. Holm, “On the connection in Bergmann manifolds,” to be published in
Int. J. Theor. Phys.

2A. Borowiec, “Some comment on geometry of hyperspin manifold,” Wro-
clav preprint, 1988.
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